共查询到6条相似文献,搜索用时 0 毫秒
1.
This paper develops and tests a sub‐grid‐scale wetting and drying correction for use with two‐dimensional diffusion‐wave models of urban flood inundation. The method recognizes explicitly that representations of sub‐grid‐scale topography using roughness parameters will provide an inadequate representation of the effects of structural elements on the floodplain (e.g. buildings, walls), as such elements not only act as momentum sinks, but also have mass blockage effects. The latter may dominate, especially in structurally complex urban areas. The approach developed uses high‐resolution topographic data to develop explicit parameterization of sub‐grid‐scale topographic variability to represent both the volume of a grid cell that can be occupied by the flow and the effect of that variability upon the timing and direction of the lateral fluxes. This approach is found to give significantly better prediction of fluvial flood inundation in urban areas than traditional calibration of sub‐grid‐scale effects using Manning's n. In particular, it simultaneously reduces the need to use exceptionally high values of n to represent the effects of using a coarser mesh process representation and increases the sensitivity of model predictions to variation in n. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
2.
A much understudied aspect of flood inundation is examined, i.e. upland environments with topographically complex floodplains. Although the presence of high‐resolution topographic data (e.g. lidar) has improved the quality of river flood inundation predictions, the optimum dimensionality of hydraulic models for this purpose has yet to be fully evaluated for situations of both topographic and topological (i.e. the connectivity of floodplain features) complexity. In this paper, we present the comparison of three treatments of upland flood inundation using: (a) a one‐dimensional (1D) model (HEC‐RAS v. 3·1·2) with the domain defined as series of extended cross‐sections; (b) the same 1D model, but with the floodplain defined by a series of storage cells, hydraulically connected to the main river channel and other storage cells on the floodplain according to floodplain topological characteristics; (c) a two‐dimensional (2D) diffusion wave treatment, again with explicit representation of floodplain structural features. The necessary topographic and topological data were derived using lidar and Ordnance Survey Landline data. The three models were tested on a 6 km upland reach of the River Wharfe, UK. The models were assessed by comparison with measured inundation extent. The results showed that both the extended cross‐section and the storage cell 1D modes were conceptually problematic. They also resulted in poorer model predictions, requiring incorrect parameterization of the main river to floodplain flux in order to approach anything like the level of agreement observed when the 2D diffusion wave treatment was assessed. We conclude that a coupled 1D–2D treatment is likely to provide the best modelling approach, with currently available technology, for complex floodplain configurations. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
3.
Numerical modelling of flood inundation over large and complex floodplains often requires mesh resolutions coarser than the structural features (e.g. buildings) that are known to influence the inundation process. Recent research has shown that this mismatch is not well represented by conventional roughness treatments, but that finer‐scale features can be represented through porosity‐based subgrid‐scale treatments. This paper develops this work by testing the interactions between feature representation, subgrid‐scale resolution and mesh resolution. It uses as the basis for this testing a 2D diffusion‐based flood inundation model which is applied to a 2004 flood event in a topologically complex upland floodplain in northern England. This study formulated simulations with different grid mesh resolution and subgrid mesh ratio. The sensitivity of the model to mesh resolution and roughness specification was investigated. Model validation and verification suggest that the subgrid treatment with higher subgrid mesh ratio can give much improved predictions of flood propagation, in particular, in terms of the predicted water depth. This study also highlighted the limitation of using at‐a‐point in time inundation extent for validation of flood models of this type. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
4.
Zhenjiao Jiang Gregoire Mariethoz Matthias Raiber Wendy Timms Malcolm Cox 《水文研究》2016,30(10):1624-1636
The heterogeneous hydraulic conductivity (K) in water‐bearing formations controls subsurface flow and solute transport processes. Geostatistical techniques are often employed to characterize the K distribution in space based on the correlation between K measurements. However, at the basin scale, there are often insufficient measurements for inferring the spatial correlation. This is a widespread problem that we address in this study using the example of the Betts Creek Beds (BCB) in the Galilee Basin, Australia. To address the lack of data, we use a 1D stochastic fluvial process‐based model (SFPM) to quantify the total sediment thickness, Z( x ), and the sandstone proportion over the total thickness, Ps( x ), in the BCB. The semivariograms of Z( x ) and Ps( x ) are then extracted and used in sequential Gaussian simulation to construct the 2D spatial distribution of Z( x ) and Ps( x ). Ps( x ) can be converted to a K distribution based on classical averaging methods. The results demonstrate that the combination of SFPM and geostatistical simulation allows for the evaluation of upscaled K distribution with a limited number of K measurements. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
5.
A three‐dimensional numerical modelling system is developed to study transformation processes of water resources in alluvial fan and river basin along the middle reaches of the Heihe River Basin, Northwest China, an arid and semi‐arid region. Integrating land utilization, remote sensing and geographic information systems, we have developed a numerical modelling system that can be used to quantify the effects of land use and anthropogenic activities on the groundwater system as well as to investigate the interaction between surface water and groundwater. Various hydraulic measurements are used to identify and calibrate the hydraulic boundary conditions and spatial distributions of hydraulic parameters. In the modelling study, various water exchanges and human effects on the watershed system are considered. These include water exchange between surface water and groundwater, groundwater pumping, lateral water recharges from mountain areas, land utilization, and infiltration and evaporation in the irrigation and non‐irrigation areas. The modelling system provides a quantitative method to describe spatial and temporal distributions and transformations between various water resources, and it has application to other watersheds in arid and semi‐arid areas. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
6.
Mohammad M. Sohrabi Daniele Tonina Rohan Benjankar Mukesh Kumar Patrick Kormos Danny Marks Charlie Luce 《水文研究》2019,33(8):1260-1275
Hydrological processes in mountainous settings depend on snow distribution, whose prediction accuracy is a function of model spatial scale. Although model accuracy is expected to improve with finer spatial resolution, an increase in resolution comes with modelling costs related to increased computational time and greater input data and parameter information. This computational and data collection expense is still a limiting factor for many large watersheds. Thus, this work's main objective is to question which physical processes lead to loss in model accuracy with regard to input spatial resolution under different climatic conditions and elevation ranges. To address this objective, a spatially distributed snow model, iSnobal, was run with inputs distributed at 50‐m—our benchmark for comparison—and 100‐m resolutions and with aggregated (averaged from the fine to the large resolution) inputs from the 50‐m model to 100‐, 250‐, 500‐, and 750‐m resolution for wet, average, and dry years over the Upper Boise River Basin (6,963 km2), which spans four elevation bands: rain dominated, rain–snow transition, and snow dominated below treeline and above treeline. Residuals, defined as differences between values quantified with high resolution (>50 m) models minus the benchmark model (50 m), of simulated snow‐covered area (SCA) and snow water equivalent (SWE) were generally slight in the aggregated scenarios. This was due to transferring the effects of topography on meteorological variables from the 50‐m model to the coarser scales through aggregation. Residuals in SCA and SWE in the distributed 100‐m simulation were greater than those of the aggregated 750 m. Topographic features such as slope and aspect were simplified, and their gradient was reduced due to coarsening the topography from the 50‐ to 100‐m resolution. Therefore, solar radiation was overestimated, and snow drifting was modified and caused substantial SCA and SWE underestimation in the distributed 100‐m model relative to the 50‐m model. Large residuals were observed in the wet year and at the highest elevation band when and where snow mass was large. These results support that model accuracy is substantially reduced with model scales coarser than 50 m. 相似文献