首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
Peatlands are among the largest long‐term soil carbon stores, but their degradation can lead to significant carbon losses. This study considers the carbon budget of peat‐covered sites after restoration, following degradation by past wildfires. The study measured the carbon budget of eight sites: four restored‐revegetated sites, two unrestored bare soil control sites, and two intact vegetated controls over two years (2006–2008). The study considered the following flux pathways: dissolved organic carbon (DOC); particulate organic carbon (POC); dissolved carbon dioxide (CO2); primary productivity; net ecosystem respiration, and methane (CH4). The study shows that unrestored, bare peat sites can have significant carbon losses as high as 522 ± 3 tonnes C/km2/yr. Most sites showed improved carbon budgets (decreased source and/or increased sink of carbon) after restoration; this improvement was mainly in the form of a reduction in the size of the net carbon source, but for one restored site the measured carbon budget after four years of restoration was greater than observed for vegetated controls. The carbon sequestration benefit of peatland restoration would range between 122 and 833 tonnes C/km2/yr. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The use of drainage ditches on farmland has an impact on erosion processes both on‐site and off‐site, though their environmental impacts are not unequivocal. Here we study the runoff response and related rill erosion after installing drainage ditches and assess the effects of stone bunds in north Ethiopia. Three different land management systems were studied in 10 cropland catchments around Wanzaye during the rainy season of 2013: (1) the exclusive use of drainage ditches (locally called feses), (2) the exclusive use of stone bunds, and (3) a mixture of both systems. Stone bunds are an effective soil and water conservation technique, making the land more resistant against on‐site erosion, and allowing feses to be installed at a larger angle with the contour. The mean rill volumes for the 10 studied cropland catchments during the rainy season of 2013 was 3.73 ± 4.20 m3 ha?1 corresponding to a soil loss of 5.72 ± 6.30 ton ha?1. The establishment of feses causes larger rill volumes (R = 0.59, N = 10), although feses are perceived as the best way to avoid soil erosion when no stone bunds are present. The use of feses increases event‐based runoff coefficients (RCs) on cropland from c. 5% to values up to 39%. Also, a combination of low stone bund density and high feses density results in a higher RC, whereas catchments with a high stone bund density and low feses density have a lower RC. Peak runoff discharges decrease when stone bund density increases, whereas feses density is positively related to the peak runoff discharge. A multiple linear relation in which both feses and stone bund densities are used as explanatory variable, performs best in explaining runoff hydrograph peakedness (R2 = 83%). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Harvested sites rarely return to functional ecosystems after abandonment because drainage and peat extraction lower the water table and expose relatively decomposed peat, which is hydrologically unsuitable for Sphagnum moss re‐establishment. Some natural regeneration of Sphagnum has occurred in isolated pockets on traditionally harvested (block‐cut) sites, for reasons that are poorly understood, but are related to natural functions that regulate runoff and evaporation. This study evaluates the water balance of a naturally regenerated cutover bog and compares it with a nearby natural bog of similar size and origin, near Riviere du Loup, Quebec. Water balance results indicated that evapotranspiration was the major water loss from the harvested bog, comprising 92 and 84% of total outputs (2·9 mm day?1) during the 1997 and 1998 seasons, respectively. Despite denser tree cover at the harvested site, evapotranspiration from the natural bog was similar, although less spatially variable. At the harvested site, evaporative losses ranged from 1·9 mm day?1 on raised baulks and roads to 3·6 mm day?1 from moist surfaces with Sphagnum. Although about half of the ditches were inactive or operating at only a fraction of their original efficiency, runoff was still significant at 12 and 24% of precipitation during the 1997 and 1998 study seasons, respectively. This compares with negligible rates of runoff at the natural bog. Thus the cutover bog, although abandoned over 25 years ago, has not regained its hydrological function. This is both a cause and effect of its inability to support renewed Sphagnum regeneration. Without suitable management (e.g. blocking ditches), this site is not likely to improve for a very long time. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
