首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Laboratory experiments were performed with rain of uniform drop size (2·7 mm, 5·1 mm) impacting flows over non‐cohesive beds of uniform sized sand (0·11–0·9 mm) and coal (0·2–0·9 mm) particles with flow velocities (20 mm s?1, 40 mm s?1) that were insufficient for the flow to entrain the particles without the aid of raindrop impact. Measurement of particle travel distance under rain made up of 2·7 mm drops confirmed a theoretical relationship between settling velocity and the distance particles travel after being disturbed by drop impact. Although, in theory, a relationship between settling velocity and particle travel distance exists, settling velocity by itself was unable to account for the effect of changes in both particle size and density on sediment discharge from beds of uniform non‐cohesive material. Particle density was also a factor. Further study of how particle characteristics influence sediment discharge will aid modelling of the impact of the soil in process‐based models of erosion by rain‐impacted flow. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Sediment particles are often colonized by biofilm in a natural aquatic ecological system, especially in eutrophic water body. A series of laboratory experiments on particle size gradation, drag coefficient and settling velocity were conducted after natural sediment was colonized by biofilm for 5, 10, 15 and 20 days. Particle image acquisition, particle tracking techniques of Particle Image Velocimetry and Particle Tracking Velocimetry were utilized to analyze the changes of these properties. The experimental results indicate that the size gradation, the drag force exerted on bio-particles, and the settling velocity of bio-particles underwent significant change due to the growth of biofilm onto the sediment surface. The study proposes a characteristic particle size formula and a bio-particle settling velocity formula based on the regression of experiment results, that the settling velocity is only 50% to 60% as the single particle which has the same diameter and density. However, biofilm growth causes large particle which the settling velocities are approximately 10 times larger than that of primary particles. These results may be specifically used in the low energy reservoir or lake environment.  相似文献   

3.
The transport of fine-grained particles in estuarine and coastal waters is influenced by flocculation processes (aggregation and floc breakup). As a consequence, the particle size varies with time in the water column, and can be orders of magnitude larger than those of primary particles. In this study the variations in floc size is simulated using a size-resolved method, which approximates the real size distribution of particles by a range of size bins and solves a mass balance equation for each bin. To predict the size distribution both aggregation and breakup processes are included. The conventional rectilinear aggregation kernel is used which considers both turbulent shear and differential settling. The breakup kernel accounts for the fractal dimension of the flocs. A flocculation simulation is compared to the settling column lab experiments of Winterwerp [1998. A simple model for turbulence induced flocculation of cohesive sediment, Journal of Hydraulic Research, 36, 309–326], and a one-dimensional sediment transport model is verified with the observed variations in floc size and concentration over tidal cycles in a laboratory flume experiment of Bale et al. [2002. Direct observation of the formation and break-up of aggregates in an annular flume using laser reflectance particle sizing. In: Winterwerp, J.C., Kranenburg, C. (Eds.), Fine Sediment Dynamics in the Marine Environment. Elsevier, pp. 189–201]. The numerical simulations compare qualitatively and quantitatively well with the laboratory measurements, and the analysis of the two simulation results indicates that the median floc size can be correlated to the sediment concentration and Kolmogorov microscale. Sensitivity studies are conducted to explore the role of settling velocity and erosion rate. The results are not sensitive towards the formulation of settling velocity, but the parameterization of erosion flux is important. The studies show that for predicting the sediment deposition flux it is crucial to include flocculation processes.  相似文献   

4.
In this work a new expression has been developed to predict the settling velocity of a sediment particle which is dispersed in a sediment-fluid mixture during a turbulent flow. A concept of apparent particle diameter has been introduced and is defined by the diameter of the spherical volume in which the particle can move randomly after collision with other particles in suspension. The effect of suspension concentration is studied on the mass density of the sediment-fluid mixture. It has been shown that the settling velocity of sediment particle in a sediment-fluid mixture is a function of different characteristics of the sediment particle such as settling velocity in clear fluid, suspension concentration, relative mass density and Reynolds number. The model has shown good agreement when compared with previously published experimental data and it’s prediction accuracy is superior than the other existing models.  相似文献   

5.
