首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comprehensive understanding of the dynamics of erosion and sedimentation in reservoirs under different management conditions is required to anticipate sedimentation issues and implement effective sediment management strategies. This paper describes a unique approach combining fluvial geomorphology tools and morphodynamic modeling for analyzing the sediment dynamics of an elongated hydropower reservoir subjected to management operations: the Génissiat Reservoir on the Rhône River. Functional sub‐reaches representative of the reservoir morphodynamics were delineated by adapting natural river segmentation methods to elongated reservoirs. The segmentation revealed the link between the spatial and temporal reservoir changes and the variability of longitudinal flow conditions during reservoir management operations. An innovative modeling strategy, incorporating the reservoir segmentation into two sediment transport codes, was implemented to simulate the dynamics of erosion and sedimentation at the reach scale during historic events. One code used a bedload approach, based on the Exner equation with a transport capacity formula, and the other used a suspended load approach based on the advection–dispersion equation. This strategy provided a fair quantification of the dynamics of erosion and sedimentation at the reach scale during different management operations. This study showed that the reservoir morphodynamics is controlled by bedload transport in upper reaches, graded suspended load transport of sand in middle reaches and suspended load transport of fine sediments in lower reaches. Eventually, it allowed a better understanding of the impact of dam management on sediment dynamics. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Hydrological models need to be adapted to specific hydrological characteristics of the catchment in which they are applied. In the lowland region of northern Germany, tile drains and depressions are prominent features of the landscape though are often neglected in hydrological modelling on the catchment scale. It is shown how these lowland features can be implemented into the Soil and Water Assessment Tool (SWAT). For obtaining the necessary input data, results from a GIS method to derive the location of artificial drainage areas have been used. Another GIS method has been developed to evaluate the spatial distribution and characteristics of landscape depressions. In the study catchment, 31% of the watershed area is artificially drained, which heavily influences groundwater processes. Landscape depressions are common over the 50‐km2 study area and have considerable retention potential with an estimated surface area of 582 ha. It was the scope of this work to evaluate the extent by which these two processes affect model performance. Accordingly, three hypotheses have been formulated and tested through a stepwise incorporation of drainage and depression processes into an auto calibrated default setup: (1) integration of artificial drainage alone; (2) integration of depressions alone and (3) integration of both processes combined. The results show a strong improvement of model performance for including artificial drainage while the depression setup only induces a slight improvement. The incorporation of the two landscape characteristics combined led to an overall enhancement of model performance and the strongest improvement in r2, root mean square error (RMSE) and Nash–Sutcliffe efficiency (NSE) of all setups. In particular, summer rainfall events with high intensity, winter flows and the hydrograph's recession limbs are depicted more realistically. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Streamflow measurements provide information about the flow generation characteristics of land surfaces as well as the flow transferring nature of the channel network. In this study, such flow transferring properties of the channel network that were obtained from downstream flow observations were used for predicting flow in ungauged basins. A temporally averaged transfer function (ATF) of the channel segments of Kentucky River Basin (KRB) in Kentucky, USA, was extracted from observed hydrographs in a time‐invariant system as a function of drainage area. The ATF was regionalized through multiple regression analysis for 194 combinations of drainage areas that differ in topography, terrain, and geology. The application of ATF for flow prediction in ungauged basins was performed for Goose Creek, a subbasin of KRB by integrating ATF with the TOPMODEL. In addition, the ATF was shown to be capable of providing calibration and validation data for ungauged basins in a backward technique from a measured stream gauge downstream, with minimal data requirement of drainage area. The applicability of ATF was illustrated across a range of streamflow conditions from watersheds that varied greatly in their terrain and geology. Nash–Sutcliffe efficiency of the proposed method, as a function of drainage areas of the corresponding basins, to predict daily streamflow from ungauged basins ranged from 0.83 to 0.92. The results of the study concluded that the ATF obtained from measured streamflow thus proved to be a quick and simple tool for assessment of streamflow in both operational and modeling hydrology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Prevailing ideas and calculations of coastal response to sea level rise (SLR) are often based on the Bruun model (Bruun P., Sea‐level rise as a cause of shore erosion, Journal Waterways Harbors Division, ASCE 88 : 117–130, 1962) that predicts upward and landward transfer of an equilibrium profile during SLR through offshore sediment transport on the shoreface. The model is based on a number of assumptions of questionable validity as well as outdated concepts on how sediment is transported across the shoreface. This contribution takes a numerical modelling approach that is based on first‐order processes contributing to the movement of sediment across the shoreface. Using a wave transformation model that predicts hydrodynamic processes driving cross‐shore sediment transport and an energetics‐based model for the coupling between hydrodynamics and sediment transport, we show that cross‐shore sediment transport is mainly onshore directed at the boundary between the lower and the upper shoreface, in agreement with the model proposed by Davidson‐Arnott (Conceptual model of the effects of sea level rise on sandy coasts, Journal of Coastal Research 21 : 1166–1172, 2005). The transition from onshore to offshore directed transport is located well within the surf zone and with a rising sea level this transition point becomes displaced landward and upward. Tests also show that substrate slope is of fundamental importance to the manner in which beaches react to rising sea level. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Frequent algal blooms in surface water bodies caused by nutrient loading from agricultural lands are an ongoing problem in many regions globally. Tile drains beneath poorly and imperfectly drained agricultural soils have been identified as key pathways for phosphorus (P) transport. Two tile drains in an agricultural field with sandy loam soil in southern Ontario, Canada were monitored over a 28‐month period to quantify discharge and the concentrations and loads of dissolved reactive P (DRP) and total P (TP) in their effluent. This paper characterizes seasonal differences in runoff generation and P export in tile drain effluent and relates hydrologic and biogeochemical responses to precipitation inputs and antecedent soil moisture conditions. The generation of runoff in tile drains was only observed above a clear threshold soil moisture content (~0.49 m3·m?3 in the top 10 cm of the soil; above field capacity and close to saturation), indicating that tile discharge responses to precipitation inputs were governed by the available soil‐water storage capacity of the soil. Soil moisture content approached this threshold throughout the non‐growing season (October – April), leading to runoff responses to most events. Concentrations of P in effluent were variable throughout the study but were not correlated with discharge (p > 0.05). However, there were significant relationships between discharge volume (mm) and DRP and TP loads (kg ha?1) for events occurring over the study period (R2 ≥ 0.49, p ≤ 0.001). This research has shown that the hydrologic and biogeochemical responses of tile drains in a sandy loam soil can be predicted to within an order of magnitude from simple hydrometric data such as precipitation and soil moisture once baseline conditions at a site have been determined. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
There is increasing recognition that 137Cs data remain one of the few sources of spatially distributed information concerning soil erosion. However, many of the conversion models that have been used to convert 137Cs data into soil redistribution rates failed to account for some of the key factors affecting the redistribution of 137Cs in agricultural landscapes. The conversion model presented in this paper aims to overcome some of the limitations associated with existing models and therefore to provide more realistic estimates of soil erosion rates on agricultural land. The conversion model aims at coupling soil redistribution processes directly with 137Cs redistribution. Emphasis is placed on the spatial representation of soil redistribution processes and the adequate simulation of tillage processes. The benefits of the presented model arise from the two‐dimensional spatial integration of mass balance models with soil erosion models. No a priori assumptions about the intensity of any soil redistribution process are necessary and the level of agreement between observed and simulated 137Cs inventories enables us to evaluate the performance of the model. The spatial implementation and the use of fuzzy parameter sets also allow us to assess the uncertainties associated with soil erosion estimates. It was shown that an adequate simulation of tillage processes is necessary and that simplified tillage models may lead to erroneous estimates of soil redistribution. The model was successfully applied to a study site in the Belgian Loam Belt and the results indicated that tillage is the dominant process. Furthermore, the uncertainties associated with the estimation of water erosion rates were much higher than those associated with tillage, especially for depositional areas. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