A significant proportion of tropical peatlands has been drained for agricultural purposes, resulting in severe degradation. Hydrological restoration, which usually involves blocking ditches, is therefore a priority. Nevertheless, the influence of ditch blocking on tropical peatland hydrological functioning is still poorly understood. We studied water-level dynamics using a combination of automated and manual dipwells, and also meteorological data during dry and wet seasons over 6 months at three locations in Sebangau National Park, Kalimantan, Indonesia. The locations were a forested peatland (Forested), a drained peatland with ditch dams (Blocked), and a drained peatland without ditch dams (Drained). In the dry season, water tables at all sites were deeper than the Indonesian regulatory requirement of 40 cm from the peat surface. In the dry season, the ditches were dry and water did not flow to them. The dry season water-table drawdown rates — solely due to evapotranspiration — were 9.3 mm day−1 at Forested, 9.6 mm day−1 at Blocked, but 12.7 mm day−1 at Drained. In the wet season, the proportion of time during which water tables in the wells were deeper than the 40 cm limit ranged between 16% and 87% at Forested, 0% at Blocked, and between 0% and 38% at Drained. In the wet season, water flowed from the peatland to ditches at Blocked and Drained. The interquartile range of hydraulic gradients between the lowest ditch outlet and the farthest well from ditches at Blocked was 3.7 × 10−4 to 7.8 × 10−4 m m−1, but 1.9 × 10−3 to 2.6 × 10−3 m m−1 at Drained. Given the results from Forested, a water-table depth limit policy based on field data may be required, to reflect natural seasonal dynamics in tropical peatlands. Revised spatial designs of dams or bunds are also required, to ensure effective water-table management as part of tropical peatland restoration.  相似文献   

5.
We examined the water balance of a forested ombrotrophic peatland and adjacent burned peatland in the boreal plain of western Canada over a 3‐year period. Complete combustion of foliage and fine branches dramatically increased shortwave radiation inputs to the peat surface while halting all tree transpiration at the burned site. End‐of‐winter snowpack was 7–25% higher at the burned site likely due to decreased ablation from the tree canopy at the unburned site. Shrub regrowth at the burned site was rapid post‐fire, and shading by the shrub canopy in the burned site approached that of the unburned site within 3 years after fire. Site‐averaged surface resistance to evaporation was not different between sites, though surface resistance in hollows was lower in the burned site. Water loss at both burned and unburned sites is largely driven by surface evaporative losses. Evaporation at the burned site marginally exceeded the sum of pre‐fire transpiration and interception at the unburned site, suggesting that evapotranspiration during the growing season was 20–40 mm greater at the burned peatland. Although the net change in water storage during the growing season was largely unchanged by fire, the lack of low‐density surface peat in the burned site appears to have decreased specific yield, leading to greater water table decline at the burned site despite similar net change in storage. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Dissolved organic carbon export from a cutover and restored peatland   总被引:1,自引:0,他引:1  
High demand for horticultural peat has increased peatland drainage and peat extraction in Canada. The hydrology and carbon cycling of these cutover peatlands is greatly altered, necessitating active restoration efforts to permit the regeneration of Sphagnum mosses and the re‐establishment of natural peatland function. The effect of peatland extraction and restoration on the export of dissolved organic carbon (DOC) was examined for three successive seasons (May to October, 1999 to 2001) at two different sites (cutover and restored) in eastern Québec. A shift towards higher DOC concentrations was observed following peatland extraction (maximum: 182·6 mg L?1) and concentrations remained high post‐restoration (maximum: 191·0 mg L?1). The cutover site exported more DOC than the restored site in all three study seasons. The highest exports occurred during the wettest year (1999), with cutover and restored site export of 10·3 and 4·8 g m?2, respectively. In 2000, 8·5 g C m?2 was released from the cutover site, while the restored site released less than half that amount (3·4 g C m?2). In 2001, the restored site released about the same amount of DOC as in the previous year (3·5 g C m?2), while the cutover site load dropped to 6·2 g C m?2. Both sites were net exporters of DOC in all years. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
