首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater samples were collected from 11 springs in Ash Meadows National Wildlife Refuge in southern Nevada and seven springs from Death Valley National Park in eastern California. Concentrations of the major cations (Ca, Mg, Na and K) and 45 trace elements were determined in these groundwater samples. The resultant data were subjected to evaluation via the multivariate statistical technique principal components analysis (PCA), to investigate the chemical relationships between the Ash Meadows and Death Valley spring waters, to evaluate whether the results of the PCA support those of previous hydrogeological and isotopic studies and to determine if PCA can be used to help delineate potential groundwater flow patterns based on the chemical compositions of groundwaters. The results of the PCA indicated that groundwaters from the regional Paleozoic carbonate aquifers (all of the Ash Meadows springs and four springs from the Furnace Creek region of Death Valley) exhibited strong statistical associations, whereas other Death Valley groundwaters were chemically different. The results of the PCA support earlier studies, where potentiometric head levels, δ18O and δD, geological relationships and rare earth element data were used to evaluate groundwater flow, which suggest groundwater flows from Ash Meadows to the Furnace Creek springs in Death Valley. The PCA suggests that Furnace Creek groundwaters are moderately concentrated Ash Meadows groundwater, reflecting longer aquifer residence times for the Furnace Creek groundwaters. Moreover, PCA indicates that groundwater may flow from springs in the region surrounding Scotty's Castle in Death Valley National Park, to a spring discharging on the valley floor. The study indicates that PCA may provide rapid and relatively cost‐effective methods to assess possible groundwater flow regimes in systems that have not been previously investigated. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
Merokarst aquifers — relatively thin (<1–2 m) karstified carbonate units interbedded between mudstone, shale, or sandstone — constitute a significant proportion of carbonate terrain and underlie a large portion of the west- and south-central USA, yet few advances have been made in our understanding of porosity development and flow-path generation in these complex systems in decades. Toward this end, we used a multi-geophysical approach at the well-studied Konza Prairie Biological Station (KPBS), a part of the larger Flint Hills (25,734 km2), underlain by thin limestone units (1–2 m thick) interbedded with mudstone/shale units (2–4 m thick), to elucidate hydrologic connectivity and potential controls on known groundwater flow directions. We combined electrical resistivity tomography (ERT), surface and borehole nuclear magnetic resonance (NMR), and ground penetrating radar (GPR) measurements across a low order catchment where over 25 boreholes and groundwater wells sampling perched aquifers could be used to constrain interpretation of lithology, potential flow paths, and permeability. Data revealed that groundwater export may be an unappreciated component of lateral-flow-dominated models used to represent merokarst in that: (a) potentiometric surfaces from two limestone units showed groundwater flows toward a hydrologic depression, opposite the direction of stream flow, in the upstream portion of the catchment, (b) long term measures of groundwater levels revealed a greater variance and overall water storage in this same upstream area compared to wells near the outlet, and (c) ERT and NMR results indicate pronounced lateral heterogeneity within a given unit, suggestive of a greater degree of vertical hydrological connectivity than usually considered for horizontally-layered merokarst. Our data suggest vertical connectivity can shunt water to depth in these “sandwiched” merokarst aquifers, yielding atypical groundwater flow directions and unrealized deep export of weathering solutes and carbon.  相似文献   

3.
In order to model non‐Fickian transport behaviour in groundwater aquifers, various forms of the time–space fractional advection–dispersion equation have been developed and used by several researchers in the last decade. The solute transport in groundwater aquifers in fractional time–space takes place by means of an underlying groundwater flow field. However, the governing equations for such groundwater flow in fractional time–space are yet to be developed in a comprehensive framework. In this study, a finite difference numerical scheme based on Caputo fractional derivative is proposed to investigate the properties of a newly developed time–space fractional governing equations of transient groundwater flow in confined aquifers in terms of the time–space fractional mass conservation equation and the time–space fractional water flux equation. Here, we apply these time–space fractional governing equations numerically to transient groundwater flow in a confined aquifer for different boundary conditions to explore their behaviour in modelling groundwater flow in fractional time–space. The numerical results demonstrate that the proposed time–space fractional governing equation for groundwater flow in confined aquifers may provide a new perspective on modelling groundwater flow and on interpreting the dynamics of groundwater level fluctuations. Additionally, the numerical results may imply that the newly derived fractional groundwater governing equation may help explain the observed heavy‐tailed solute transport behaviour in groundwater flow by incorporating nonlocal or long‐range dependence of the underlying groundwater flow field.  相似文献   

