首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A characterization of hyporheic exchange for dry and wet season baseflow, as well as partially dewatered discharge, was done in Prieta Creek, a first‐order cascade in northern Honduras. The cascade had discharges from 1 to 15 l s?1, had average slopes of 12%, pool spacing of 3 m, and shallow substrate of sand and gravel. Tracer tests were conducted in a 15‐m sub‐reach, a length considered to be adequate for the experiment based on the DaI test, a ratio of exchange and transport processes. In the three tests, between 9 and 18% of tracer was not recovered, possibly due to entrainment in flowpaths passing beneath the downstream monitoring location. Tracer data were analysed by the one‐dimensional transport with inflow and storage (OTIS) transient storage model (TSM) to derive standard exchange parameters, and by the solute transport in rivers (STIR) model to examine hyporheic residence time distributions (RTDs). The best fit of the observed tracer breakthrough curves was obtained by using the STIR model with a combination of two exponential RTDs to represent hyporheic retention. With increasing discharge, the OTIS model predicted increasing storage exchange fluxes and exchange coefficients and decreasing storage zone areas and transient storage times, which are trends supported by riparian and streambed piezometric head data. Riparian water levels rose during the transition from the dry to wet season, which could constrict the hyporheic storage zone. Thirteen of the 19 streambed piezometers recorded seasonal changes in hydraulic gradients and flux direction, with fewer yet stronger upwelling zones during higher discharges. The MODFLOW model missed the observed seasonal changes, possibly due to subtle changes in the seasonal change in water surface profiles. We conclude that partially dewatered dry season exchange, compared to wet season exchange, was initiated and terminated with smaller pressure gradients and, in different streambed locations, was smaller in volume, had longer residence times, and may connect with deeper and longer flow paths. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Hyporheic exchange increases the potential for solute retention in streams by slowing downstream transport and increasing solute contact with the substrate. Hyporheic exchange may be a major mechanism to remove nutrients in semi‐arid watersheds, where livestock have damaged stream riparian zones and contributed nutrients to stream channels. Debris dams, such as beaver dams and anthropogenic log dams, may increase hyporheic interactions by slowing stream water velocity, increasing flow complexity and diverting water to the subsurface. Here, we report the results of chloride tracer injection experiments done to evaluate hyporheic interaction along a 320 m reach of Red Canyon Creek, a second order stream in the semi‐arid Wind River Range of Wyoming. The study site is part of a rangeland watershed managed by The Nature Conservancy of Wyoming, and used as a hydrologic field site by the University of Missouri Branson Geologic Field Station. The creek reach we investigated has debris dams and tight meanders that hypothetically should enhance hyporheic interaction. Breakthrough curves of chloride measured during the field experiment were modelled with OTIS‐P, a one‐dimensional, surface‐water, solute‐transport model from which we extracted the storage exchange rate α and cross‐sectional area of the storage zone As for hyporheic exchange. Along gaining reaches of the stream reach, short‐term hyporheic interactions associated with debris dams were comparable to those associated with severe meanders. In contrast, along the non‐gaining reach, stream water was diverted to the subsurface by debris dams and captured by large‐scale near‐stream flow paths. Overall, hyporheic exchange rates along Red Canyon Creek during snowmelt recession equal or exceed exchange rates observed during baseflow at other streams. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Groundwater surface water interaction in the hyporheic zone remains an important challenge for water resources management and ecosystem restoration. In heterogeneous stratified glacial sediments, reach‐scale environments contain an uneven distribution of focused groundwater flow occurring simultaneously with diffusely discharging groundwater. This results in a variation of stream‐aquifer interactions, where focused flow systems are able to temporally dominate exchange processes. The research presented here investigates the direct and indirect influences focused groundwater discharge exerts on the hyporheic zone during baseflow recession. Field results demonstrate that as diffuse sources of groundwater deplete during baseflow recession, focused groundwater discharge remains constant. During baseflow recession the hyporheic zone is unable to expand, while the high nitrate concentration from focused discharge changes the chemistry of the stream. The final result is a higher concentration of nitrate in the hyporheic zone as this altered surface water infiltrates into the subsurface. This indirect coupling of focused groundwater discharge and the hyporheic zone is unaccounted for in hyporheic studies at this time. Results indicate important implications for the potential reduction of agricultural degradation of water quality.  相似文献   

4.
