首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

Mathematical models developed for quantification of sediment transport in hydrological watersheds require data collected through field or laboratory experiments, but these are still very rare in the literature. This study aims to collect such data at the laboratory scale. To this end, a rainfall simulator equipped with nozzles to spray rainfall was constructed, together with an erosion flume that can be given longitudinal and lateral slopes. Eighty experiments were performed, considering microtopographical features by pre-forming a rill on the soil surface before the start of each experiment. Medium and fine sands were used as soil, and four rainfall intensities (45, 65, 85 and 105 mm h-1) were applied in the experiments. Rainfall characteristics such as uniformity, granulometry, drop velocity and kinetic energy were evaluated; flow and sediment discharge data were collected and analysed. The analysis shows that the sediment transport rate is directly proportional to rainfall intensity and slope. In contrast, the volumetric sediment concentration stays constant and does not change with rainfall intensity unless the slope changes. These conclusions are restricted to the conditions of experiments performed under rainfall intensities between and 105 mm h-1 for medium and fine sands in a 136-cm-wide, 650-cm-long and 17-cm-deep erosion flume with longitudinal and lateral slopes varying between 5 and 20%.

Editor Z.W. Kundzewicz; Associate editor G. Mahé

Citation Aksoy, H., Unal, N.E., Cokgor, S., Gedikli, A., Yoon, J., Koca, K., Inci, S.B., Eris, E., and Pak, G., 2013. Laboratory experiments of sediment transport from bare soil with a rill. Hydrological Sciences Journal, 58 (7), 1505–1518.  相似文献   

3.
4.
5.
6.
7.
Despite widespread bench‐terracing, stream sediment yields from agricultural hillsides in upland West Java remain high. We studied the causes of this lack of effect by combining measurements at different spatial scales using an erosion process model. Event runoff and sediment yield from two 4‐ha terraced hillside subcatchments were measured and field surveys of land use, bench‐terrace geometry and storage of sediment in the drainage network were conducted for two consecutive years. Runoff was 3·0–3·9% of rainfall and sediment yield was 11–30 t ha−1 yr−1 for different years, subcatchments and calculation techniques. Sediment storage changes in the subcatchment drainage network were less than 2 t ha−1, whereas an additional 0·3–1·5 t ha−1 was stored in the gully between the subcatchment flumes and the main stream. This suggests mean annual sediment delivery ratios of 86–125%, or 80–104% if this additional storage is included. The Terrace Erosion and Sediment Transport (TEST) model developed and validated for the studied environment was parameterized using erosion plot studies, land use surveys and digital terrain analysis to simulate runoff and sediment generation on the terraced hillsides. This resulted in over‐estimates of runoff and under‐estimates of runoff sediment concentration. Relatively poor model performance was attributed to sample bias in the six erosion plots used for model calibration and unaccounted covariance between important terrain attributes such as slope, infiltration capacity, soil conservation works and vegetation cover. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

Rainfall simulators have often been used to mimic natural rainfall for studies of various land-surface and water interaction processes. The characteristics of the simulated rainfall are the main indicators used to judge the performance of the rainfall simulators. The aim of this study is to investigate the potential of piezoelectric transducers for measuring and evaluating a dripper-type simulated rainfall drop-size distribution (DSD) and kinetic energy (KE). The directly measured KE was significantly correlated with the estimated KE using the drop-size distribution and empirical rain drop fall velocity relationships. This result emphasizes the potential use of the piezoelectric sensor to directly measure and evaluate rainfall kinetic energy. Also, the relationship between rainfall intensity and KE showed good patterns of agreement between simulated rainfall and natural rainfall.

Citation Abd Elbasit, M. A. M., Yasuda, H. & Salmi, A. (2011) Application of piezoelectric transducers in simulated rainfall erosivity assessment. Hydrol. Sci. J. 56(1), 187–194.  相似文献   