4.
Intermontane basin aquifers worldwide, particularly in the Himalayan region, are recharged largely by the adjoining mountains. Recharge in these basins can occur either by water infiltrating from streams near mountain fronts (MFs) as mountain front recharge (MFR) or by sub-surface mountain block infiltration as mountain block recharge (MBR). MFR and MBR recharge are challenging to distinguish and are least quantified, considering the lack of extensive understanding of the hydrological processes in the mountains. This study used oxygen and hydrogen isotopes (δ18O and δ2H), electrical conductivity (EC) data, hydraulic head, and groundwater level data to differentiate MFR and MBR. Groundwater level data provide information about the groundwater-surface water interactions and groundwater flow directions, whereas isotopes and EC data are used to distinguish and quantify different recharge sources. The present methodology is tested in an intermontane basin of the Himalayan region. The results suggest that karst springs (KS) and deep groundwater (DGW) recharge are dominated by snowmelt (47% ± 10% and 46% ± 9%) as MBR from adjacent mountains, insignificantly affected by evaporation. The hydraulic head data and isotopes indicate Quaternary shallow groundwater (SGW) aquifer system recharge as MFR of local meteoric water with significant evaporation. The results indicate several flow paths in the aquifer system, a local flow for KS, intermediate flow for SGW, and regional flow for DGW. The findings will significantly impact water resource management in the area and provide vital baseline knowledge for sustainable groundwater management in other Himalayan intermontane basins.  相似文献   

5.
The impacts of long-term pumping on groundwater chemistry remain unclear in the Manas River Basin, Northwest China. In this study, major ions within five surface water and 105 groundwater samples were analyzed to identify hydrogeochemical processes affecting groundwater composition and evolution along the regional-scale groundwater flow paths using the multivariate techniques of hierarchical cluster analysis (HCA) and principal components analysis (PCA) and traditional graphical methods for analyzing groundwater geochemistry. HCA classified the groundwater samples into four clusters (C1 to C4). PCA reduced the dimensionality of geochemical data into three PCs, which explained 86% of the total variance. The results of HCA and PCA were used to identify three zones: “recharge,” “transition,” and “discharge.” In the recharge zone the groundwater type is Ca-HCO3-SO4 and is primarily impacted by the dissolution of calcite and silicate weathering. In the transition zone the groundwater type is Ca-HCO3-SO4-Cl and is impacted by rock dissolution and reverse ion exchange. In the discharge zone the groundwater type is Na-Cl and is impacted by evaporation and reverse ion exchange. In addition, anthropogenic activities impact the groundwater chemistry in the study area. The groundwater type generally changes from Ca-HCO3-SO4 in the recharge area to Na-Cl in the discharge area along the regional-scale groundwater flow paths. This study provides a process-based knowledge for understanding the interaction of groundwater flow patterns and geochemical evolution within the Manas River Basin.  相似文献   

6.
Regional groundwater flow in deep aquifers adds advective components to the surface heat flow over extensive areas within the Great Plains province. The regional groundwater flow is driven by topographically controlled piezometric surfaces for confined aquifers that recharge either at high elevations on the western edge of the province or from subcrop contacts. The aquifers discharge at lower elevations to the east. The assymetrical geometry for the Denver and Kennedy Basins is such that the surface areas of aquifer recharge are small compared to the areas of discharge. Consequently, positive advective heat flow occurs over most of the province. The advective component of heat flow in the Denver Basin is on the order of 15 mW m−2 along a zone about 50 km wide that parallels the structure contours of the Dakota aquifer on the eastern margin of the Basin. The advective component of heat flow in the Kennedy Basin is on the order of 20 mW m−2 and occurs over an extensive area that coincides with the discharge areas of the Madison (Mississippian) and Dakota (Cretaceous) aquifers. Groundwater flow in Paleozoic and Mesozoic aquifers in the Williston Basin causes thermal anomalies that are seen in geothermal gradient data and in oil well temperature data. The pervasive nature of advective heat flow components in the Great Plains tends to mask the heat flow structure of the crust, and only heat flow data from holes drilled into the crystalline basement can be used for tectonic heat flow studies.  相似文献   