In the McMurdo Dry Valleys of Antarctica, glaciers are the source of meltwater during the austral summer, and the streams and adjacent hyporheic zones constitute the entire physical watershed; there are no hillslope processes in these systems. Hyporheic zones can extend several metres from each side of the stream, and are up to 70 cm deep, corresponding to a lateral cross‐section as large as 12 m2, and water resides in the subsurface year around. In this study, we differentiate between the near‐stream hyporheic zone, which can be characterized with stream tracer experiments, and the extended hyporheic zone, which has a longer time‐scale of exchange. We sampled stream water from Green Creek and from the adjacent saturated alluvium for stable isotopes of D and 18O to assess the significance and extent of stream‐water exchange between the streams and extended hyporheic zones over long time‐scales (days to weeks). Our results show that water residing in the extended hyporheic zone is much more isotopically enriched (up to 11‰ D and 2·2‰ 18O) than stream water. This result suggests a long residence time within the extended hyporheic zone, during which fractionation has occurred owing to summer evaporation and winter sublimation of hyporheic water. We found less enriched water in the extended hyporheic zone later in the flow season, suggesting that stream water may be exchanged into and out of this zone, on the time‐scale of weeks to months. The transient storage model OTIS was used to characterize the exchange of stream water with the extended hyporheic zone. Model results yield exchange rates (α) generally an order magnitude lower (10?5 s?1) than those determined using stream‐tracer techniques on the same stream. In light of previous studies in these streams, these results suggest that the hyporheic zones in Antarctic streams have near‐stream zones of rapid stream‐water exchange, where ‘fast’ biogeochemical reactions may influence water chemistry, and extended hyporheic zones, in which slower biogeochemical reaction rates may affect stream‐water chemistry at longer time‐scales. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Surface water–groundwater interaction in the hyporheic zone may enhance biogeochemical cycling in streams, and it has been hypothesized that streams exchanging more water with the hyporheic zone should have more rapid nitrate utilization. We used simultaneous conservative solute and nitrate addition tracer tests to measure transient storage (which includes hyporheic exchange and in‐stream storage) and the rate of nitrate uptake along three reaches within the Red Canyon Creek watershed, Wyoming. We calibrated a one‐dimensional transport model, incorporating transient storage (OTIS‐P), to the conservative solute breakthrough curves and used the results to determine the degree of transient storage in each reach. The nitrate uptake length was quantified from the exponential decrease in nitrate concentration with distance during the tracer tests. Nitrate uptake along the most downstream reach of Red Canyon Creek was rapid (turnover time K?1c = 32 min), compared with nitrate uptake reported in other studies (K?1c = 12 to 551 min), but other sites within the watershed showed little nitrate retention or loss. The uptake length Sw‐NO?3 for the most downstream reach was 500 m and the mass transfer coefficient Vf‐NO?3 was 6·3 m min?1. Results from 15 other nitrate‐addition tracer tests were used to create a regression model relating transient storage and measures of stream flow to nitrate uptake length. The model, which includes specific discharge and transient storage area, explains almost half the variability in nitrate uptake length (adjusted R2 = 0·44) and is most effective for comparing sites with very different stream characteristics. Although large differences in specific discharge and storage zone area explain inter‐site differences in nitrate uptake, other unmeasured variables, such as available organic carbon and microbial community composition, are likely important for predicting differences in nitrate uptake between sites with similar specific discharge rates and storage zone areas, such as when making intra‐site comparisons. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The goal of this research was to compare hyporheic activity in recently restored and adjacent un‐restored reaches of the Truckee River downstream from the Reno/Sparks metropolitan area. The installation of rocky riffles and raised channel bed elevations in the restored reaches may have increased the degree of surface–subsurface interaction. A fluctuating chloride concentration signal served as the tracer, induced by the variable influx of higher salinity water several miles upstream from the study reach. The solute transport model, OTIS, was used in conjunction with the hydrodynamic model, DYNHYD5, to estimate transient storage parameters under unsteady flow conditions. The model was calibrated to chloride concentrations measured over a period of three days at six in‐stream locations representing restored and un‐restored reaches. An automated parameter estimation algorithm (SCE‐UA) was used to optimize parameters for multiple reaches simultaneously and generate a distribution of parameter estimates. Results suggest that the transient storage zone cross‐sectional area (As) is larger in the restored reaches than in the unrestored reaches, but the exchange coefficient (α) is smaller, leading to increased hyporheic residence time and hydrologic retention in the vicinity of channel reconstructions. Scenarios were used to simulate the potential effects of increased subsurface residence time on denitrification and in‐stream NO3‐N concentrations. Monte Carlo analysis was performed to assess uncertainty in the simulation results and show the potential for greater nutrient retention in the lower Truckee River as a result of channel