首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Cosmic ray (CR) fluxes, which penetrate into the Earth??s magnetosphere and atmosphere from the interplanetary space, are an important factor of space weather. The geomagnetic field allows or forbids CR particles to enter into a given point in the magnetosphere depending on their energy. The geomagnetic cutoff rigidity regulates the distribution of CR fluxes in the magnetosphere. The geomagnetic cutoff rigidity (geomagnetic threshold) determination accuracy is closely related to the accuracy of the magnetospheric model used in calculations. Using a method for tracing of charged CR particle trajectories in the magnetic field of a model magnetosphere, we obtained geomagnetic thresholds for two magnetosphere empirical models (Ts01 and Ts04), constructed based on the same initial database. The Ts01 model describes the middle magnetosphere for certain conditions in the solar wind and interplanetary field. The Ts04 model pays the main attention to describing the large-scale evolution of magnetospheric currents during a storm. The theoretically obtained geomagnetic thresholds have been compared with experimental thresholds, calculated using the spectrographic global survey method based on data from the global network of CR stations. The study has been performed for the period of a strong geomagnetic storm that occurred in November 2003.  相似文献   

2.
The substorm characteristics during the main phase of a large magnetic storm of November 20, 2003, are studied based on the data of TV observations of auroras and auroral absorption at Tixie Bay station and at the global network of magnetic stations. The contribution of auroral particles, responsible for the emission of discrete auroras, has been estimated based on an analysis of the spatial-time variations in the auroral luminosity intensity. This contribution accounted for ~40% of the total luminous flux, which is approximately twice as large as was previously observed in substorm disturbances. Responses of the solar wind and IMF parameters in substorms and variations in the magnetic indices, characterizing geomagnetic activity in the northern polar cap and ring current (PCN, ASY-H and SYM-H), have been detected. The spatial-time distribution of the equivalent ionospheric currents has been constructed, and the total value of these currents along the meridian has been determined based on the [Popov et al., 2001] method and using the IMAGE magnetic data. It has been obtained that the maximal total equivalent ionospheric current in the premidnight sector (~2000 MLT) leads the minimal value of the SYM-H index by ~1.5 h.  相似文献   

3.
The structure, configuration, dynamics, and solar sources of the near-Earth MHD disturbance of the solar wind on November 20, 2003, is considered. The disturbances of October 24 and November 22 after flares from the same AR 10484 (10501) are compared. The velocity field in the leading part of the sporadic disturbance is for the first time studied in the coordinate system stationary relative to the bow shock. A possible scenario of the physical processes in the course of this solar-terrestrial storm is discussed in comparison with the previously developed scenario for the storm of July 15, 2000. It has been indicated that (1) the near-Earth disturbance was observed at the sector boundary (HCS) and in its vicinities and (2) the disturbance MHD structure included: the complicated bow shock, wide boundary layer with reconnecting fields at a transition from the shock to the magnetic cloud, magnetic cloud with a magnetic cavity including packed substance of an active filament, and return shock layer (supposedly). It has been found out that the shock front configuration and the velocity field are reproduced at an identical position of AR and HCS relative to the Earth on November 20 and 24. It has been indicated that the maximal magnetic induction in the cloud satisfied the condition B m = (8πn 1 m p)1/2(D ? NV1), i.e., depended on the dynamic impact on the cloud during all three storms [Ivanov et al., 1974]. When the disturbance was related to solar sources, the attention has been paid to the parallelism of the axes of symmetry of the active filament, transient coronal hole, coronal mass ejection, zero line of the open coronal field (HCS), and the axis of the near-Earth magnetic cloud: the regularity previously established in the scenario of the storm of July 15, 2000 [Ivanov et al., 2005]. It has been indicated that the extremely large B m value in the cloud of October 20 was caused by a strong suppression of the series of postflare shocks reflected from the heliospheric streamer.  相似文献   

4.
This paper is a continuation of (Nikolaeva et al., 2011, 2012) and it analyzes the development of the main phase of 190 magnetic storms with Dst ≤ −50 nT depending on the type of source in the solar wind (magnetic clouds, MC; corotating interaction regions, CIR; Ejecta; Sheath before them, ShE; Sheath before MC, ShMC; all Sheath regions before ICME, ShE + ShMC; all ICME, MC + Ejecta; and an indeterminate type of solar wind stream, IND).  相似文献   