7.
Analytical solutions for groundwater flow in rectangular aquifers are presented in the case of a single-well recharge. The problem concerns the impact of a seasonal recharge scheme of variable duration on aquifers with various boundary conditions. The results obtained from these idealized aquifers can be used in a preliminary assessment of the groundwater response to artificial recharge schemes.  相似文献   

8.
The groundwater flow path plays an important role in maintaining hydrological and ecological quality and security, which are important in the comprehensive management and use of both groundwater and surface water. In this study, an integrated multi-tracer-constrained framework was used to determine the groundwater flow path. The results show that there are shallow and deep flow paths in riverbank filtration, controlled by the different permeabilities of riverbed sediments and aquifers at different depths. The contribution of river water to shallow groundwater is less than that to deep groundwater because of the low permeability of the riverbed sediment in the dense muddy layer in the shallow slope of the river valley. This contribution decreases with increasing distance from the Liao River. The shallow groundwater quality is better than the deep groundwater quality because of its longer residence time.  相似文献   

9.

The quantitative assessment of geothermal water resources is important to the exploitation and utilization of geothermal resources. In the geothermal water systems the density of groundwater changes with the temperature, therefore the variations in hydraulic heads and temperatures are very complicated. A three-dimensional density-dependent model coupling the groundwater flow and heat transport is established and used to simulate the geothermal water flow in the karst aquifers in eastern Weibei, Shaanxi Province, China. The multilayered karst aquifer system in the study area is cut by some major faults which control the regional groundwater flow. In order to calibrate and simulate the effect of the major faults, each fault is discretized as a belt of elements with special hydrological parameters in the numerical model. The groundwater dating data are used to be integrated with the groundwater flow pattern and calibrate the model. Simulation results show that the calculated hydraulic heads and temperature fit with the observed data well.

  相似文献   

10.
Understanding the nature of communication between aquifers can be challenging when using traditional physical and geochemical groundwater sampling approaches. This study uses two multiport wells completed within Edwards and Trinity aquifers in central Texas to determine the degree of groundwater inter‐flow between adjacent aquifers. Potentiometric surfaces, hydraulic conductivities, and groundwater major ion concentrations and Sr isotope values were measured from multiple zones within three hydrostratigraphic units (Edwards and Upper and Middle Trinity aquifers). Physical and geochemical data from the multiport wells were combined with historical measurements of groundwater levels and geochemical compositions from the region to characterize groundwater flow and identify controls on the geochemical compositions of the Edwards and Trinity aquifers. Our results suggest that vertical groundwater flow between Edwards and Middle Trinity aquifers is likely limited by low permeability, evaporite‐rich units within the Upper and Middle Trinity. Potentiometric surface levels in both aquifers vary with changes in wet vs. dry conditions, indicating that recharge to both aquifers occurs through distinct recharge areas. Geochemical compositions in the Edwards, Upper, and Middle Trinity aquifers are distinct and likely reflect groundwater interaction with different lithologies (e.g., carbonates, evaporites, and siliceous sediments) as opposed to mixing of groundwater between the aquifers. These results have implications for the management of these aquifers as they indicate that, under current conditions, pumping of either aquifer will likely not induce vertical cross‐formational flow between the aquifers. Inter‐flow between the Trinity and the Edwards aquifers, however, should be reevaluated as pumping patterns and hydrogeologic conditions change.  相似文献   