restoration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Time‐lapse geophysical surveys can map lingering hyporheic storage by detecting changes in response to saline tracer. Tracer tests were conducted in Crabby Creek, an urban stream outside Philadelphia, to examine the influence of stream restoration structures and variable sediment thickness. We compared electrical resistivity surveys with extensive well sampling (57 wells) in two 13.5‐m‐long reaches, each with a step drop created by a J‐hook. The two step drops varied in tracer behaviour, based on both the well data and the geophysical data. The well data showed more variation in arrival time where the streambed sediment was thick and was more uniform where sediment was thin. The resistivity in the reach with thin sediment showed lingering tracer in the hyporheic zone both upstream and downstream from the J‐hook. In the second reach where the sediment was thicker, the lingering tracer in the hyporheic zone was more extensive downstream from the J‐hook. The contrasting results between the two reaches from both methods suggested that sediments influenced hyporheic exchange more than the step at this location. Resistivity inversion differed from well data in both reaches in that it showed evidence for tracer after well samples had returned to background, mapping lingering tracer either upstream or downstream of a step. We conclude that resistivity surveys may become an important tool for hyporheic zone characterization because they provide information on the extent of slow moving fluids in the hyporheic zone, which have the potential to enhance chemical reactions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Stream–subsurface water interaction induced by natural riffles and constructed riffles/steps was examined in lowland streams in southern Ontario, Canada. The penetration of stream water into the subsurface was analysed using hydrometric data, and the zone of > 10% stream water was calculated from a chemical mixing equation using tracer injection of bromide and background chloride concentrations. The constructed riffles studied induced more extensive hyporheic exchange than the natural riffles because of their steeper longitudinal hydraulic head gradients and coarser streambed sediments. The depth of > 10% stream water zone in a small and a large constructed riffle extended to > 0·2 m and > 1·4 m depths respectively. Flux and residence time distribution of hyporheic exchange were simulated in constructed riffles using MODFLOW, a finite‐difference groundwater flow model. Hyporheic flux and residence time distribution varied along the riffles, and the exchange occurring upstream from the riffle crest was small in flux and had a long residence time. In contrast, hyporheic exchange occurring downstream from the riffle crest had a relatively short residence time and accounted for 83% and 70% of total hyporheic exchange flow in a small and large riffle respectively. Although stream restoration projects have not considered the hyporheic zone, our data indicate that constructed riffles and steps can promote vertical hydrologic exchange and increase the groundwater–surface water linkage in degraded lowland streams. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Key processes in stream ecosystems are linked to hydraulic retention, which is the departure of stream flow from ideal ‘plug flow’, and reflects fluid movement through surface and hyporheic storage zones. Most existing information about hyporheic exchange is based on flume studies or field measurements in relatively steep streams with beds coarser than sand. Stream tracer studies may be used to quantify overall hydraulic retention, but disaggregation of surface and hyporheic retention remains difficult. A stream tracer approach was used to compute the rates at which stream water is exchanged with water in storage zones (total storage) in short reaches of two small, sand‐bed streams under free and obstructed flow conditions. Tracer curves were fit to the one‐dimensional transport with inflow storage model OTIS‐P. Networks of piezometers were used to measure specific discharge between the stream and the groundwater. In the sand‐bed streams studied, parameters describing total retention were in the upper 50% of data compiled from the literature, most of which represented streams with beds coarser than sand. However, hyporheic storage was an insignificant component of total hydraulic retention, representing only 0·01–0·49% of total exchange, and this fraction did not increase after installation of flow obstructions. Total retention did not vary systematically with bed material size, but increased 50–100% following flow obstruction. Removal of roughness elements, such as large wood and debris dams, is detrimental to processes dependent upon transient storage in small, sand‐bed streams. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Solute transport in rivers and streams with hyporheic zone exchange and/or in-stream storage is typically affected by the prevailing flow rate. The research reported here focuses on stream tracer experiments repeated many times along the same Austrian (Mödlingbach) and Italian (Torrente Lura) channel reaches to characterize parameter dependency on flow rate. Both groups of data sets showed an increase of storage zone area and main stream area with discharge. In either case, a strong negative correlation was obtained between storage zone residence time and flow rate. From the Mödlingbach data, no clear relationship with Q emerged for the dispersion coefficient and the dead zone ratio, whereas Torrente Lura showed a clear positive correlation of the dispersion coefficient with the flow rate and a slightly negative Q-dependency for the dead zone ratio. Mödlingbach and Torrente Lura results are presented against the background of other repeat experiments reported in literature.  相似文献   

11.