The problem of obtaining field‐scale surface response to rainfall events is complicated by the spatial variability of infiltration characteristics of the soil and rainfall. In this paper, we develop and test a simplified model for generating surface runoff over fields with spatial variation in both rainfall rate and saturated hydraulic conductivities. The model is able to represent the effects of local variation in infiltration, as well as the run‐on effect that controls infiltration of excess water from saturated upstream areas. The effective rainfall excess is routed to the slope outlet using a simplified solution of the kinematic wave approximation. Model results are compared to averaged hydrographs from numerically‐intensive Monte–Carlo simulations for observed and design rainfall events and soil patterns that are typical of Central Italy. The simplified model is found to yield satisfactory results at a relatively small computational expense. A proposal to include a simple channel routing scheme is also presented as a prelude to extend this conceptualization to watershed scales. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Two kinds of errors occur in numerically transforming the transfer function (TF) to the unitary impulse response function (UIRF), the truncating error due to ignoring high frequency band contribution, and the discrete error due to numerical integration. The truncating error becomes prevailing if the TF attenuating trend is slow as the frequency approaches infinity. A semi‐analytic approach is presented to alleviate this error. This approach dissects the whole frequency axis symmetrically into three bands, the central band, and two side bands extending to infinity. The contribution from the central band is calculated numerically, while the TF over the side bands is approximated as a simple function with an explicitly known inverse Laplace transform. This approach can overcome the Gibbs oscillation in computing the UIRF for a slowly attenuating TF, as is verified by the numerical examples studied here. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Plant transpiration depends on environmental conditions, and soil water availability is its primary control under water deficit conditions. In this study, we improve a simplified process‐based model (hereafter “BTA”) by including soil water potential (ψsoil) to explicitly represent the dependence of plant transpiration on root‐zone moisture conditions. The improved model is denoted as the BTA‐ψ model. We assessed the performance of the BTA and BTA‐ψ models in a subtropical monsoon climate and a Mediterranean climate with different levels of water stress. The BTA model performed reasonably in estimating daily and hourly transpiration under sufficient water conditions, but it failed during dry periods. Overall, the BTA‐ψ model provided a significant improvement for estimating transpiration under a wide range of soil moisture conditions. Although both models could estimate transpiration (sap flow) at night, BTA‐ψ was superior to BTA in this regard. Species differences in the calibrated parameters of both models were consistent with leaf‐level photosynthetic measurements on each species, as expected given the physiological basis of these parameters. With a simplified representation of physiological regulation and reasonable performance across a range of soil moisture conditions, the BTA‐ψ model provides a useful alternative to purely empirical models for modelling transpiration.  相似文献   

10.
Coastal wetlands represent an ecotone between ocean and terrestrial ecosystems, providing important services, including flood mitigation, fresh water supply, erosion control, carbon sequestration, and wildlife habitat. The environmental setting of a wetland and the hydrological connectivity between a wetland and adjacent terrestrial and aquatic systems together determine wetland hydrology. Yet little is known about regional‐scale hydrological interactions among uplands, coastal wetlands, and coastal processes, such as tides, sea level rise, and saltwater intrusion, which together control the dynamics of wetland hydrology. This study presents a new regional‐scale, physically based, distributed wetland hydrological model, PIHM‐Wetland, which integrates the surface and subsurface hydrology with coastal processes and accounts for the influence of wetland inundation on energy budgets and evapotranspiration (ET). The model was validated using in situ hydro‐meteorological measurements and Moderate Resolution Imaging Spectroradiometer (MODIS) ET data for a forested and herbaceous wetland in North Carolina, USA, which confirmed that the model accurately represents the major wetland hydrological behaviours. Modelling results indicate that topographic gradient is a primary control of groundwater flow direction in adjacent uplands. However, seasonal climate patterns become the dominant control of groundwater flow at lower coastal plain and land–ocean interface. We found that coastal processes largely influence groundwater table (GWT) dynamics in the coastal zone, 300 to 800 m from the coastline in our study area. Among all the coastal processes, tides are the dominant control on GWT variation. Because of inundation, forested and herbaceous wetlands absorb an additional 6% and 10%, respectively, of shortwave radiation annually, resulting in a significant increase in ET. Inundation alters ET partitioning through canopy evaporation, transpiration, and soil evaporation, the effect of which is stronger in cool seasons than in warm seasons. The PIHM‐Wetland model provides a new tool that improves the understanding of wetland hydrological processes on a regional scale. Insights from this modelling study provide benchmarks for future research on the effects of sea level rise and climate change on coastal wetland functions and services.  相似文献   

11.