11.
A large‐scale groundwater flow and transport model is developed for a deep‐seated (100 to 300 m below ground surface) sedimentary aquifer system. The model is based on a three‐dimensional (3D) hydrostratigraphic model, building on a sequence stratigraphic approach. The flow model is calibrated against observations of hydraulic head and stream discharge while the credibility of the transport model is evaluated against measurements of 39Ar from deep wells using alternative parameterizations of dispersivity and effective porosity. The directly simulated 3D mean age distributions and vertical fluxes are used to visualize the two‐dimensional (2D)/3D age and flux distribution along transects and at the top plane of individual aquifers. The simulation results are used to assess the vulnerability of the aquifer system that generally has been assumed to be protected by thick overlaying clayey units and therefore proposed as future reservoirs for drinking water supply. The results indicate that on a regional scale these deep‐seated aquifers are not as protected from modern surface water contamination as expected because significant leakage to the deeper aquifers occurs. The complex distribution of local and intermediate groundwater flow systems controlled by the distribution of the river network as well as the topographical variation (Tóth 1963) provides the possibility for modern water to be found in even the deepest aquifers.  相似文献   

12.
Deep basin aquifers are increasingly used in water‐stressed areas, though their potential for sustainable development is inhibited by overlying aquitards and limited recharge rates. Long open interval wells (LOIWs)—wells uncased through multiple hydrostratigraphic units—are present in many confined aquifer systems and can be an important mechanism for deep basin aquifers to receive flow across aquitards. LOIWs are a major control on flow in the deep Cambrian–Ordovician sandstone aquifers of the upper Midwest, USA, providing a source of artificial leakage from shallow bedrock aquifers and equilibrating head within the sandstone aquifers despite differential pumpage. Conceptualizing and quantifying this anthropogenic flow has long been a challenge for groundwater flow modellers, particularly on a regional scale. Synoptic measurements of active production wells and well completion data for northeast Illinois form the basis for a transient, head‐specified MODFLOW model that determines mass balance contributions to the region and estimates LOIW leakage to the aquifers. Using this insight, transient LOIW leakage was simulated using transiently changing KV zones in a traditional, Q‐specified MODFLOW‐USG model, a novel approach that allows the KV in a cell containing a LOIW to change transiently by use of the time‐variant materials (TVM) package. With this modification, we achieved a consistent calibration through time, averaging 19.9 m root mean squared error. This model indicates that artificial leakage via LOIWs contributed a minimum of 10–13% of total flow to the sandstone aquifers through the entire history of pumping, up to 50% of flow around 1930. Removal from storage exceeds 40% of flow during peak withdrawals, much of this flow sourced from units other than the primary sandstone aquifers via LOIWs. As such, understanding the timing and magnitude of LOIW leakage is essential for predicting future water availability in deep basin aquifers.  相似文献   

13.
This review focuses on investigations of groundwater flow and solute transport in karst aquifers through laboratory scale models (LSMs). In particular, LSMs have been used to generate new data under different hydraulic and contaminant transport conditions, testing of new approaches for site characterization, and providing new insights into flow and transport processes through complex karst aquifers. Due to the increasing need for LSMs to investigate a wide range of issues, associated with flow and solute migration karst aquifers this review attempts to classify, and introduce a framework for constructing a karst aquifer physical model that is more representative of field conditions. The LSMs are categorized into four groups: sand box, rock block, pipe/fracture network, and pipe-matrix coupling. These groups are compared and their advantages and disadvantages highlighted. The capabilities of such models have been extensively improved by new developments in experimental methods and measurement devices. Newer technologies such as 3D printing, computed tomography scanning, X-rays, nuclear magnetic resonance, novel geophysical techniques, and use of nanomaterials allow for greater flexibilities in conducting experiments. In order for LSMs to be representative of karst aquifers, a few requirements are introduced: (1) the ability to simulate heterogeneous distributions of karst hydraulic parameters, (2) establish Darcian and non-Darcian flow regimes and exchange between the matrix and conduits, (3) placement of adequate sampling points and intervals, and (4) achieving some degree of geometric, kinematic, and dynamic similitude to represent field conditions.  相似文献   