Traditional characterization of hyporheic processes relies upon modelling observed in‐stream and subsurface breakthrough curves to estimate hyporheic zone size and infer exchange rates. Solute data integrate upstream behaviour and lack spatial coverage, limiting our ability to accurately quantify spatially heterogeneous exchange dynamics. Here, we demonstrate the application of near‐surface electrical resistivity imaging (ERI) methods, coupled with experiments using an electrically conductive stream tracer (dissolved NaCl), to provide in situ imaging of spatial and temporal dynamics of hyporheic exchange. Tracer‐labelled water in the stream enters the hyporheic zone, reducing electrical resistivity in the subsurface (to which subsurface ERI is sensitive). Comparison of background measurements with those recording tracer presence provides distributed characterization of hyporheic area (in this application, ∼0·5 m2). Results demonstrate the first application of ERI for two‐dimensional imaging of stream‐aquifer exchange and hyporheic extent. Future application of this technique will greatly enhance our ability to quantify processes controlling solute transport and fate in hyporheic zones, and provide data necessary to inform more complete numerical models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The stream tracer technique and transient storage models (TSMs) have become common tools in stream solute and hyporheic exchange studies. The expense and logistics associated with water sample collection and analysis often results in limited temporal resolution of stream tracer breakthrough curves (BTCs). Samples are often collected without a priori or real‐time knowledge of BTC information, which can result in poor sample coverage of the critical shoulder (initial rise) and tail (post‐steady state fall) of the BTC. We illustrate the use of specific conductance (SC) measurements as a surrogate for conservative dissolved tracer (Br) samples. The advantages of collecting SC data for use in the TSM are (1) cost, (2) ease of data collection, and (3) well‐defined breakthrough curves, which strengthen TSM parameter optimization. This method is based on developing an ion concentration (IC)–SC relationship from limited discrete tracer solute samples. SC data can be collected on a more frequent basis at no additional analysis cost. TSM simulations can then be run for the conservative tracer data derived from SC breakthrough curves and the IC–SC relationship. This technique was tested in a 120 m reach of stream (2–60 m subreaches) in the Maimai M15 catchment, New Zealand during baseflow recession. Dissolved LiBr was injected for 12·92 h, with Br as the conservative ion of interest. Four TSM simulations using the OTIS model are optimized using UCODE to fit (1) Br data derived from the Br–SC relationship (n = 1307 observations at each of two stream sampling sites), (2) all stream Br data collected (n = 58 in upper reach, n = 60 in lower reach), (3) half of the stream Br data collected, and (4) 20 stream Br samples from each site. No two simulations resulted in the same optimal parameter values. Results suggest that the greater the frequency of observations, the greater the confidence in estimated parameter values. Br–SC simulations resulted in the best overall model fits to the data, with the lowest calculated error variance of 6·37, narrowest 95% parameter estimate confidence intervals, and the highest correlation coefficient of 0·99 942, among the four simulations. This is largely due to the improved representation of the shoulder and tail of the BTC with this method. The IC–SC correlation method is robust in situations in which (1) changes in background SC data can be accounted for, and (2) the data used to define the IC–SC relationship are representative of the range of data collected. This method provides more efficient sample analysis, improved data resolution, and improved model results compared to the alternative stream tracer data gathering methods presented. Additionally, we describe a new parameterization of the cross‐sectional area of the stream during flow recession, as a function of discharge, based on a stream hydraulic geometry relationship. This variant of the OTIS model provides a more realistic representation of stream dynamics during unsteady discharge. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Hyporheic restoration is of increasing interest given the role of hyporheic zones in supporting ecosystem services and functions. Given the prevalence of sediment pollution to waterways, an emerging restoration technique involves the removal of sediment from the interstices of gravel‐bed streams. Here, we document streambed sediment removal following a large, accidental release of fine sediment into a gravel‐bed river. We use this as a natural experiment to assess the impact of fine sediment removal on reach‐scale measures of transient storage and to document the responses of reaches with contrasting morphology (restored vs. unrestored) to changing discharge one‐field season. We conducted a series of conservative solute tracer experiments in each reach, interpreting both summary statistics for the recovered in‐stream solute tracer time series. Additionally, we applied the transient storage model to interpret the results via model parameters, including a Monte Carlo analysis to measure parameter identifiability and sensitivity in each experiment. Despite the restoration effort resulting in an open matrix gravel bed in the restored reach, we did not find the significant differences in most time series metrics describing reach‐scale transport and transient storage. We hypothesize that this is due to enhanced vertical exchange with the gravel bed in the restored reach replacing lateral exchange with macrophyte beds in the unrestored reach, developing a conceptual model to explain our findings. Consequently, we found that the impact of reach‐scale removal of fine sediment is not measureable using reach‐scale solute tracer studies. We offer recommendations for future studies seeking to measure the impacts of stream restoration at the reach scale.  相似文献   

14.