An understanding of the symbiotic water and gas exchange processes at the ecosystem scale is essential to the development of appropriate restoration plans of extracted peatlands. This paper presents ecosystem scale measurements of the atmospheric exchange of water and carbon dioxide (CO2) from a restored vacuum extracted peatland in eastern Québec, utilizing full‐scale micrometeorological measurements of both evaporation and CO2. The results indicate that the adopted restoration practices reduce the loss of water from the peat, but CO2 emissions are ~25% greater than an adjacent nonrestored comparison site. The blockage of drainage ditches and the existence of a mulch cover at the site keep the moisture conditions more or less constant. Consequently, the CO2 flux, which is predominantly soil respiration, is strongly controlled by peat temperature fluctuations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Ditch blocking in blanket peatlands is common as part of peatland restoration. The effects of ditch blocking on flow regimes and nearby water tables were examined in a field trial. After an initial 6‐month monitoring period, eight ditches had peat dams installed 10 m apart along their entire length (dammed), four of these ditches were also partially infilled through bank reprofiling (reprofiled). Four ditches were left open with no dams or reprofiling (open). These 12 ditches and the surrounding peat were monitored for 4 more years. An initial five‐fold reduction in discharge occurred in the dammed and the reprofiled ditches with the displaced water being diverted to overland flow and pathways away from the ditches. However, there was a gradual change over time in ditch flow regime in subsequent years, with the overall volume of water leaving the dammed and the reprofiled ditches increasing per unit of rainfall to around twice that which occurred in the first year after blocking. Hence, monitoring for greater than one year is important for understanding hydrological impacts of peatland restoration. Overland flow and flow in the upper ~4 cm of peat was common and occurred in the inter‐ditch areas for over half of the time after ditch blocking. There was strong evidence that topographic boundaries of small ditch catchments, despite being defined using a high‐resolution Light Detection And Ranging‐based terrain model, were not always equivalent to actual catchment areas. Hence, caution is needed when upscaling area‐based fluxes, such as aquatic carbon fluxes, from smaller scale studies including those using ditches and small streams. The effect of ditch blocking on local water tables was spatially highly variable but small overall (time‐weighted mean effect <2 cm). Practitioners seeking to raise water tables through peatland restoration should first be informed either by prior measurement of water tables or by spatial modelling to show whether the peatland already has shallow water tables or whether there are locations that could potentially undergo large water‐table recoveries.  相似文献   

9.
Extended severe dry and wet periods are frequently observed in the northern continental climate of the Canadian Prairies. Prairie streamflow is mainly driven by spring snowmelt of the winter snowpack, whilst summer rainfall is an important control on evapotranspiration and thus seasonality affects the hydrological response to drought and wet periods in complex ways. A field‐tested physically based model was used to investigate the influences of climatic variability on hydrological processes in this region. The model was set up to resolve agricultural fields and to include key cold regions processes. It was parameterized from local and regional measurements without calibration and run for the South Tobacco Creek basin in southern Manitoba, Canada. The model was tested against snow depth and streamflow observations at multiple scales and performed well enough to explore the impacts of wet and dry periods on hydrological processes governing the basin scale hydrological response. Four hydro‐climatic patterns with distinctive climatic seasonality and runoff responses were identified from differing combinations of wet/dry winter and summer seasons. Water balance analyses of these patterns identified substantive multiyear subsurface soil moisture storage depletion during drought (2001–2005) and recharge during a subsequent wet period (2009–2011). The fractional percentage of heavy rainfall days was a useful metric to explain the contrasting runoff volumes between dry and wet summers. Finally, a comparison of modeling approaches highlights the importance of antecedent fall soil moisture, ice lens formation during the snowmelt period, and peak snow water equivalent in simulating snowmelt runoff.  相似文献   

10.