14.
Few studies have investigated large reaches of rivers in which multiple sources of groundwater are responsible for maintaining baseflow. This paper builds upon previous work undertaken along the Fitzroy River, one of the largest perennial river systems in north‐western Australia. Synoptic regional‐scale sampling of both river water and groundwater for a suite of environmental tracers (4He, 87Sr/86Sr, 222Rn and major ions), and subsequent modeling of tracer behavior in the river, has enabled definition and quantification of groundwater input from at least three different sources. We show unambiguous evidence of both shallow “local” groundwater, possibly recharged to alluvial aquifers beneath the adjacent floodplain during recent high‐flow events, and old “regional” groundwater introduced via artesian flow from deep confined aquifers. We also invoke hyporheic exchange and either bank return flow or parafluvial flow to account for background 222Rn activities and anomalous chloride trends along river reaches where there is no evidence of the local or regional groundwater inputs. Vertical conductivity sections acquired through an airborne electromagnetic (AEM) survey provide insights to the architecture of the aquifers associated with these sources and general groundwater quality characteristics. These data indicate fresh groundwater from about 300 m below ground preferentially discharging to the river, at locations consistent with those inferred from tracer data. The results demonstrate how sampling rivers for multiple environmental tracers of different types—including stable and radioactive isotopes, dissolved gases and major ions—can significantly improve conceptualization of groundwater—surface water interaction processes, particularly when coupled with geophysical techniques in complex hydrogeological settings.  相似文献   

15.
Groundwater often accounts for a substantial fraction of flood hydrographs, but the processes responsible for this have been unclear. However, many aquifers have preferential flow and this explains how aquifers can be so responsive. In bedrock aquifers, weathering enhances the connectivity and apertures along the most efficient flow paths and hence enhances the permeability. This results in celerities and velocities of the preferential flow in these dual‐porosity aquifers that are two to three orders of magnitude higher than if the aquifers behaved as single‐porosity media. The celerities have been determined from artificial and natural flood pulses, from tidal lags, and from pumping tests. Preferential‐flow velocities have been calculated from tests using applied tracers. Celerities in bedrock aquifers are typically one to two orders of magnitude faster than velocities. The ubiquitous preferential flow in aquifers provides an additional explanation, besides groundwater ridging, for the rapid release of groundwater to streams during storm events.  相似文献   

16.
The quantitative assessment of geothermal water resources is important to the exploitation and utilization of geothermal resources. In the geothermal water systems the density of groundwater changes with the temperature, therefore the variations in hydraulic heads and temperatures are very complicated. A three-dimensional density-dependent model coupling the groundwater flow and heat transport is established and used to simulate the geothermal water flow in the karst aquifers in eastern Weibei, Shaanxi Province, China. The multilayered karst aquifer system in the study area is cut by some major faults which control the regional groundwater flow. In order to calibrate and simulate the effect of the major faults, each fault is discretized as a belt of elements with special hydrological parameters in the numerical model. The groundwater dating data are used to be integrated with the groundwater flow pattern and calibrate the model. Simulation results show that the calculated hydraulic heads and temperature fit with the observed data well.  相似文献   

17.
The quantitative assessment of geothermal water resources is important to the exploitation and utilization of geothermal resources. In the geothermal water systems the density of groundwater changes with the temperature, therefore the variations in hydraulic heads and temperatures are very complicated. A three-dimensional density-dependent model coupling the groundwater flow and heat transport is established and used to simulate the geothermal water flow in the karst aquifers in eastern Weibei, Shaanxi Province, China. The multilayered karst aquifer system in the study area is cut by some major faults which control the regional groundwater flow. In order to calibrate and simulate the effect of the major faults, each fault is discretized as a belt of elements with special hydrological parameters in the numerical model. The groundwater dating data are used to be integrated with the groundwater flow pattern and calibrate the model. Simulation results show that the calculated hydraulic heads and temperature fit with the observed data well.  相似文献   