This paper focuses on surface–subsurface water exchange in a steep coarse‐bedded stream with a step‐pool morphology. We use both flume experiments and numerical modelling to investigate the influence of stream discharge, channel slope and sediment hydraulic conductivity on hyporheic exchange. The model step‐pool reach, whose topography is scaled from a natural river, consists of three step‐pool units with 0.1‐m step heights, discharges ranging between base and over‐bankfull flows (scaled values of 0.3–4.5 l/s) and slopes of 4% and 8%. Results indicate that the deepest hyporheic flow occurs with the steeper slope and at moderate discharges and that downwelling fluxes at the base of steps are highest at the largest stream discharges. In contrast to findings in a pool‐riffle morphology, those in this study show that steep slopes cause deeper surface–subsurface exchanges than gentle slopes. Numerical simulation results show that the portion of the hyporheic zone influenced by surface water temperature increases with sediment hydraulic conductivity. These experiments and numerical simulations emphasize the importance of topography, sediment permeability and roughness elements along the channel surface in governing the locations and magnitude of downwelling fluxes and hyporheic exchange. Our results show that hyporheic zones in these steep streams are thicker than previously expected by extending the results from streams with pool‐riffle bed forms. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Steven M. Wondzell 《水文研究》2011,25(22):3525-3532
Many hyporheic papers state that the hyporheic zone is a critical component of stream ecosystems, and many of these papers focus on the biogeochemical effects of the hyporheic zone on stream solute loads. However, efforts to show such relationships have proven elusive, prompting several questions: Are the effects of the hyporheic zone on stream ecosystems so highly variable in place and time (or among streams) that a consistent relationship should not be expected? Or, is the hyporheic zone less important in stream ecosystems than is commonly expected? These questions were examined using data from existing groundwater modelling studies of hyporheic exchange flow at five sites in a fifth‐order, mountainous stream network. The size of exchange flows, relative to stream discharge (QHEF:Q), was large only in very small streams at low discharge (area ≈ 100 ha; Q < 10 l/s). At higher flows (flow exceedance probability > 0·7) and in all larger streams, QHEF:Q was small. These data show that biogeochemical processes in the hyporheic zone of small streams can substantially influence the stream's solute load, but these processes become hydrologically constrained at high discharge or in larger streams and rivers. The hyporheic zone may influence stream ecosystems in many ways, however, not just through biogeochemical processes that alter stream solute loads. For example, the hyporheic zone represents a unique habitat for some organisms, with patterns and amounts of upwelling and downwelling water determining the underlying physiochemical environment of the hyporheic zone. Similarly, hyporheic exchange creates distinct patches of downwelling and upwelling. Upwelling environments are of special interest, because upwelling water has the potential to be thermally or chemically distinct from stream water. Consequently, micro‐environmental patches created by hyporheic exchange flows are likely to be important to biological and ecosystem processes, even if their impact on stream solute loads is small. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

16.