Farmed catchments in the Mediterranean area often exhibit dense networks of ditches which are also preferential zones of water table recharge, and thereby of groundwater contamination. This study presents an experimental analysis of seepage losses and related groundwater recharge patterns during a typical Mediterranean runoff event at the scale of a ditch located above a shallow water table. The objectives were (i) to evaluate the patterns of water table recharge by seepage in a ditch, (ii) to study the main flow processes occurring during recharge, and (iii) to estimate solute propagation in case of contaminated flow in the ditch. The field observation indicated three major points. Firstly, they showed that seepage losses during a runoff event in a ditch can rapidly lead to a significant recharge of a shallow water table. Secondly, the recharge induces a groundwater mound much larger than the event plume. The infiltrated water and the accompanying solutes remained in the vicinity of the ditch. The patterns of groundwater recharge and contamination appeared very different. Lastly, both unsaturated and saturated‐piston flow processes were observed which suggests that a variably‐saturated flow modelling approach ought to be used to simulate the ditch‐water shallow table interaction. Finally, the study indicates that the patterns of water table recharge and contamination in Mediterranean catchments with dense ditches network vary largely in space and time, and will require dense monitoring networks to estimate the evolution of the average contamination levels. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Climate models project warmer temperatures for the north‐west USA, which will result in reduced snowpacks and decreased summer streamflow. This paper examines how groundwater, snowmelt, and regional climate patterns control discharge at multiple time scales, using historical records from two watersheds with contrasting geological properties and drainage efficiencies. In the groundwater‐dominated watershed, aquifer storage and the associated slow summer recession are responsible for sustaining discharge even when the seasonal or annual water balance is negative, while in the runoff‐dominated watershed subsurface storage is exhausted every summer. There is a significant 1 year cross‐correlation between precipitation and discharge in the groundwater‐dominated watershed (r = 0·52), but climatic factors override geology in controlling the inter‐annual variability of streamflow. Warmer winters and earlier snowmelt over the past 60 years have shifted the hydrograph, resulting in summer recessions lasting 17 days longer, August discharges declining 15%, and autumn minimum discharges declining 11%. The slow recession of groundwater‐dominated streams makes them more sensitive than runoff‐dominated streams to changes in snowmelt amount and timing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Barbro Uln 《水文研究》2003,17(4):747-758
During a 16 day period with pronounced snowmelt via surface runoff, high water concentrations (usually 0·4–0·5 mg l?1) of dissolved molybdate‐reactive phosphorus (MRP) were detected in surface runoff water from a clay soil of illite type. Other phosphorus fractions defined were: phosphorus in particles with a higher settling coefficient than 80 000 S (SPP); colloidal phosphorus caught on filters with a pore size of 0·2 µm but with a smaller settling coefficient (CPP); and dissolved phosphorus not reacting with molybdate (DUP). The order of concentrations was MRP > SPP > CPP > DUP. Nearly identical amounts of MRP, CPP, and DUP (in total 0·3 kg ha?1) were lost from a grass–clover ley and a ploughed soil. However, more of the heavier phosphorus‐containing material was lost from the ploughed area. In drainpipe water, CPP was the largest fraction (28%), and in stream water from mixed arable/forest land, MRP dominated (33%). Loss on ignition of the settling material slowly decreased from 10 to 8% (dry weight) during the snowmelt period. Total phosphorus concentrations in the material followed the runoff pattern, with slightly higher phosphorus concentrations during fast runoff. The large amounts of readily dissolved or colloidal‐bound phosphorus (70–80%) transported from this clay soil during snowmelt are discussed with regard to the use of grass buffer strips as a measure against phosphorus losses from arable land. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Hydraulic connectivity on hillslopes and the existence of preferred soil moisture states in a catchment have important controls on runoff generation. In this study we investigate the relationships between soil moisture patterns, lateral hillslope flow, and streamflow generation in a semi‐arid, snowmelt‐driven catchment. We identify five soil moisture conditions that occur during a year and present a conceptual model based on field studies and computer simulations of how streamflow is generated with respect to the soil moisture conditions. The five soil moisture conditions are (1) a summer dry period, (2) a transitional fall wetting period, (3) a winter wet, low‐flux period, (4) a spring wet, high‐flux period, and (5) a transitional late‐spring drying period. Transitions between the periods are driven by changes in the water balance between rain, snow, snowmelt and evapotranspiration. Low rates of water input to the soil during the winter allow dry soil regions to persist at the soil–bedrock interface, which act as barriers to lateral flow. Once the dry‐soil flow barriers are wetted, whole‐slope hydraulic connectivity is established, lateral flow can occur, and upland soils are in direct connection with the near‐stream soil moisture. This whole‐slope connectivity can alter near‐stream hydraulics and modify the delivery of water, pressure, and solutes to the stream. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
The quality of water and sediments of street runoff in Amman,Jordan   总被引:1,自引:0,他引:1  
Metallic content (Cr, Fe, Mn, Cu, Ni, Pb and Cd) of street sediments and street runoff in addition to major inorganic constituents (Ca, Mg, Na, K, HCO3, Cl, NO3 and SO4) of street runoff were determined under semi‐arid conditions. Two sites in the vicinity of Amman during the pluvial year 1998–1999 were chosen for this investigation. A higher quantity of ionic contents was found at site 2 in comparison to site 1 except for iron, which was significantly higher at site 1. This finding was attributed to higher anthropogenic activity and lower rainfall at site 2, which indicates better water quality of street runoff from residential sites than the city centre. The average concentrations of Pb, Cu and Cd in Amman street runoff compared with the highest levels recorded at humid sites of the world as a result the prevailing semi‐arid conditions in the areas investigated. The highest concentrations of all constituents were detected during the first month of sampling, which might be the result of low rainfall, and a long dry period of atmospheric deposition preceding rainfall events. However, high levels of both lead and copper were recorded (below that of iron) which might be attributed to traffic pollution. In contrast, a significant variation between the average concentrations for Cu, Ni and Cr was found in sediments from the two sites. Moreover, a significant difference was detected only for Cu and Mn at each site overtime. The overall pattern of the results suggests that all heavy metal concentrations for street runoff showed a significant variation over time at site 1 whereas only a significant variation was found for Ni at site 2, which can be explained as the result of higher rainfall at site 1 than at site 2. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two‐component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0–73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new‐water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high‐intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new–old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including:
  • 1. topographically controlled increase in surface‐saturated area with increasing catchment size;
  • 2. direct runoff over frozen ground;
  • 3. low infiltration in agriculturally compacted soils;
  • 4. differences in soil transmissivity, which may be more relevant under dry antecedent conditions.
