首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Characteristics of wind and waves are computed using the data of instrumental observations on the moored buoys in the northeastern part of the North Atlantic during the cold periods (November–March) of 2009–2013. Their comparison is carried out for different phases of the North Atlantic and East Atlantic oscillations and for the combinations of these phases.  相似文献   

2.
The wind power generated during winter months 1999–2003 at several wind farms in the northeastern Iberian Peninsula is investigated through the application of a statistical downscaling. This allows for an improved understanding of the wind power variability and its relationship to the large scale atmospheric circulation. It is found that 97 % of the variability of this non-climatic variable is connected to changes in the atmospheric circulation. The methodological uncertainty associated with multiple configurations of the statistical downscaling method replicates well the observed variability of the wind power, an indication of the robustness of the methodology to changes in the model set up. In addition, the use of the statistical model is extended out of the observational period providing an estimation of the long-term variability of wind power throughout the twentieth century. The extended wind power reconstruction shows large inter-annual and multidecadal variability. Alternative approaches to calibrate the empirical downscaling model using actual wind power observations have also been investigated. They involve the estimation of wind power changes from downscaled wind values and make use of several transfer functions based on the linearity between wind and wind energy. The performance of the latter approaches is similar to the direct downscaling of wind power and may allow wind power production estimations even in the absence of historical wind turbine records. These results can be of great interest for deriving medium/long term impact-oriented energy assessments, especially when wind power observations are missing as well as in the context of climate change scenarios.  相似文献   

3.
The variability and predictability of the surface wind field at the regional scale is explored over a complex terrain region in the northeastern Iberian Peninsula by means of a downscaling technique based on Canonical Correlation Analysis. More than a decade of observations (1992–2005) allows for calibrating and validating a statistical method that elicits the main associations between the large scale atmospheric circulation over the North Atlantic and Mediterranean areas and the regional wind field. In an initial step the downscaling model is designed by selecting parameter values from practise. To a large extent, the variability of the wind at monthly timescales is found to be governed by the large scale circulation modulated by the particular orographic features of the area. The sensitivity of the downscaling methodology to the selection of the model parameter values is explored, in a second step, by performing a systematic sampling of the parameters space, avoiding a heuristic selection. This provides a metric for the uncertainty associated with the various possible model configurations. The uncertainties associated with the model configuration are considerably dependent on the spatial variability of the wind. While the sampling of the parameters space in the model set up moderately impact estimations during the calibration period, the regional wind variability is very sensitive to the parameters selection at longer timescales. This fact illustrates that downscaling exercises based on a single configuration of parameters should be interpreted with extreme caution. The downscaling model is used to extend the estimations several centuries to the past using long datasets of sea level pressure, thereby illustrating the large temporal variability of the regional wind field from interannual to multicentennial timescales. The analysis does not evidence long term trends throughout the twentieth century, however anomalous episodes of high/low wind speeds are identified.  相似文献   

4.
5.
Analyzed are the reasons of extreme waves with the height of more than 14 m formed in the North Atlantic in 2002–2011 and the evolution of atmospheric processes causing the extreme waves. It is revealed that the extreme waves in the North Atlantic during that period were mainly (in 81% of cases) formed under the influence of “explosive” cyclones. The height of waves in these cyclones can reach 20 m and more.  相似文献   

6.
East Atlantic oscillation of the atmospheric circulation   总被引:1,自引:0,他引:1  
For the period 1950–2007, the comparison is made between the indices of the East Atlantic and North Atlantic oscillations and between the features of the atmospheric circulation and temperature regime of the Atlantic-European region connected with various combinations of indices. The analysis is made for the factors which have caused long difference in indices in 1996–2007 and for possible causes of anomalously warm winter in Europe in 2006–2007.  相似文献   

7.
Correlation of water temperature and latent heat fluxes in winter in the North Atlantic with the atmospheric circulation in the subsequent months are analyzed based on the NCEP/NCAR reanalysis data. Monthly and daily indices of the North Atlantic Oscillation are used as characteristics of the atmosphere circulation. It is shown that conditions of the heat exchange between ocean and atmosphere in the western North Atlantic in February can influence the atmospheric circulation and air temperature in Europe in March.  相似文献   