Deposition and storage of fine‐grained (<62·5 μm) sediment in the hyporheic zone of gravel bed rivers frequently represents an important cause of aquatic habitat degradation. The particle size characteristics of such fine‐grained bed sediment (FGBS) exert an important control on its hydrodynamic properties and environmental impact. Traditionally, particle size analysis of FGBS in gravel bed rivers has focused on the absolute size distribution of the chemically dispersed mineral fraction. However, recent work has indicated that in common with fluvial suspended sediment, significant differences may exist between the absolute and the in situ, or effective, particle size composition of FGBS, as a result of the existence of aggregates, or composite particles. In the investigation reported in this paper, sealable bed traps that could be remotely opened to sample sediment deposited during specific storm runoff events and a laser back‐scatter probe were used to quantify the temporal and spatial variability of both the absolute and effective particle size composition of FGBS, and the associated suspended sediment from four gravel bed rivers in the Exe Basin, Devon, UK. The absolute particle size distributions of both the FGBS and suspended sediment evidenced c. >95%<62·5 μm sized primary particles and displayed a seasonal winter–summer fining, while the opposite trend was displayed by the effective particle size distribution of the FGBS and suspended sediment. The effective particle size distributions of both were typically highly aggregated, comprising up to 68%>62·5 μm sized particles. Spatial variation in the effective particle size and aggregation parameters was of secondary importance relative to temporal variation. The effective particle size distribution of the FGBS was consistently coarser and more aggregated than the associated suspended sediment and there was evidence of aggregate break‐up in samples of resuspended bed sediment. The implications of these findings for sediment transport modelling are considered. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
Fine‐grained (<62·5 µm) suspended sediment transport is a key component of the geochemical flux in most fluvial systems. The highly episodic nature of suspended sediment transport imposes a significant constraint on the design of sampling strategies aimed at characterizing the biogeochemical properties of such sediment. A simple sediment sampler, utilizing ambient flow to induce sedimentation by settling, is described. The sampler can be deployed unattended in small streams to collect time‐integrated suspended sediment samples. In laboratory tests involving chemically dispersed sediment, the sampler collected a maximum of 71% of the input sample mass. However, under natural conditions, the existence of composite particles or flocs can be expected to increase significantly the trapping efficiency. Field trials confirmed that the particle size composition and total carbon content of the sediment collected by the sampler were representative statistically of the ambient suspended sediment. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
Aggregation processes of fine sediments have rarely been integrated in numerical simulations of cohesive sediment transport in riverine systems. These processes, however, can significantly alter the hydrodynamic characteristics of suspended particulate matter (SPM), modifying the particle settling velocity, which is one of the most important parameters in modelling suspended sediment dynamics. The present paper presents data from field measurements and an approach to integrate particle aggregation in a hydrodynamic sediment transport model. The aggregation term used represents the interaction of multiple sediment classes (fractions) with corresponding multiple deposition behaviour. The k–ε–turbulence model was used to calculate the coefficient of vertical turbulent mixing needed for the two‐dimensional vertical‐plane simulations. The model has been applied to transport and deposition of tracer particles and natural SPM in a lake‐outlet lowland river (Spree River, Germany). The results of simulations were evaluated by comparison with field data obtained for two levels of river discharge. Experimental data for both discharge levels showed that under the prevailing uniform hydraulic conditions along the river reach, the settling velocity distribution did not change significantly downstream, whereas the amount of SPM declined. It was also shown that higher flow velocities (higher fluid shear) resulted in higher proportions of fast settling SPM fractions. We conclude that in accordance with the respective prevailing turbulence structures, typical aggregation mechanisms occur that continuously generate similar distribution patterns, including particles that settle toward the river bed and thus mainly contribute to the observed decline in the total SPM concentration. In order to determine time‐scales of aggregation and related mass fluxes between the settling velocity fractions, results of model simulations were fitted to experimental data for total SPM concentration and of settling velocity frequency distributions. The comparison with simulations for the case of non‐interacting fractions clearly demonstrated the practical significance of particle interaction for a more realistic modelling of cohesive sediment and contaminant transport. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
A model is developed for predicting the settling velocity in suspensions of particles of two different sizes based on experimental data for the settling rate of two-size suspensions in various liquids using particles of equal density. In these experiments, the retarding effect of the smaller particles on the settling velocities of the larger ones is taken into account. The model considers Steinour’s fundamental equation and assumes a fixed arrangement of particles and constant velocity in a single-size susp...  相似文献   

9.