18.
Significant uncertainty remains in understanding the groundwater flow pathways in the northeastern Qinghai–Tibet Plateau. Hydrogeochemical and isotopic data as well as hydrogeological data were combined to explore the groundwater flow path in a representative cold alpine catchment in the headwater region of the Heihe River. The results indicate that the suprapermafrost groundwater chemical components were mainly affected by calcite dissolution and evaporation, whereas the geochemistry of subpermafrost groundwater was controlled by dolomite and gypsum dissolution, calcite precipitation, and albite and halite dissolution. Distinct hydrogeochemical characteristics and controlling processes suggest a poor hydraulic connectivity between the suprapermafrost and subpermafrost groundwater. The hydraulic connectivity between permafrost groundwater and groundwater in the seasonally frozen area was confirmed by their similar hydrogeochemical features. In the seasonally frozen area, a silty clay layer with low permeability separates the aquifer into the deep (depth >20 m) and shallow (depth <20 m) flow paths. The deep groundwater was characterized by the enhanced dedolomitization and enhanced cation exchange processes compared with the shallow groundwater. Groundwater in the seasonally frozen area finally discharges as base flow into the stream. These results provide useful information about the groundwater flow systems in the unique alpine gorge catchments in Qinghai–Tibet Plateau. The above findings suggest that the permafrost distribution and the aquifer structures within the seasonally frozen area have significant impact on groundwater flow paths. Cross‐validation by drilling work and hydrograph data confirms that the hydrogeochemical and isotopic tracers combined with field investigations can be relatively low‐cost tools in interpreting the groundwater flow paths in similar alpine catchments.  相似文献   

19.
Karst aquifers are well known for their intricate stratigraphy and geologic structures, which make groundwater characterization challenging because flowpaths and recharge sources are complex and difficult to evaluate. Geochemical data, collected from ten closely spaced production wells constructed in two karst aquifers (Bangor Limestone (Mb) and Tuscumbia Limestone/Fort Payne Chert (Mftp)) in Trussville, north‐central Alabama, illustrate two distinctive groundwater end‐members: (1) higher major ion, dissolved inorganic carbon, conductivity, alkalinity concentrations, heavier δ13C ratios (max: −10.2 ± 0.2‰ Vienna Pee Dee Belemnite (PDB)) and lower residence times (mean: 19.5 ± 2 years, n = 2) of groundwater in the Mb aquifer and (2) lower constituent concentrations, lighter δ13C ratios (min: −13.4 ± 0.2‰ PDB) and longer residence times of groundwater (mean: 23.6 ± 2 years, n = 4) in the Mftp aquifer. Summer and fall data and the binary mixing model show aquifer inter‐flow mixing along solution fractures and confirms the distinctive groundwater geochemistry of the two aquifers. Lowering of static water levels over the summer (drawdown from 2 to 5.2 m) leads to more reducing groundwater conditions (lower Eh values) and slightly enriched δ18O and δD ratios during the fall [δ18O: −4.8 ± 0.1 to −5.4 ± 0.1‰ Vienna Standard Mean Oceanic Water (VSMOW), n = 9; δD: −25.4 ± 1 to −27.4 ± 1‰ VSMOW, n = 9] when compared with summer season samples (δ18O: −5.1 ± 0.1 to −5.7 ± 0.1‰ VSMOW, n = 11; δD: −25.0 ± 1 to −30.6 ± 1‰ VSMOW, n = 11). GIS analyses confirm the localized origin of recharge to the investigated aquifers. The combination of GIS, field parameters and geochemistry analyses can be successfully used to identify recharge sources, evaluate groundwater flow and transport pathways and to improve understanding of how groundwater withdrawals impact the sustainability and susceptibility to contamination of karst aquifers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

Knowledge of the processes that control nitrate migration and its geochemical evolution in the subsurface are fundamental for the regional management of polluted aquifers. In this paper, the spatial distribution and transient variations of nitrate concentrations, associated with manure fertilization, are used to depict hydrogeological dynamics within the sedimentary aquifer system of la Plana de Vic in the Osona region of Spain. Flow systems are identified from geological, hydraulic head, hydrochemical and isotopic data, and by considering nitrate itself as a tracer that indicates how flow paths are modified by human pressures. In this area, nitrates move through fractured aquitards in flows induced by groundwater pumping. Moreover, the lack of casing in the boreholes permits a mixing of groundwater from distinct layers inside the wells, which negates any benefits from the low-nitrate groundwater found in the deepest aquifer layers. Therefore, impacts on groundwater quality are related to intensive manure fertilization as well as to inadequate well construction and exploitation strategies.

Citation Menció, A., Mas-Pla, J., Otero, N. & Soler, A. (2011) Nitrate as a tracer of groundwater flow in a fractured multilayered aquifer. Hydrol. Sci. J. 56(1), 108–122.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号