8.
基于美国大气研究中心的CCSM3(Community Climate System Model version3)模式,对淡水扰动试验中不同热盐环流(thermohline circulation,THC)平均强度下,北大西洋气候响应的差异进行研究。结果表明:1)在不同平均强度下,北大西洋海洋、大气要素的气候态差异显著。相对于高平均强度,在低平均强度下,北大西洋地区海表温度(sea surface temperature,SST)、海表盐度(sea surface salinity,SSS)、海表密度(sea surface density,SSD)、表面气温(surface air temperature)异常减弱,最大负异常位于GIN(Greenland sea--Iceland sea--Norwegiansea)海域;海平面气压(sealev—elpressure,SLP)异常升高,相应于北大西洋海域降温,表现为异常冷性高压的响应特征;海冰分布区域向南扩大;北大西洋西部热带海域降水减少,导致热带辐合带(intertropical convergence zone,ITCZ)南移。2)在不同THC平均强度下,SST、SSS和SSD年际异常最显著的区域不同;在高平均强度下,最显著区域位于GIN海域,而在低平均强度下则位于拉布拉多海海域。3)在高平均强度下,北大西洋SST主导变率模态的变率极大区域位于GIN海,而在低平均强度下该极大区域不存在;北大西洋SLP的主导变率模态表现为类NAO型,但在高平均强度下,类NAO型表现得更明显。  相似文献   

9.
In studies of large-scale ocean dynamics, often quoted values of Sverdrup transport are computed using the Hellerman–Rosenstein wind stress climatology. The Sverdrup solution varies, however, depending on the wind set used. We examine the differences in the large-scale upper ocean response to different surface momentum forcing fields for the North Atlantic Ocean by comparing the different Sverdrup interior/Munk western boundary layer solutions produced by a 1/16° linear numerical ocean model forced by 11 different wind stress climatologies. Significant differences in the results underscore the importance of careful selection of a wind set for Sverdrup transport calculation and for driving nonlinear models. This high-resolution modeling approach to solving the linear wind-driven ocean circulation problem is a convenient way to discern details of the Sverdrup flow and Munk western boundary layers in areas of complicated geometry such as the Caribbean and Bahamas. In addition, the linear solutions from a large number of wind sets provide a well-understood baseline oceanic response to wind stress forcing and thus, (1) insight into the dynamics of observed circulation features, by themselves and in conjunction with nonlinear models, and (2) insight into nonlinear model sensitivity to the choice of wind-forcing product.The wind stress products are evaluated and insight into the linear dynamics of specific ocean features is obtained by examining wind stress curl patterns in relation to the corresponding high-resolution linear solutions in conjunction with observational knowledge of the ocean circulation. In the Sverdrup/Munk solutions, the Gulf Stream pathway consists of two branches. One separates from the coast at the observed separation point, but penetrates due east in an unrealistic manner. The other, which overshoots the separation point at Cape Hatteras and continues to flow northward along the continental boundary, is required to balance the Sverdrup interior transport. A similar depiction of the Gulf Stream is commonly seen in the mean flow of nonlinear, eddy-resolving basin-scale models of the North Atlantic Ocean. An O(1) change from linear dynamics is required for realistic simulation of the Gulf Stream pathway. Nine of the eleven Sverdrup solutions have a C-shaped subtropical gyre, similar to what is seen in dynamic height contours derived from observations. Three mechanisms are identified that can contribute to this pattern in the Sverdrup transport contours. Along 27°N, several wind sets drive realistic total western boundary current transport (within 10% of observed) when a 14 Sv global thermohaline contribution is added (COADS, ECMWF 10 m re-analysis and operational, Hellerman–Rosenstein and National Centers for Environmental Prediction (NCEP) surface stress re-analysis), a few drive transport that is substantially too high (ECMWF 1000 mb re-analysis and operational and Isemer–Hasse) and Fleet Numerical Meteorology and Oceanography Center (FNMOC) surface stresses give linear transport that is slightly weaker than observed. However, higher order dynamics are required to explain the partitioning of this transport between the Florida Straits and just east of the Bahamas (minimal in the linear solutions vs. 5 Sv observed east of the Bahamas). Part of the Azores Current transport is explained by Sverdrup dynamics. So are the basic path of the North Atlantic Current (NAC) and the circulation features within the Intra-Americas Sea (IAS), when a linear rendition of the northward upper ocean return flow of the global thermohaline circulation is added in the form of a Munk western boundary layer.  相似文献   