I INTRODUCTIONThe settlement of particles in fluid has been studied in many fields such as hydraulics, metallurgy andchemistry since the middle of 19 century because of its great importance. Although the settlement ofsingle particle and group settling velocity of uniform particles in still water are relatively well-studied, yetthe settlement of non-uniform particles in flowing water lacks understanding. For instance, Cunningham(1910), Richardson (1954) and Batchelor (1972), have obtained…  相似文献   

10.
The settling potential of fine sediment is known to be influenced by particle size, shape, density and porosity, and is commonly predicted using Stokes's law, despite its known limitations for modelling the behaviour of natural particles. In order to develop an improved understanding of the potential for fine sediment to settle out of suspension or undergo transport by hydraulic processes, it is important to examine the role of particle structure in detail. In this study, stepwise regression was used to identify which structural properties of particles exert an important control on fine sediment behaviour in river systems. The presence of composite particles and their associated particle size, porosity and fractal dimension were shown to be the most important controls on settling potential. Composite particles that form in the aquatic environment (flocs) were shown to have significantly different form and behaviour from composite particles of terrestrial origin (aggregates). Importantly, it was demonstrated that particle structure and behaviour exhibited consistencies between contrasting river catchments in different locations. An understanding of the mechanisms responsible for the formation of composite particles is viewed as providing a valuable input to efforts to model the mobilisation, transport and fate of fine sediment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
In natural waters,exopolymers or extracellular polymeric substances(EPS) exuded by microorganisms interact with clay particles,resulting in the flocculation of clays and hence alteration to the properties of suspended cohesive sediments.To investigate and further understand how neutral EPS affect cohesive sediment transport and the final sediment yield,an experimental study was conducted on laboratory-prepared clay and guar gum(used as an analog for neutral EPS) suspensions to characterize EPS-induced flocculation and the settling velocity of resultant floes.Four different clays consisting of kaolinite,illite,Ca-montmorillonite,and Na-montmorillonite were studied to examine the influence of different layer charges on clay flocculation induced by neutral EPS.Floc size was determined by a laser particle size analyzer,and settling velocity estimated by analyzing the time-series floc settling images captured by an optical microscope.Results indicate that neutral EPS promote clay-EPS flocculation for all four clays with the particle/floc size significantly increased from~0.1-60μm to as large as~600μm.Clays’ layer charge has a profound influence on the clay-EPS flocculation.With the same floc size,the settling velocity of clay-EPS flocs is typically smaller than that of pure clay flocs,which is attributed to the reduced density of flocs caused by the EPS. However,for flocs of the same composition(e.g.pure clay or hybrid clay-EPS mixture),the settling velocity increases with size.The fractal dimension of these clay-EPS flocs estimated from settling velocity ranges from 1.39 to 1.47,which are smaller than that of pure clay flocs,indicating that these flocs are less compacted than the pure clay flocs.  相似文献   

12.