These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Hydrology, particularly the water table position below the surface (relative water level, RWL), is an important control on biogeochemical and ecological processes in peatlands. The surface elevation (SE) in a peatland oscillates in response to changes in effective stress on the peat matrix mainly caused by water level fluctuations. This phenomenon is called peatland surface oscillation (PSO). To investigate the spatiotemporal variability of PSO, surface elevation and the water level above sea level (AWL) were measured monthly (23 sites) over one year in a warm‐temperate restiad peatland, New Zealand. At one site peat surface elevation was measured indirectly by monitoring AWL and RWL continuously with pressure transducers. Annual PSO (the difference between maximum and minimum surface elevation) ranged from 3·2 to 28 cm (mean = 14·9 cm). Surface elevation changes were caused by AWL fluctuations. Spatially homogenous AWL fluctuations (mean 40 cm among sites) translated into RWL fluctuations reduced 27–56% by PSO except for three sites with shallow and dense peat at the peatland margin (7–17%). The SE‐AWL relationship was linear for 15 sites. However, eight sites showed significantly higher rates of surface elevation changes during the wet season and thus a non‐linear behaviour. We suggest flotation of upper peat layers during the wet season causing this non‐linear behaviour. Surprisingly, PSO was subjected to hysteresis: the positive SE‐AWL relationship reversed after rainfall when the surface slowly rose despite rapidly receding AWL. Hysteresis was more prominent during the dry season than during the wet season. Total peat thickness and bulk density together could only explain 50% of the spatial variability of PSO based on manual measurements. However, we found three broad types of SE‐AWL relationships differing in shape and slope of SE‐AWL curves. These oscillation types reflected patterns in vegetation and flooding. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Increasing population and intensification of agriculture increase erosion rates and often result in severe land degradation and sedimentation of reservoirs. Finding effective management practices to counteract the increasing sediment load is becoming increasingly urgent especially in the Ethiopian highlands where the construction of the hydroelectric Grand Renaissance Dam on the Blue Nile is underway. In this paper, we examine the results of 9 years of a watershed experiment in which discharge and sediment losses were observed in the 113 ha Anjeni watershed of the Blue Nile Basin. The study period encompasses conditions before, during, and after the installation of graded FanyaJuu (“throw uphill” bunds) soil and water conservation practices (SWCP), which had the ultimate goal of creating terraces. We use a saturation‐excess runoff model named the parameter‐efficient distributed model as a mathematical construct to relate rainfall with discharge and sediment losses at the outlet. The parameter‐efficient distributed model is based on landscape units in which the excess rainfall becomes direct runoff or infiltrates based on topographic position or hardpan characteristics. Deviations in this rainfall–discharge–sediment loss relationship are ascribed to the changes in infiltration characteristics caused by SWCPs on the hillslopes. With this technique, we found that in the Anjeni basin, the Fanya‐Juu SWCPs are only effective in increasing the infiltration and thereby reducing the direct runoff and sediment concentrations in the first 5 years. At the end of the 9‐year observation period, the direct runoff and sediment concentrations were barely reduced compared to the levels before SWCP were installed. In addition, we found that the model structure based on landscape units was able to represent the varying runoff and erosion processes during the 9 years well by varying mainly the portion of degraded land (and thereby representing the effectiveness of the Fanya‐Juu to reduce runoff by increasing infiltration).  相似文献   

18.