5.
The paper analyses the development of the main phase of magnetic storms with Dst ≤ −50 nT, the interplanetary source of which consists of eight types of solar wind streams: magnetic clouds (MC, 17 storms); corotating interaction regions (CIR, 49 storms); Ejecta (50 storms); compressed region (Sheath) before Ejecta ShE (34 storms); the Sheath before a magnetic cloud ShMC (6 storms); all Sheath before all ICME, ShE + ShMC (40 storms); all ICME, MC + Ejecta (67 storms); and an indeterminate type of stream IND (34 storms).  相似文献   

6.
对比分析1957--2008年间Dst≤-100nT的强磁暴数与太阳黑子数的变化趋势,发现太阳黑子数和Dst≤-100nT的强磁暴数的变化趋势有很好的一致性。进一步统计强磁暴在太阳周不同阶段的分布后发现,同一太阳周内60%以上的强磁暴出现在下降年,但从太阳周各个阶段的平均磁暴年发生率来看,强磁暴平均年发生率最高的年份仍然是太阳活动极大年。  相似文献   

7.
The dependence of the maximal values of the |Dst| and AE geomagnetic indices observed during magnetic storms on the value of the interplanetary electric field (E y ) was studied based on the catalog of the large-scale solar wind types created using the OMNI database for 1976–2000 [Yermolaev et al., 2009]. An analysis was performed for eight categories of magnetic storms caused by different types of solar wind streams: corotating interaction regions (CIR, 86 storms); magnetic clouds (MC, 43); Sheath before MCs (ShMC, 8); Ejecta (95); Sheath (ShE, 56); all ICME events (MC + Ejecta, 138); all compression regions Sheaths before MCs and Ejecta (ShMC + ShE, 64); and an indeterminate type of storm (IND, 75). It was shown that the |Dst| index value increases with increasing electric field E y for all eight types of streams. When electric fields are strong (E y > 11 mV m−1), the |Dst| index value becomes saturated within magnetic clouds MCs and possibly within all ICMEs (MC + Ejecta). The AE index value during magnetic storms is independent of the electric field value E y for almost all streams except magnetic clouds MCs and possibly the compressed (Sheath) region before them (ShMC). The AE index linearly increases within MC at small values of the electric field (E y < 11 mV m−1) and decrease when these fields are strong (E y > 11 mV m−1). Since the dynamic pressure (Pd) and IMF fluctuations (σB) correlate with the E y value in all solar wind types, both geomagnetic indices (|Dst| and AE) do not show an additional dependence on Pd and IMF δB. The nonlinear relationship between the intensities of the |Dst| and AE indices and the electric field E y component, observed within MCs and possibly all ICMEs during strong electric fields E y , agrees with modeling the magnetospheric-ionospheric current system of zone 1 under the conditions of the polar cap potential saturation.  相似文献   

8.
The spatial dynamics of geomagnetic variations and pulsations, auroras, and riometer absorption during the development of the main phase of the extremely strong magnetic storm of November 7–8, 2004, has been studied. It has been indicated that intense disturbances were observed in the early morning sector of auroral latitudes rather than in the nighttime sector, as usually takes place during magnetic storms. The unusual spatial dynamics was revealed at the beginning of the storm main phase. A rapid poleward expansion of disturbances from geomagnetic latitudes of 65°–66° to 74°–75° and the development of the so-called polar cap substorm with a negative bay amplitude of up to 2500 nT, accompanied by precipitation of energetic electrons (riometer absorption) and generation of Pi2–Pi3 pulsations, were observed when IMF B z was about ?45 nT. The geomagnetic activity maximum subsequently sharply shifted equatorward to 60°–61°. The spatial dynamics of the westward electrojet, Pi2–Pi3 geomagnetic pulsations, and riometer absorption was similar, which can indicate that the source of these phenomena is common.  相似文献   