Determining sources, quantities and travel distances of eroding soil is of increasing importance given its impact on‐ and off‐site, the sediment‐associated transport of nutrients, metals and micro‐organisms and the ongoing need to provide data for soil erosion model development and validation. Many soil tracers have been developed; however, most comprise foreign materials, such as fluorescent beads and rare earth oxides, which cast doubts on the validity of tracing results given their different physical characteristics. To avoid these problems, we have investigated the potential of soil, which has been heated under reducing conditions to enhance its ferrimagnetic content, as a soil erosion tracer; while the technique has been used successfully to trace river sediment it has not been successfully applied to soil erosion studies. For a suite of 16 magnetic concentration‐dependent properties, values were found to be significantly greater, by at least one order of magnitude, after heating, both for the bulk soil and nine individual particle size fractions. Individual size fractions could be differentiated using two different magnetic properties, thus illustrating the technique's potential to provide information on particle size‐specific erosion. Soil box experiments demonstrated the potential for both in situ measurement of magnetic susceptibility and laboratory measurement of the magnetic properties of eroded sediment, to trace and quantify soil erosion. Thus, heated soil, with artificially‐enhanced ferrimagnetic properties, is successfully demonstrated to have great potential as a size‐specific, cost‐effective and representative soil erosion tracer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Stream–subsurface exchange strongly influences the transport of contaminants, fine particles, and other ecologically relevant substances in streams. We used a recirculating laboratory flume (220 cm long and 20 cm wide) to study the effects of particle size, overlying velocity, and biofilm formation on stream–subsurface exchange of particles. Sodium chloride was used as a non‐reactive dissolved tracer and 1‐ and 5‐µm fluorescent microspheres were used as particulate tracers. Surface–subsurface exchange was observed with a clean sand bed and a bed colonized by an autotrophic–heterotrophic biofilm under two different overlying velocities, 0·9 and 5 cm s?1. Hydrodynamic interactions between the overlying flow and sand bed resulted in a reduction of solute and particle concentrations in the water column, and a corresponding accumulation of particles in both the sediments and in the biofilm. Increasing overlying velocity and particle size resulted in faster removal from the overlying water due to enhanced mass transfer to the bed. The presence of the biofilm did not affect solute exchange under any flow condition tested. The presence of the biofilm significantly increased the deposition of particles under an overlying velocity of 5 cm s?1, and produced a small but statistically insignificant increase at 0·9 cm?1. The particles preferentially deposited within the biofilm matrix relative to the underlying sand. These results demonstrate that hydrodynamic transport conditions, particle size, and biofilm formation play a key role in the transport of suspended particles, such as inorganic sediments, particulate organic matter, and pathogenic microorganisms in freshwater ecosystems, and should be taken into consideration when predicting the fate and transport of particles and contaminants in the environment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The velocity of a wind‐blown sand cloud is important for studying its kinetic energy, related erosion, and control measures. PDA (particle dynamics analyser) measurement technology is used in a wind tunnel to study the probability distribution of particle velocity, variations with height of the mean velocity and particle turbulence in a sand cloud blowing over a sandy surface. The results suggest that the probability distribution of the particle velocity in a blowing sand cloud is stochastic. The probability distribution of the downwind velocity complies with a Gaussian function, while that of the vertical velocity is greatly complicated by grain impact with the bed and particle–particle collisions in the air. The probability distribution of the vertical velocity of ?ne particles (0·1–0·3 mm sands) can be expressed as a Lorentzian function while that of coarse particles (0·3–0·6 mm sands) cannot be expressed by a simple distribution function. The mean downwind velocity is generally one or two orders greater than the mean vertical velocity, but the particle turbulence in the vertical direction is at least two orders greater than that in the downwind direction. In general, the mean downwind velocity increases with height and free‐stream wind velocity, but decreases with grain size. The variation with height of the mean downwind velocity can be expressed by a power function. The particle turbulence of a blowing sand cloud in the downwind direction decreases with height. The variations with height of the mean velocity and particle turbulence in the vertical direction are very complex. It can be concluded that the velocity of a sand cloud blowing over a sandy surface is mainly in?uenced by wind velocity, grain impact with the bed and particle–particle collisions in the air. Wind velocity is the primary factor in?uencing the downwind velocity of a blowing sand cloud, while the grain impact with the bed and particle–particle collisions in the air are the primary factors responsible for the vertical velocity. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Sediment resuspension is an important way for shallow lake internal pollution to interact with the overlying water column,and the pollution risks are reasonably related to the retention of resuspended sediment particles in overlying water.In the current study,the settling of resuspended sediment particles was comprehensively investigated under different disturbances using five urban lake sediments.The results show that the particle size distributions of resuspended sediment from different lakes exhibited similar variations during settling with disturbance,although varied settling times were observed under static conditions.During settling with and without disturbance,sediment particle sizes were mainly within 8-63μm at the initial stage,and were<8μm in the later stages of settling.Based on these settling characteristics,the sediment particle size was divided into sand(>63μm),silt(8-63μm),and very fine silt and clay(<8μm)fractions.Kinetic analysis suggested that sediment settling for different particle sizes could be well described by the first-and second-order kinetic equations,especially when settling was disturbed(r2=0.727-0.999).The retention of resuspended sediment could be enhanced as particle sizes decreased and disturbance intensities increased.Furthermore,a water elutriation method was successfully optimized,with separation efficiencies of 56.1%-83%,to separate sediment particles into the defined three particle size fractions.The chemical compositions of sediment were found to change with different particle sizes.Typically,calcium tended to form large-size sediment,while the total contents of aluminum,iron,magnesium,and manganese showed significantly negative correlations with sediment particle sizes(p<0.01)and tended to distribute in small-size particles(e.g.,<8μm).Overall,the sediment particle size related settling dynamics and physicochemical properties suggested the necessity on determining the pollution of resuspended sediment at different particle sizes for restoration of shallow lakes.  相似文献   

16.