Solute transport in rivers is controlled by surface hydrodynamics and by mass exchanges with distinct retention zones. Surface and hyporheic retention processes can be accounted for separately in solute transport models with multiple storage compartments. In the simplest two component model, short term storage can be associated to in-channel transient retention, e.g. produced by riparian vegetation or surface dead zones, and the long-term storage can be associated to hyporheic exchange. The STIR (Solute Transport In Rivers) multiple domain transport model is applied here to tracer test data from three very different Mediterranean streams with distinctive characteristics in terms of flow discharge, vegetation and substrate material. The model is used with an exponential residence time distribution (RTD) to represent surface storage processes and two distinct modeling closures are tested to simulate hyporheic retention: a second exponential RTD and a power-law distribution approximating a known solution for bedform-induced hyporheic exchange. Each stream shows distinct retention patterns characterized by different timescales of the storage time distribution. Both modeling closures lead to very good approximations of the observed breakthrough curves in the two rivers with permeable bed exposed to the flow, where hyporheic flows are expected to occur. In the one case where the occurrence of hyporheic flows is inhibited by bottom vegetation, only the two exponential RTD model is acceptable and the time scales of the two components are of the same magnitude. The significant finding of this work is the recognition of a strong signature of the river properties on tracer data and the evidence of the ability of multiple-component models to describe individual stream responses. This evidence may open a new perspective in river contamination studies, where rivers could possibly be classified based on their ability to trap and release pollutants.  相似文献   

17.
A freeze core sampler was used to characterize hyporheic zone storage during a stream tracer test. The pore water from the frozen core showed tracer lingered in the hyporheic zone after the tracer had returned to background concentration in collocated well samples. These results confirmed evidence of lingering subsurface tracer seen in time‐lapse electrical resistivity tomographs. The pore water exhibited brine exclusion (ion concentrations in ice lower than source water) in a sediment matrix, despite the fast freezing time. Although freeze core sampling provided qualitative evidence of lingering tracer, it proved difficult to quantify tracer concentration because the amount of brine exclusion during freezing could not be accurately determined. Nonetheless, the additional evidence for lingering tracer supports using time‐lapse resistivity to detect regions of low fluid mobility within the hyporheic zone that can act as chemically reactive zones of importance in stream health.  相似文献   

18.
Studies of hyporheic exchange flows have identified physical features of channels that control exchange flow at the channel unit scale, namely slope breaks in the longitudinal profile of streams that generate subsurface head distributions. We recently completed a field study that suggested channel unit spacing in stream longitudinal profiles can be used to predict the spacing between zones of upwelling (flux of hyporheic water into the stream) and downwelling (flux of stream water into the hyporheic zone) in the beds of mountain streams. Here, we use two‐dimensional groundwater flow and particle tracking models to simulate vertical and longitudinal hyporheic exchange along the longitudinal axis of stream flow in second‐, third‐, and fourth‐order mountain stream reaches. Modelling allowed us to (1) represent visually the effect that the shape of the longitudinal profile has on the flow net beneath streambeds; (2) isolate channel unit sequence and spacing as individual factors controlling the depth that stream water penetrates the hyporheic zone and the length of upwelling and downwelling zones; (3) evaluate the degree to which the effects of regular patterns in bedform size and sequence are masked by irregularities in real streams. We simulated hyporheic exchange in two sets of idealized stream reaches and one set of observed stream reaches. Idealized profiles were constructed using regression equations relating channel form to basin area. The size and length of channel units (step size, pool length, etc.) increased with increasing stream order. Simulations of hyporheic exchange flows in these reaches suggested that upwelling lengths increased (from 2·7 m to 7·6 m), and downwelling lengths increased (from 2·9 m to 6·0 m) with increase in stream order from second to fourth order. Step spacing in the idealized reaches increased from 5·3 m to 13·7 m as stream size increased from second to fourth order. Simulated downwelling lengths increased from 4·3 m in second‐order streams to 9·7 m in fourth‐order streams with a POOL–RIFFLE–STEP channel unit sequence, and increased from 2·5 m to 6·1 m from second‐ to fourth‐order streams with a POOL–STEP–RIFFLE channel unit sequence. Upwelling lengths also increased with stream order in these idealized channels. Our results suggest that channel unit spacing, size, and sequence are all important in determining hyporheic exchange patterns of upwelling and downwelling. Though irregularities in the size and spacing of bedforms caused flow nets to be much more complex in surveyed stream reaches than in idealized stream reaches, similar trends emerged relating the average geomorphic wavelength to the average hyporheic wavelength in both surveyed and idealized reaches. This article replaces a previously published version (Hydrological Processes, 19 (17), 2915–2929 (2005) [ DOI:10.1002/hyp.5790 ]. See also retraction notice DOI:10.1002/hyp.6350 Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