9.
Many pumped rainfall simulators used in soil erosion studies use pulsed rain to control the rainfall intensity. We examined the effect of the rain pulsing on sediment concentration and size using three different pulse cycles with the same rainfall intensity. There was considerable variation in sediment concentration through the pulse cycle: the highest concentration was up to four times that of the lowest concentration. Furthermore, the particle size distribution also varied: the peak median particle size was double the lowest median particle size. The magnitude of differences in sediment concentration and particle size were greater the longer the pulse cycle and these dynamics will vary between rainfall simulators and studies. We suggest the impact of the pulsing on sediment is significant and should be investigated prior to experimentation so that sampling periods are designed to avoid bias introduced by fine temporal scale sediment dynamics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The Simulator of Artificial RaInfall (SARI) rainfall simulator (RS) is a newly designed, constructed and calibrated, portable, two-nozzle RS with low water consumption, accurate measurement, easy management and low cost. The raindrop size distribution and velocity and mean rainfall intensity were measured. The best rainfall spatial distribution was achieved with nozzles separated by 50, 60 and 70 cm, and with oscillation angles of 30, 45 and 60°, at a pressure of 60 kPa. The uniformity coefficient varied from 57 to 61% and rainfall intensity from 48 to 101 mm h?1. The raindrop diameter varied from 0.2 to 9.9 mm. The raindrop velocity at the optimum pressure of 60 kPa, which was measured with high-speed photography, ranged from 1.1 to 7.1 m s?1. Comparison with other RSs shows that the SARI simulator is a suitable apparatus to research soil erosion and runoff generation under laboratory and field conditions.  相似文献   

11.
This paper reports results from field experiments and hydrological modelling on the dynamics of runoff generation in highly convergent parts of the landscape in a logged and burnt eucalypt forest in south‐eastern Victoria, Australia. Large‐scale rainfall simulation experiments were conducted to explore runoff generating mechanisms from harvested areas, and to assess the effectiveness of standard water quality protective measures, here a disturbed filter strip, in preventing accession of sediment to near‐stream areas. We then examined the likely effects of varying antecedent moisture conditions on surface and subsurface runoff generating mechanisms. Very small volumes of surface runoff were generated only at very high rainfall intensity rates that exceeded a 100 year recurrence interval event during the simulated experiments. There was little or no identifiable impact of either compaction from logging operations or fire‐induced hydrophobicity on surface infiltration or generation of surface runoff. Measured soil hydraulic properties and soil depths explained the paucity of surface runoff, and the dominance of subsurface storm flow as the prime runoff generating mechanism. Deep lateral subsurface flow was observed from the cut‐face of a fire access track and into a streamhead downslope of the experimental plots. Water balance modelling using Topog_Dynamic indicated the conditions under which saturated overland flow in this environment could be generated are rare, but that care should be taken in siting of roads and tracks in lower parts of convergent landscapes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
This paper describes the design, operation and performance of a field‐portable ‘drip‐type’ simulator and erosion measurement system. The system was constructed specifically for soil erosion research in the humid tropics and has been used extensively in Malaysian Borneo. The simulator is capable of producing replicable storms of up to 200 mm h?1 intensity and 20–30 minutes duration with a drop‐size distribution close to that of natural storms of such intensity (D50 of simulated rainfall is 4·15 mm at 200 mm h?1 and 3·65 mm at 160 mm h?1, D50 measured during natural rainfall = 3·25 mm). The simulator is portable and simply constructed and operates without a motor or electronics, thus making it particularly useful in remote, mountainous areas. The erosion measurement system allows assessment of: (1) rainsplash detachment and net downslope transport from the erosion plot; (2) slopewash (erosion transported by overland flow); and (3) infiltration capacity and overland flow. The performance of the simulator–erosion system compared with previous systems is assessed with reference to experiments carried out in primary and regenerating tropical rainforest at Danum Valley (Malaysian Borneo). The system was found to compare favourably with previous field simulators, producing a total storm kinetic energy of 727 J m?2 (over a 20‐minute storm event) and a kinetic energy rate of 0·61 J m?2 s?1, approximately half that experienced on the ground during a natural rainfall event of similar intensity, despite the shorter distance to the ground. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The grain size distribution (GSD) of sediment in comparison with the original soil GSD is discussed under different slopes (5, 15 and 25%) and rainfall intensities (30, 60 and 90 mm h–1 with respective duration of 30, 15 and 10 min) but identical runoff (15 mm). The sediment quantification was carried out by raindrop-induced flow transport (RIFT) or/and transport by flow (FT) using a rainfall simulator and a 6 × 1 m2 erosion plot and a silt loam. The results show a high degree of enrichment for size classes of 2–4 and 4–8 μm and a high degree of depletion for size classes of >63 μm under different slopes and rainfall intensities. In addition, the results show that the experimental enrichment ratio (ER) for particle size <16 μm under different slopes and rainfall intensities was greater than 1, while the ER for particle size >32 μm was less than 1.  相似文献   