JONATHAN S. PRICE 《水文研究》1996,10(10):1263-1272
Peatlands do not readily return to functional wetland ecosystems after harvesting (cutting), because the harsh hydrological and microclimatic conditions are unsuitable for Sphagnum regeneration. In this study, drainage ditches blocked after harvesting restored the water balance to a condition similar to a nearby natural bog. Evaporation averaged 2.9 and 2.7 mm day−1 on the cutover and natural bog, respectively. Evaporation consumed most of the rainfall input (86 and 80%, respectively), whereas runoff was minor at both sites (6 and 4%, respectively). However, the water table position was markedly different at these sites. Median water table depth was 0.05 m below the surface in the natural bog, compared with 0.44 m in the cutover bog (ditches blocked). Changes to the peak soil matrix owing to drainage and cutting reduced the specific yield (Sy) of the peat to 0.04–0.06 from 0.35–0.55, causing exaggerated water table changes in the cutover site. Nevertheless, volumetric soil moisture in the cutover site (0.67 ± .08) had low variability, and was maintained above moisture contents found in Sphagnum hummocks in the natural bog (0.48 ± .10), although less than on Sphagnum lawn (0.84 ± .11). Poor Sphagnum regeneration on cutover surfaces can therefore be attributed to its inability to extract water from the underlying peat, which retains water at matric suction greater than the non-vascular Sphagnum can generate. The corrupted iron pan under main ditches has permitted partial recharge of the underlying aquifer, reducing local hydraulic gradients, thereby decreasing vertical seepage loss.  相似文献   

19.
Many upland catchments in the UK have undergone afforestation; their characteristic waterlogged soils require extensive pre‐plantation ground drainage to allow tree establishment. In peatland areas this can result in very highly coloured runoff and enhanced dissolved organic matter (DOM) export in rivers of naturally high concentrations. In 1966, the Coalburn Experimental Catchment, northern England, was established to investigate the impact of afforestation on an upland peat catchment. Here we report the variations in DOM spectrophotometric properties of streamflow in the catchment at canopy closure, especially with respect to potential carbon sources within the artificial drainage ditches. Drainage ditches are characterized by water that has higher absorption coefficients and which is more highly coloured than in the catchment tributaries. Ditched, afforested areas produce more highly‐coloured runoff waters that are more fluorescent and absorbent normalized to carbon concentration compared to ditches in open moorland. Ditches that had been experimentally re‐excavated have organic matter of different spectrophotometric character, with higher dissolved organic carbon concentration and less aromatic or lower molecular weight material. It is hypothesized that this is due to the exposure of bare peat faces within and adjacent to the ditches that are more susceptible to drying compared to vegetated areas. The large extent of this drainage network acts as both a rapid transport network increasing hydrological connectivity and a pool for the storage of DOM, which is of different spectrophotometric character under low flow conditions, depending on management conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
The mid‐ to high‐boreal forest in Canada occupies the discontinuous permafrost zone, and is often underlain by glaciolacustrine sediments mantled by a highly porous organic mat. The result is a poorly drained landscape dominated by wetlands. Frost‐table dynamics and surface storage conditions help to control runoff contributions from various landscape elements, hydrological linkages between these elements, and basin streamflow during spring snowmelt. Runoff components and pathways in a forested peatland basin were assessed during two spring snowmelts with contrasting input and basin conditions. Runoff from relatively intense melt (up to 16 mm day?1) on slopes with limited soil thawing combined with large pre‐melt storage in surface depressions to produce high flows composed primarily of meltwater (78% of the 0·29 m3 s?1 peak discharge) routed over wetland surfaces and through permeable upper peat layers. Melt intensity was less in the subsequent year (maximum of 10 mm day?1) and active layer development was relatively greater (0·2 m deeper at the end of spring melt), resulting in less slope runoff. Coupling of reduced slope contributions with lower storage levels in basin wetlands led to relatively subdued streamflows dominated by older water (73% of the 0·09 m3 s?1 peak discharge) routed through less‐permeable deeper peat layers and mineral soil. Interannual differences in runoff conditions provide important insight for the development of distributed hydrological models for boreal forest basins and into potential influences on biogeochemical cycling in this landscape under a warming climate. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号