A mode‐acceleration approach has been proposed for estimating the seismic response of a linear, classically‐damped, multiply‐supported secondary system within the framework of a power spectral density function (PSDF)‐based stochastic approach, while the primary system is linear and classically‐damped. Response transfer functions have been formulated in terms of chosen numbers of fixed‐base modes of the primary and secondary systems. The proposed approach does not involve the determination of combined system properties, and is applicable to the secondary systems with high mass ratios also. Through a few example primary–secondary systems and an example band‐limited white noise excitation, it has been shown that this approach leads to reasonably accurate results when only a few primary and secondary modes are to be considered. The proposed formulation has been used to obtain input data for a decoupled response spectrum analysis of secondary systems. This data accurately accounts for the effects of interaction between the primary and secondary systems. It is shown to lead to substantial reductions in the errors associated with the envelope spectrum method in the case of moderately heavy to heavy secondary systems and when the spatial coupling does not play a major role. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
13.
A two‐parameter transfer function with an infinite characteristic time is proposed for conceptual rainfall–runoff models. The large time behaviour of the unit response is an inverse power function of time. The infinite characteristic time allows long‐term memory effects to be accounted for. Such effects are observed in mountainous and karst catchments. The governing equation of the model is a fractional differential equation in the limit of long times. Although linear, the proposed transfer function yields discharge signals that can usually be obtained only using non‐linear models. The model is applied successfully to two catchments, the Dud Koshi mountainous catchment in the Himalayas and the Durzon karst catchment in France. It compares favourably to the linear, non‐linear single reservoir models and to the GR4J model. With a single reservoir and a single transfer function, the model is capable of reproducing hysteretic behaviours identified as typical of long‐term memory effects. Computational efficiency is enhanced by approximating the infinite characteristic time transfer function with a sum of simpler, exponential transfer functions. This amounts to partitioning the reservoir into several linear sub‐reservoirs, the output discharges of which are easy to compute. An efficient partitioning strategy is presented to facilitate the practical implementation of the model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Hortonian runoff was measured in the laboratory from uniform slopes of lengths of 1·5, 3·0, and 6·0 m for steady, high‐intensity rainstorms with durations of 1·0 to 7·5 min. A clear reduction in runoff per unit slope length was found as slope lengths were increased. This effect becomes more pronounced with decreasing storm duration. The runoff data were used to validate a simple process‐based model that combines the Philip‐two‐term infiltration equation with the kinematic wave overland flow principle. The predicted and experimental results agreed well. Laboratory findings were extrapolated with the aid of the model to slopes and rainfall durations similar to those found under West African conditions. The calculated reduction of runoff per unit length is similar to reported observations. Thus, this process‐based model can largely explain the phenomenon of runoff reduction with increasing slope length. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Mountain ranges are frequently subjected to mass wasting events triggered by storms or earthquakes and supply large volumes of sediment into river networks. Besides altering river dynamics, large sediment deliveries to alluvial fans are known to cause hydro‐sedimentary hazards such as flooding and river avulsion. Here we explore how the sediment supply history affects hydro‐sedimentary river and fan hazards, and how well can it be predicted given the uncertainties on boundary conditions. We use the 2D morphodynamic model Eros with a new 2D hydrodynamic model driven by a sequence of flood, a sediment entrainment/transport/deposition model and a bank erosion law. We first evaluate the model against a natural case: the 1999 Mount Adams rock avalanche and subsequent avulsion on the Poerua river fan (West Coast, New Zealand). By adjusting for the unknown sediment supply history, Eros predicts the evolution of the alluvial riverbed during the first post‐landslide stages within 30 cm. The model is subsequently used to infer how the sediment supply volume and rate control the fan aggradation patterns and associated hazards. Our results show that the total injected volume controls the overall levels of aggradation, but supply rates have a major control on the location of preferential deposition, avulsion and increased flooding risk. Fan re‐incision following exhaustion of the landslide‐derived sediment supply leads to sediment transfer and deposition downstream and poses similar, but delayed, hydro‐sedimentary hazards. Our results demonstrate that 2D morphodynamics models are able to capture the full range of hazards occurring in alluvial fans including river avulsion aggradation and floods. However, only ensemble simulations accounting for uncertainties in boundary conditions (e.g., discharge history, initial topography, grain size) as well as model realization (e.g., non‐linearities in hydro‐sedimentary processes) can be used to produce probabilistic hazards maps relevant for decision making. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