River system measurement and mapping using UAVs is both lean and agile, with the added advantage of increased safety for the surveying crew. A common parameter of fluvial geomorphological studies is the flow velocity, which is a major driver of sediment behavior. Advances in fluid mechanics now include metrics describing the presence and interaction of coherent structures within a flow field and along its boundaries. These metrics have proven to be useful in studying the complex turbulent flows but require time‐resolved flow field data, which is normally unavailable in geomorphological studies. Contactless UAV‐based velocity measurement provides a new source of velocity field data for measurements of extreme hydrological events at a safe distance, and could allow for measurements of inaccessible areas. Recent works have successfully applied large‐scale particle image velocimetry (LSPIV) using UAVs in rivers, focusing predominantly on surficial flow estimation by tracking intensity differences between georeferenced images. The objective of this work is to introduce a methodology for UAV based real‐time particle tracking in rivers (RAPTOR) in a case study along a short test reach of the Brigach River in the German Black Forest. This methodology allows for large‐scale particle tracking velocimetry (LSPTV) using a combination of floating, infrared light‐emitting particles and a programmable embedded color vision sensor in order to simultaneously detect and track the positions of objects. The main advantage of this approach is its ability to rapidly collect and process the position data, which can be done in real time. The disadvantages are that the method requires the use of specialized light‐emitting particles, which in some cases cannot be retrieved from the investigation area, and that the method returns velocity data in unscaled units of px/s. This work introduces the RAPTOR system with its hardware, data processing workflow, and provides an example of unscaled velocity field estimation using the proposed method. First experiences with the method show that the tracking rate of 50 Hz allows for position estimation with sub‐pixel accuracy, even considering UAV self‐motion. A comparison of the unscaled tracks after Savitzky–Golay filtering shows that although the time‐averaged velocities remain virtually the same, the filter reduces the standard deviation by more than 40% and the maxima by 20%. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
The main purpose of this study is to experimentally investigate the effect of temperature on the seepage transport of suspended particles (SP) with a median diameter of 10–47 μm in a porous medium for various seepage velocities. The results show that the rise of temperature accelerates the irregular movements of SPs in the porous medium and reduces their migration velocity. As a result, the pore volume corresponding to the peak value of the breakthrough curves is apparently delayed, and the peak value in the effluent is decreased. The migration velocity of SPs decreases with increasing particle size, regardless of the Darcy velocity and temperature. The longitudinal dispersivity of SPs decreases slightly with increasing temperature and then remains almost unchanged. Larger particles experience more irregular movements induced by the limit of pore size, which leads to a larger dispersivity. The deposition coefficient increases with increasing temperature, especially in the case of a high seepage velocity, and then tends to be stable. The deposition coefficient for large‐sized particles is higher than that for small‐sized particles, which can be attributed to the restriction of large‐sized particles by the narrow pores in the porous medium. The recovery rate decreases slightly with the increase of temperature until a critical value is reached, beyond which it remains almost unchanged. In summary, temperature is a significant factor affecting the transport and deposition of SPs in the porous medium, and the transport parameters such as particle velocity, dispersivity, and deposition coefficient.  相似文献   

18.