14.
An inexpensive, mobile field rainfall simulator and runoff plot frame were developed for use on hillside vineyards. The simulator framework and components were lightweight, readily available and easily manageable such that they can be handled by one person during transport, set–up and operation. The vineyard rainfall simulator was simpler than many of the machines in recent use for similar studies, yet offered equal or improved performance for small‐plot studies. The system developed consistent sized 2·58 mm raindrops at intensities ranging from 20 to 90 mm/h. The average distribution uniformity coefficient at an intensity of 60 mm/h was 91·7%, with a deviation of only 2·2%. This coefficient was similar to the range reported for a more complex rotating disk simulator, and was notably greater than that obtained for other similar devices. The system water capacity of 40 l allowed for 1‐h storm durations at 60 mm/h, usually sufficient time for commencement of erosion and runoff. The runoff plot frame was designed to be quickly installed, and to discourage sediment deposition in the routing of runoff to collect containers. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
Soil erosion models are essential tools for the successful implementation of effective and adapted soil conservation measures on agricultural land. Therefore, models are needed that predict sediment delivery and quality, give a good spatial representation of erosion and deposition and allow us to account for various soil conservation measures. Here, we evaluate how well a modified version of the spatially distributed multi‐class sediment transport model (MCST) simulates the effectiveness of control measures for different event sizes. We use 8 year runoff and sediment delivery data from two small agricultural watersheds (0·7 and 3·7 ha) under optimized soil conservation. The modified MCST model successfully simulates surface runoff and sediment delivery from both watersheds; one of which was dominated by sheet and the other was partly affected by rill erosion. Moreover, first results of modelling enrichment of clay in sediment delivery are promising, showing the potential of MCST to model sediment enrichment and nutrient transport. In general, our results and those of an earlier modelling exercise in the Belgian Loess Belt indicate the potential of the MCST model to evaluate soil erosion and deposition under different agricultural land uses. As the model explicitly takes into account the dominant effects of soil‐conservation agriculture, it should be successfully applicable for soil‐conservation planning/evaluation in other environments. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The concept of stream channel grade – according to which a stream channel reach will adjust its gradient, S, in order to transport the imposed sediment load having magnitude Qb and characteristic grain size Db, with the available discharge Q (Mackin, 1948 , Geological Society of America Bulletin 59 : 463–512; Lane, 1955 , American Society of Civil Engineers, Proceedings 81 : 1–17) is one of the most influential ideas in fluvial geomorphology. Herein, we derive a scaling relation that describes how externally imposed changes in either Qb or Q can be accommodated by changes in the channel configuration, described by the energy gradient, mean flow depth, characteristic grain size and a parameter describing the effect of bed surface structures on grain entrainment. One version of this scaling relation is based on the dimensionless bed material transport parameter (W*) presented by Parker and Klingeman ( 1982 , Water Resources Research 18 : 1409–1423). An equivalent version is based on a new dimensionless transport parameter (E*) using dimensionless unit stream power. This version is nearly identical to the relation based on W*, except that it is independent of flow resistance. Both versions of the scaling relation are directly comparable to Lane's original relation. In order to generate this stream power‐based scaling relation, we derived an empirical transport function relation relating E* to dimensionless stream power using data from a wide range of stable, bed load‐dominated channels: the form of that transport function is based on the understanding that, while grain entrainment is related to the forces acting on the bed (described by dimensionless shear stress), sediment transport rate is related to the transfer of momentum from the fluid to the bed material (described by dimensionless stream power). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The areal infiltration behaviour of a grass field is studied using a data set of 78 sprinkler infiltration experiments. The analysis of the experimental data shows a distinct event dependency: once runoff begins, the final infiltration rate increases with increasing rainfall intensity. This behaviour is attributed to the effects of small‐scale variability. Increasing rainfall intensity increases the ponded area and therefore the portion of the plot which infiltrates at maximum rate. To describe the areal infiltration behaviour of the grass field the study uses two different model structures and investigates different approaches for consideration of subgrid variability. It is found that the effective parameter approach is not suited for this purpose. A good representation of the observed behaviour is obtained by using a distribution function approach or a parameterization approach. However, it is not clear how the parameters can be derived for these two approaches without a large measurement campaign. The data analysis and the simulations show the great importance of considering the effects of spatial variability for the infiltration process. This may be significant even at a small scale for a comparatively homogeneous area. The consideration of heterogeneity seems to be more important than the choice of the model type. Furthermore, similar results may be obtained with different modelling approaches. Even the relatively detailed data set does not seem to permit a clear model choice. In view of these results it is questionable to use very complex and detailed simulation models given the approximate nature of the problem. Although the principle processes may be well understood there is a lack of models that represent these processes and, more importantly, there is a lack of techniques to measure and parameterize them. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