The current generation of hydrological models has been widely criticized for their inability to adequately simulate hydrological processes. In this study, we evaluate competing model representations of hydrological processes with respect to their capability to simulate observed processes in the Mahurangi River basin in Northland, New Zealand. In the first part of this two‐part series, the precipitation, soil moisture, and flow data in the Mahurangi were used to estimate the dominant hydrological processes and explore several options for their suitable mathematical representation. In this paper, diagnostic tests are applied to gain several insights for model selection. The analysis highlights dominant hydrological processes (e.g. the importance of vertical drainage and baseflow compared to sub‐surface stormflow), provides guidance for the choice of modelling approaches (e.g. implicitly representing sub‐grid heterogeneity in soils), and helps infer appropriate values for model parameters. The approach used in this paper demonstrates the benefits of flexible model structures in the context of hypothesis testing, in particular, supporting a more systematic exploration of current ambiguities in hydrological process representation. The challenge for the hydrological community is to make better use of the available data, not only to estimate parameter values but also to diagnostically identify more scientifically defensible model structures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
One‐dimensional flow simulations were conducted at four locations of the shallow alluvial aquifer of the upper Rhine River (at the Erstein polder) to quantify the time‐dependent moisture distribution, the water flux and the water volume infiltrated in the unsaturated zone as a function of soil heterogeneities during a five‐day‐long flooding event. Three methods of estimating the hydraulic parameters of soil in the vadose zone were tested. They are based on the following: (1) experimental data, (2) soil particle‐size distribution and (3) pedology information on soils. Water fluxes calculated from modelling approaches 2 and 3 were compared with those of the experiment‐based values and the effect of these differences on the arrival time and velocity of water at the water table were analysed. Major differences in water fluxes were found among the methods of estimating the hydrodynamic parameters. At the Terrace location, the groundwater recharge predicted using soil data from methods 1 and 2 are approximately 4500 and 2400 mm, respectively. Flow simulations using soil data and the experiment‐based method show the highest velocities of infiltrating water at the soil surface and largest volume of groundwater infiltration but result in the lowest centres of the moisture content mass. The results obtained using soil data based on the pedological method are similar to those calculated using soil parameters based on the particle‐size distribution of extracted soil samples. Water pressure profiles calculated on Terrace and Channel location, 3 and 7 days after the inundation event agreed reasonably well with those observed when using hydrodynamic parameters from the experiment‐based method. However, the flow model using the pedology‐based parameters largely underestimates the time needed to achieve hydrostatic conditions of the soil water profile once water flooding at the soil surface stops. This can be mainly attributed to the low values of estimated van Genuchten parameter α. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Accurate snow accumulation and melt simulations are crucial for understanding and predicting hydrological dynamics in mountainous settings. As snow models require temporally varying meteorological inputs, time resolution of these inputs is likely to play an important role on the model accuracy. Because meteorological data at a fine temporal resolution (~1 hr) are generally not available in many snow‐dominated settings, it is important to evaluate the role of meteorological inputs temporal resolution on the performance of process‐based snow models. The objective of this work is to assess the loss in model accuracy with temporal resolution of meteorological inputs, for a range of climatic conditions and topographic elevations. To this end, a process‐based snow model was run using 1‐, 3‐, and 6‐hourly inputs for wet, average, and dry years over Boise River Basin (6,963 km2), which spans rain dominated (≤1,400 m), rain–snow transition (>1,400 and ≤1,900 m), snow dominated below tree line (>1,900 and ≤2,400 m), and above tree line (>2,400 m) elevations. The results show that sensitivity of the model accuracy to the inputs time step generally decreases with increasing elevation from rain dominated to snow dominated above tree line. Using longer than hourly inputs causes substantial underestimation of snow cover area (SCA) and snow water equivalent (SWE) in rain‐dominated and rain–snow transition elevations, due to the precipitation phase mischaracterization. In snow‐dominated elevations, the melt rate is underestimated due to errors in estimation of net snow cover energy input. In addition, the errors in SCA and SWE estimates generally decrease toward years with low snow mass, that is, dry years. The results indicate significant increases in errors in estimates of SCA and SWE as the temporal resolution of meteorological inputs becomes coarser than an hour. However, use of 3‐hourly inputs can provide accurate estimates at snow‐dominated elevations. The study underscores the need to record meteorological variables at an hourly time step for accurate process‐based snow modelling.  相似文献   

19.