10.
The spatial and temporal distributions of marine cold air outbreaks (MCAOs) over the northern North Atlantic have been investigated using re-analysis data for the period from 1958 to 2007. MCAOs are large-scale outbreaks of cold air over a relatively warm ocean surface. Such conditions are known to increase the severity of particular types of hazardous mesoscale weather phenomena. We used a simple index for identifying MCAOs: the vertical potential temperature gradient between the sea surface and 700 hPa. It was found that atmospheric temperature variability is considerably more important than the sea surface temperature variability in governing both the seasonal and the inter-annual variability of MCAOs. Furthermore, a composite analysis revealed that a few well-defined and robust synoptic patterns are evident during MCAOs in winter. Over the Labrador and Irminger Seas the MCAO index was found to have a correlation of 0.70 with the North Atlantic Oscillation index, while over the Barents Sea a negative correlation of 0.42 was found.  相似文献   

11.

We study the impact of horizontal resolution in setting the North Atlantic gyre circulation and representing the ocean–atmosphere interactions that modulate the low-frequency variability in the region. Simulations from five state-of-the-art climate models performed at standard and high-resolution as part of the High-Resolution Model Inter-comparison Project (HighResMIP) were analysed. In some models, the resolution is enhanced in the atmospheric and oceanic components whereas, in some other models, the resolution is increased only in the atmosphere. Enhancing the horizontal resolution from non-eddy to eddy-permitting ocean produces stronger barotropic mass transports inside the subpolar and subtropical gyres. The first mode of inter-annual variability is associated with the North Atlantic Oscillation (NAO) in all the cases. The rapid ocean response to it consists of a shift in the position of the inter-gyre zone and it is better captured by the non-eddy models. The delayed ocean response consists of an intensification of the subpolar gyre (SPG) after around 3 years of a positive phase of NAO and it is better represented by the eddy-permitting oceans. A lagged relationship between the intensity of the SPG and the Atlantic Meridional Overturning Circulation (AMOC) is stronger in the cases of the non-eddy ocean. Then, the SPG is more tightly coupled to the AMOC in low-resolution models.

  相似文献   

12.
North Atlantic decadal regimes in a coupled GCM simulation   总被引:7,自引:0,他引:7  
 The non-stationarity of the North Atlantic atmosphere-ocean coupling is investigated utilizing a long time integration of a coupled atmosphere-ocean general circulation model (GCM) and a consistent atmospheric experiment forced by the climatological sea surface temperature (SST) of the coupled GCM. The temporal behavior of the North Atlantic Oscillation (NAO) is non-stationary with two different decadal regimes being identified: (a) phases with enhanced (active) low-frequency variability of the NAO index are characterized by regional modes with a baroclinic Pacific-North America (PNA) and a dominant barotropic North Atlantic pattern; (b) in phases with reduced (passive) low-frequency variability a global mode connects tropics and midlatitudes. The characteristic space scales are similar in the coupled and the consistent atmospheric experiment; the time scales of the atmospheric eigenmodes are modified by ocean dynamics. In the active (passive) phase the corresponding atmospheric mode is reinforced by the North Atlantic (tropical Pacific) SST. Received: 15 September 2000 / Accepted: 30 March 2001  相似文献   

13.
Carried out is the comparative analysis of the cyclone activity for different combinations of positive and negative values of the North Atlantic Oscillation (NAO) and East Atlantic Oscillation (EA) indices. The integral characteristics of the cyclone activity (density and intensity of cyclones) are computed on the basis of the method of automatic indication of cyclone centers from the sea-level pressure data. It is demonstrated that the NAO index is really the major indicator of cyclone activity anomaly formation in the North Atlantic, however, the variations of cyclone activity in the European region, of the number of cyclones and their integral intensity are better characterized by the EA index.  相似文献   