Unsteady motion of a vertically falling non-spherical particle has attracted considerable attention due to its frequent applications in nature and industry.A series of semi-analytical methods have been used to raise the results' accuracy as well as widening the region of convergence.The current study pursued a new analytical solution for the unsteady motion of a rigid non-spherical particle in a quiescent Newtonian fluid,based on the Optimal Homotopy Analysis Method.With a view towards obtaining the highest level of accuracy and ensuring the convergence of the analytical results,the averaged residual errors were obtained and minimized.In addition to flexibility,it was also proven that the proposed method can lead to completely reliable and precisely accurate results.Based on the series solution,the effects of physical parameters on the terminal settling velocity(i.e.the greatest velocity that a falling body may reach)and the acceleration time(i.e.the time that a particle reaches the settling velocity) are investigated.  相似文献   

19.
The results of a simple computational model for differential settling are presented illustrating the significant role that particle size distribution plays in collision frequency and sedimentation rate of particles in a quiescent environment. The model tracks a large number of particles(order 10~5) with log-normally distributed diameters,as they settle at their Stokes settling velocities.Particle collisions are detected and result in larger particles that fall more rapidly.A number of simplifying assumptions are made in the model in order to avoid empirical correlations for phenomena such as collision efficiency and particle shape.These simplifying assumptions were needed to isolate and quantify the role of the particle size distribution.Simulated concentration profiles indicate that,even in the absence of collisions, the standard deviation(σ_D) of the particle size strongly influences the bulk mass settling rate as,for largerσ_D, more mass is concentrated in larger,faster falling particles.The collision frequency is also a strong function ofσ_D. For a given mass concentration the collision frequency first increases linearly with increasingσ_D as greater variation in particle size leads to greater variation in particle velocity,and shorter times for particles to catch each other.For largerσ_D more mass is concentrated in larger particles,so,for a given mass concentration,there are fewer particles per unit volume,increasing the mean distance between the particles and reducing the collision frequency.The implications of these results for sedimentation measurement using optical attenuation techniques are discussed.  相似文献   

20.
Fluvial suspended sediment typically consists of a variety of complex, composite particles referred to as flocs. Floc characteristics are determined by factors such as the source, size and geochemical properties of the primary particles, chemical and biological coagulation processes in the water column and shear stress and turbulence levels in the stream. Studies of floc morphology have used two contrasting methods of sampling and analysis. In the first method, particles settle on a microscope slide and are observed from below using an inverted microscope. The second method uses filtration at no or low vacuum and particles deposited on the filter are observed with a microscope. Floc morphology can be quantified using fractal dimensions. The aims of the present study were to examine the effect of the two sampling methods on the fractal dimensions of particle populations, and to evaluate for each method how well the fractal dimensions at the various sampling sites reflect basin conditions. Suspended solids were collected in triplicate on inverted microscope slides and on 0·45 μm Millipore HA filters in two southern Ontario streams with contrasting riparian zones during a minor runoff event resulting from the melt of a freshly fallen snowpack. An image analysis system was used to determine area, longest axis and perimeter of particles. The morphology of the particle population of each sample was characterized using four fractal dimensions (D, D1, D2 and DK). Systematic differences in fractal dimensions obtained with the two methods were observed. For the settling method, outlines of larger particles were frequently blurred because of the distance between the focal plane (the top of the inverted microscope slides) and the plane of the particle outline. In this method, the blurring of large particles can cause an increase in the projected area and length of the particle. The effect on the particle perimeter is unpredictable because it depends on the amount of detail lost through blurring and its effect on the apparent increase in particle size. Because of blurring, D and D1 tend to be systematically lower for the settling method, whereas the net effect on D2 is unpredictable. Particle size distributions derived from settling are typically coarser because small, low density particles may remain in the water column and all particles may not deposit on the slides. This loss of fines results in systematically lower DK values for the settling method compared with the filtration method. Fractal dimensions and particle size distributions obtained with the filtration method were sensitive to and clearly indicated differences between drainage basins and between sites within each basin. These differences were explained by basin characteristics and conditions. Fractal dimensions and particle size distributions obtained with the settling method were less sensitive to drainage basin characteristics and conditions, which limits their usefulness as process indicators. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号