The introduction of vegetation to bare barchan dunes can result in a morphological transformation to vegetated parabolic dunes. Models can mimic this planform inversion, but little is known about the specific processes and mechanisms responsible. Here we outline a minimalist, quantitative, and process‐based hypothesis to explain the barchan–parabolic transformation. The process is described in terms of variations in the stabilization of wind‐parallel cross‐sectional dune slices. We hypothesize that stabilization of individual ‘dune slices’ is the predictable result of feedbacks initiated from colonization of vegetation on the slipface, which can only occur when slipface deposition rates are less than the deposition tolerance of vegetation. Under a constant vegetation growth regime the transformation of a barchan dune into a parabolic dune is a geometric response to spanwise gradients in deposition rates. Initial vegetation colonization of barchan horns causes shear between the anchored sides and the advancing centre of the dune, which rotates the planform brinkline angle from concave‐ to convex‐downwind. This reduces slipface deposition rate and allows vegetation to expand inward from the arms to the dune centre. The planform inversion of bare barchans dunes into vegetated parabolic dunes ultimately leads to complete stabilization. Our hypothesis raises several important questions for future study: (i) are parabolic dunes transitional landforms between active and vegetation‐stabilized dune states? (ii) should stabilization modelling of parabolic dune fields be treated differently than linear dunes? and (iii) are stabilized parabolic dune fields ‘armoured’ against re‐activation? Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Estimating the hydrological regime of ungauged catchments in the Himalayan region is challenging due to a lack of sufficient monitoring stations. In this paper, the spatial transferability of the model parameters of the process‐oriented J2000 hydrological model was investigated in 2 glaciated subcatchments of the Koshi river basin in eastern Nepal. The catchments have a high degree of similarity with respect to their static landscape features. The model was first calibrated (1986–1991) and validated (1992–1997) in the Dudh Koshi subcatchment. The calibrated and validated model parameters were then transferred to the nearby Tamor catchment (2001–2009). Sensitivity and uncertainty analyses were carried out for both subcatchments to discover the sensitivity range of the parameters in the two catchments. The model represented the overall hydrograph well in both subcatchments, including baseflow, rising and falling limbs; however, the peak flows were underestimated. The efficiency results according to both Nash–Sutcliffe (ENS) and the coefficient of determination (r2) were above 0.84 in both catchments (1986–1997 in Dudh Koshi and 2001–2009 in Tamor). The ranking of the parameters in respect to their sensitivity matched well for both catchments while taking ENS and log Nash–Sutcliffe (LNS) efficiencies into account. However, there were some differences in sensitivity to ENS and LNS for moderately and less‐sensitive parameters, although the majority (13 out of 16 for ENS and 16 out of 16 for LNS) had a sensitivity response in a similar range. The generalized uncertainty likelihood estimation results suggest that the parameter uncertainty are most of the time within the range and the ensemble mean matches very good (ENS: 0.84) with observed discharge. The results indicate that transfer of the J2000 parameters to a neighbouring catchment in the Himalayan region with similar physiographic landscape characteristics is viable. This indicates the possibility of applying a calibrated process‐based J2000 model to other ungauged catchments in the Himalayan region, which could provide important insights into the hydrological system dynamics and provide much needed information to support water resources planning and management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号