There is a need to identify measurable characteristics of stream channel morphology that vary predictably throughout stream networks and that influence patterns of hyporheic exchange flow in mountain streams. In this paper we characterize stream longitudinal profiles according to channel unit spacing and the concavity of the water surface profile. We demonstrate that: (1) the spacing between zones of upwelling and downwelling in the beds of mountain streams is closely related to channel unit spacing; (2) the magnitude of the vertical hydraulic gradients (VHGs) driving hyporheic exchange flow increase with increasing water surface concavity, measured at specific points along the longitudinal profile; (3) channel unit spacing and water surface concavity are useful metrics for predicting how patterns in hyporheic exchange vary amongst headwater and mid‐order streams. We use regression models to describe changes in channel unit spacing and concavity in longitudinal profiles for 12 randomly selected stream reaches spanning 62 km2 in the H.J. Andrews Experimental Forest in Oregon. Channel unit spacing increased significantly, whereas average water surface concavity (AWSC) decreased significantly with increasing basin area. Piezometer transects installed longitudinally in a subset of stream reaches were used to measure VHG in the hyporheic zone, and to determine the location of upwelling and downwelling zones. Predictions for median pool length and median distance between steps in piezometer reaches bracketed the median distance separating zones of upwelling in the stream bed. VHG in individual piezometers increased with increasing water surface concavity at individual points in the longitudinal profile along piezometer transects. Absolute values of VHG, averaged throughout piezometer transects, increased with increasing AWSC, indicating increased potential for hyporheic exchange flow. These findings suggest that average hyporheic flow path lengths increase—and the potential for hyporheic exchange flow in stream reaches decreases—along the continuum from headwater to mid‐order mountain streams. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
This article has been retracted and replaced. See Retraction and Replacement Notice DOI: 10.1002/hyp.6350 Studies of hyporheic exchange flows have identified physical features of channels that control exchange flow at the channel unit scale, namely slope breaks in the longitudinal profile of streams that generate subsurface head distributions. We recently completed a field study that suggested channel unit spacing in stream longitudinal profiles can be used to predict the spacing between zones of upwelling (flux of hyporheic water into the stream) and downwelling (flux of stream water into the hyporheic zone) in the beds of mountain streams. Here, we use two‐dimensional groundwater flow and particle tracking models to simulate vertical and longitudinal hyporheic exchange along the longitudinal axis of stream flow in second‐, third‐, and fourth‐order mountain stream reaches. Modelling allowed us to (1) represent visually the effect that the shape of the longitudinal profile has on the flow net beneath streambeds; (2) isolate channel unit sequence and spacing as individual factors controlling the depth that stream water penetrates the hyporheic zone and the length of upwelling and downwelling zones; (3) evaluate the degree to which the effects of regular patterns in bedform size and sequence are masked by irregularities in real streams. We simulated hyporheic exchange in two sets of idealized stream reaches and one set of observed stream reaches. Idealized profiles were constructed using regression equations relating channel form to basin area. The size and length of channel units (step size, pool length, etc.) increased with increasing stream order. Simulations of hyporheic exchange flows in these reaches suggested that upwelling lengths increased (from 2·7 m to 7·6 m), and downwelling lengths increased (from 2·9 m to 6·0 m) with increase in stream order from second to fourth order. Step spacing in the idealized reaches increased from 5·3 m to 13·7 m as stream size increased from second to fourth order. Simulated upwelling lengths increased from 4·3 m in second‐order streams to 9·7 m in fourth‐order streams with a POOL–RIFFLE–STEP channel unit sequence, and increased from 2·5 m to 6·1 m from second‐ to fourth‐order streams with a POOL–STEP–RIFFLE channel unit sequence. Downwelling lengths also increased with stream order in these idealized channels. Our results suggest that channel unit spacing, size, and sequence are all important in determining hyporheic exchange patterns of upwelling and downwelling. Though irregularities in the size and spacing of bedforms caused flow nets to be much more complex in surveyed stream reaches than in idealized stream reaches, similar trends emerged relating the average geomorphic wavelength to the average hyporheic wavelength in both surveyed and idealized reaches. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号