14.
Interannual to multidecadal modes in ocean/atmosphere dynamics in the North Atlantic region have been identified using sea salt aerosol proxy records from northern Greenland ice cores over the last 1,000 years. Sea salt concentrations show a consistent relationship with anomalies in the meridional pressure gradient over the North Atlantic region over all considered time scales. These pressure anomalies are connected to shifts in storm tracks, leading to lower pressure and higher storm activity, hence, higher sea salt export over the Greenland ice sheet. Two modes of long-term variability with a period of 10.4 years and 62 years could be identified. The latter is connected to long-term changes in sea surface temperature (SST) as documented by a high correlation of North Atlantic SST with our sea salt record over the last 150 years. Long-term reconstruction of these modes shows that the 10.4-year cycle has been a phenomenon persistent over the last millennium while the 62-year cycle has been mainly active after 1700. Accordingly, the longer-term persistence of this multidecadal variability in sea salt points also to significant variations in SST over the last 300 years.  相似文献   

15.
Seawater property changes in the North Atlantic Ocean affect the Atlantic meridional overturning circulation (AMOC), which transports warm water northward from the upper ocean and contributes to the temperate climate of Europe, as well as influences climate globally. Previous observational studies have focused on salinity and freshwater variability in the sinking region of the North Atlantic, since it is believed that a freshening North Atlantic basin can slow down or halt the flow of the AMOC. Here we use available data to show the importance of how density patterns over the upper ocean of the North Atlantic affect the strength of the AMOC. For the long-term trend, the upper ocean of the subpolar North Atlantic is becoming cooler and fresher, whereas the subtropical North Atlantic is becoming warmer and saltier. On a multidecadal timescale, the upper ocean of the North Atlantic has generally been warmer and saltier since 1995. The heat and salt content in the subpolar North Atlantic lags that in the subtropical North Atlantic by about 8–9 years, suggesting a lower latitude origin for the temperature and salinity anomalies. Because of the opposite effects of temperature and salinity on density for both long-term trend and multidecadal timescales, these variations do not result in a density reduction in the subpolar North Atlantic for slowing down the AMOC. Indeed, the variations in the meridional density gradient between the subpolar and subtropical North Atlantic Ocean suggest that the AMOC has become stronger over the past five decades. These observed results are supported by and consistent with some oceanic reanalysis products.  相似文献   

16.
17.
In order to investigate whether climate models of different complexity have the potential to simulate natural atmospheric circulation regimes, 1000-year-long integrations with constant external forcing have been analysed. Significant non-Gaussian uni-, bi-, and trimodal probability density functions have been found in 100-year segments.  相似文献   

18.
 The stability of the Atlantic thermohaline circulation against meltwater input is investigated in a coupled ocean-atmosphere general circulation model. The meltwater input to the Labrador Sea is increased linearly for 250 years to a maximum input of 0.625 Sv and then reduced again to 0 (both instantaneously and linearly decreasing over 250 years). The resulting freshening forces a shutdown of the formation of North Atlantic deepwater and a subsequent reversal of the thermohaline circulation of the Atlantic, filling the deep Atlantic with Antarctic bottom water. The change in the overturning pattern causes a drastic reduction of the Atlantic northward heat transport, resulting in a strong cooling with maximum amplitude over the northern North Atlantic and a southward shift of the sea-ice margin in the Atlantic. Due to the increased meridional temperature gradient, the intertropical convergence zone over the Atlantic is displaced southward and the westerlies in the Northern Hemisphere gain strength. We identify four main feedbacks affecting the stability of the thermohaline circulation: the change in the overturning circulation of the Atlantic leads to longer residence times of the surface water in high-northern latitudes, which allows them to accumulate more precipitation and runoff from the continents. As a consequence the stratification in the North Atlantic becomes more stable. This effect is further amplified by an enhanced northward atmospheric water vapour transport, which increases the freshwater input into the North Atlantic. The reduced northward oceanic heat transport leads to colder sea-surface temperatures and an intensification of the atmospheric cyclonic circulation over the Norwegian Sea. The associated Ekman transports cause increased upwelling and increased freshwater export with the East Greenland Current. Both the cooling and the wind-driven circulation changes largely compensate for the effects of the first two feedbacks. The wind-stress feedback destabilizes modes without deep water formation in the North Atlantic, but has been neglected in almost all studies so far. After the meltwater input stops, the North Atlantic deepwater formation resumed in all experiments and the meridional overturning returned within 200 years to a conveyor belt pattern. This happened although the formation of North Atlantic deep water was suppressed in one experiment for more than 300 years and the Atlantic overturning had settled into a circulation pattern with Antarctic bottom water as the only source of deep water. It is a clear indication that cooling and wind-stress feedback are more effective, at least in our model, than advection feedback and increased atmospheric water vapour transport. We conclude that the conveyor belt-type thermohaline circulation seems to be much more stable than hitherto assumed from experiments with simpler models. Received 31 January 1996/Accepted 22 August 1996  相似文献   