Soil erosion is a global environmental problem. To quantify water erosion rates at the field, hillslope or catchment scale, several spatially-distributed soil erosion models have been developed. The accuracy of those models depends largely on the sediment detachment and transport functions used, many of which were developed from empirical research. In this paper, the physical basis of the available sediment detachment and transport functions is reviewed, and their application boundaries determined. Well-known and widely-used sediment detachment and transport functions are discussed on the basis of composite force predictors, i.e. shear stress, stream power, unit stream power and effective stream power, and their suitability is elucidated based on information in the literature. It was found that only a few sediment detachment functions are available, and those have been poorly tested. Most erosion models ignore direct calculation of sediment detachment, but use the sediment transport capacity deficit approach to estimate detachment rate. Many more sediment transport functions are available that also tested better for overland flow conditions. However, our tests did not result in a single function that appeared to perform best under a range of experimental conditions. The unit stream power-based functions developed by Govers seem to be the most promising ones for water erosion modelling. It is therefore recommended to evaluate the performance of existing sediment transport functions with more detailed field and laboratory datasets.
Editor Z.W. Kundzewicz  相似文献   

19.
A low-cost, simple to use portable rainfall simulator is developed for use over a 5 m^2 plot. The simulator is easy to transport and assemble in the field, thereby allowing for necessary experimental replicates to be done. It provides rainfall intensities of between 20 and 100 mm/h by changing the number and type of silicon nozzles used. The Christiansen coefficient of uniformities obtained in the field are appropriate and vary from 79 to 94% for rainfall intensities ranging from 30 to 70 mm/h. In addition, the median volumetric drop diameters measured for rainfall intensities of 30, 50, and 70 mm/h are in the lower range of that of natural rainfall and equal to 1.10 ± 0.08,1.69 ± 0.21, and 1.66 ± 0.20 mm, respectively. The velocities of the raindrops with diameters less than 1.2 mm reached terminal velocities, while raindrops less than 2.0 mm achieved velocities reasonably close to the terminal velocity of natural rainfall. Furthermore,the average time-specific kinetic energy(KET) for rainfall intensities of 30, 50, and 70 mm/h are 257.7,760.1, and 1645.2 J/m^2/h, respectively accounting for about 78.0 and 86.5% of the KET of natural rainfall for50 and 70 mm/h rainfall intensity, respectively. The applicability of the portable rainfall simulator for herbicide transport study is investigated using two herbicides(atrazine and metolachlor); herbicide losses in runoff and sediment samples are in the ranges reported in the literature. As a percentage of the amount of herbicide applied, 5.29% of atrazine and 2.15% of metolachlor are lost due to combined water and sediment runoff. The results show that the portable rainfall simulator can be effectively used in studying processes such as pesticide runoff, infiltration mechanisms, and sediment generation and transport at a field plot scale with an emphasis on how surface characteristics such as slope and soil properties affect these processes.  相似文献   

20.
This paper investigates the effect of introducing spatially varying rainfall fields to a hydrological model simulating runoff and erosion. Pairs of model simulations were run using either spatially uniform (i.e. spatially averaged) or spatially varying rainfall fields on a 500‐m grid. The hydrological model used was a simplified version of Thales which enabled runoff generation processes to be isolated from hillslope averaging processes. Both saturation excess and infiltration excess generation mechanisms were considered, as simplifications of actual hillslope processes. A 5‐year average recurrence interval synthetic rainfall event typical of temperate climates (Melbourne, Australia) was used. The erosion model was based on the WEPP interrill equation, modified to allow nonlinear terms relating the erosion rate to rainfall or runoff‐squared. The model results were extracted at different scales to investigate whether the effects of spatially varying rainfall were scale dependent. A series of statistical metrics were developed to assess the variability due to introducing the spatially varying rainfall field. At the catchment (approximately 150 km2) scale, it was found that particularly for saturation excess runoff, model predictions of runoff were insensitive to the spatial resolution of the rainfall data. Generally, erosion processes at smaller sub‐catchment scales, particularly when the sediment generation equation had non linearity, were more sensitive to spatial rainfall variability. Introducing runon infiltration reduced the total runoff and sediment yield at all scales, and this process was also most sensitive to the rainfall resolution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号