19.
A set of atmospheric general circulation model experiments were performed where the Community Atmospheric Model version 3.1 is forced with sea-surface temperatures (SSTs) that have the imprint of tropical instability waves (TIWs) of varying strengths. The presence of TIWs in the SSTs increased the variance in the large-scale circulation in the atmospheric boundary layer (ABL). The impact of TIWs in the SST anomalies is directly seen in enhanced mixing of the air temperature anomalies, thereby diffusing the air temperature gradients setup by the oceanic fronts throughout the ABL. The presence of TIWs transformed the diffusive-natured ABL to advection-dominated regime. This implies that within the ABL, the presence of TIWs leads to the enhanced interactions among the neighboring grid cells and prompts greater horizontal communications among atmospheric variables. However, the advection in the ABL due to the TIWs is not a linear function of increasing TIW strength. Unlike air temperature, zonal, and vertical velocity, the variance in the meridional velocity changes at the top of the ABL due to the momentum mixing across the ABL in the vertical direction. This causes the ABL to be more turbulent beyond seasonal time scales. This analysis also suggests that a simple parameterization is not sufficient to take the account of rectification effects on the atmospheric variables that are missing due to the lack of TIW representation in the coarse-resolution coupled general circulation models.  相似文献   

20.
The present paper selects the northern winter of December 1995–February 1996 for a case study on the impact of sea surface temperature (SST) anomalies on the atmospheric circulation over the North Atlantic and Western Europe. In the Atlantic, the selected winter was characterized by positive SST anomalies over the northern subtropics and east of Newfoundland, and negative anomalies along the US coast. A weak La Niña event developed in the Pacific. The North Atlantic Oscillation (NAO) index was low, precipitation over the Iberian Peninsula and northern Africa was anomalously high, and precipitation over northern Europe was anomalously low. The method of study consists of assessing the sensitivity of ensemble simulations by the UCLA atmospheric general circulation model (UCLA AGCM) to SST anomalies from the observation, which are prescribed either in the World Oceans, the Atlantic Ocean only, or the subtropical North Atlantic only. The results obtained are compared with a control run that uses global, time-varying climatological SST. The ensemble simulations with global and Atlantic-only SST anomalies both produce results that resemble the observations over the North Atlantic and Western Europe. It is suggested that the anomalous behavior of the atmosphere in the selected winter over those regions, therefore, was primarily determined by conditions within the Atlantic basin. The simulated fields in the tropical North Atlantic show anomalous upward motion and lower (upper) level convergence (divergence) in the atmosphere overlying the positive SST anomalies. Consistently, the subtropical jet intensifies and its core moves equatorward, and precipitation increases over northern Africa and southern Europe. The results also suggest that the SST anomalies in the tropical North Atlantic only do not suffice to produce the atmospheric anomalies observed in the basin during the selected winter. The extratropical SST anomalies would provide a key contribution through increased transient eddy activity, which causes an extension of the subtropical jet eastward from the coast of North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号