9.
We investigate the features of the planetary distribution of wave phenomena (geomagnetic pulsations) in the Earth’s magnetic shell (the magnetosphere) during a strong geomagnetic storm on December 14–15, 2006, which is untypical of the minimum phase of solar activity. The storm was caused by the approach of the interplanetary magnetic cloud towards the Earth’s magnetosphere. The study is based on the analysis of 1-min data of global digital geomagnetic observations at a few latitudinal profiles of the global network of ground-based magnetic stations. The analysis is focused on the Pc5 geomagnetic pulsations, whose frequencies fall in the band of 1.5–7 mHz (T ~ 2–10 min), on the fluctuations in the interplanetary magnetic field (IMF) and in the solar wind density in this frequency band. It is shown that during the initial phase of the storm with positive IMF Bz, most intense geomagnetic pulsations were recorded in the dayside polar regions. It was supposed that these pulsations could probably be caused by the injection of the fluctuating streams of solar wind into the Earth’s ionosphere in the dayside polar cusp region. The fluctuations arising in the ionospheric electric currents due to this process are recorded as the geomagnetic pulsations by the ground-based magnetometers. Under negative IMF Bz, substorms develop in the nightside magnetosphere, and the enhancement of geomagnetic pulsations was observed in this latitudinal region on the Earth’s surface. The generation of these pulsations is probably caused by the fluctuations in the field-aligned magnetospheric electric currents flowing along the geomagnetic field lines from the substorm source region. These geomagnetic pulsations are not related to the fluctuations in the interplanetary medium. During the main phase of the magnetic storm, when fluctuations in the interplanetary medium are almost absent, the most intense geomagnetic pulsations were observed in the dawn sector in the region corresponding to the closed magnetosphere. The generation of these pulsations is likely to be associated with the resonance of the geomagnetic field lines. Thus, it is shown that the Pc5 pulsations observed on the ground during the magnetic storm have a different origin and a different planetary distribution.  相似文献   

10.
Method of short-term forecast intensity of geomagnetic storms, expected by effect Solar wind magnetic clouds in the Earth’s magnetosphere is developed. The method is based calculation of the magnetic field clouds distribution, suitable to the Earth, the initial satellite measurements therein components of the interplanetary magnetic field in the solar ecliptic coordinate system. Conclusion about the magnetic storm intensity is expected on the basis of analysis of the dynamics of the reduced magnetic field Bz component clouds and established communication intensity of geomagnetic storms on Dst-index values and Bz component of the interplanetary magnetic field vector.  相似文献   

11.
The variations in the geomagnetic cutoff rigidity in Irkutsk, Alma-Ata, and Beijing in October–November 2003 were calculated using ground-based measurements of cosmic ray intensity from the worldwide network of stations and GOES spacecraft. The calculated variations in geomagnetic cutoff rigidity are presented together with D st variations of the geomagnetic field. The obtained results are compared to calculations performed using the Tsyganenko model of the magnetosphere.  相似文献   

12.
Spatial-temporal and spectral features of ground geomagnetic pulsations in the frequency range of 1–5 mHz at the initial phase of a strong magnetic storm of the 24th cycle of solar activity (August 5–6, 2011, with a Dst-variation in the storm maximum of ?110 nT) are analyzed. Large opposite in sign amplitudes of variations in IMF parameters (from ?20 to +20 nT) at a high velocity of the solar wind (~650 km/s) accompanied by intense bursts in solar-wind density (up to ~50 cm?3) were distinctive feature of interplanetary medium conditions causing the storm. Geomagnetic Pi3 pulsations global in longitude and latitude and in-phase in the middle and equatorial latitudes were found. The onset of pulsation generation was caused by a pulse of dynamic pressure of the solar wind (~20 nPa), i.e., by a considerable compression of the magnetosphere. The maximum (2–3 mHz) in the amplitude spectrum of near-equatorial pulsations coincided with the maximum of pulsations in the daytime polar cap. After the next jump of the dynamic pressure of the solar wind (~35 nPa), an additional maximum appeared in the pulsation spectrum in the frequency band of ~3.5–4.5 mHz. Global pulsations suddenly stopped after a sharp decrease in the solar-wind dynamic pressure and corresponding extension of the magnetosphere. The obtained results are compared with the time dynamics of the position and shape of the plasmapause.  相似文献   

13.
Some theories predict the magnetosheath magnetic field strength will decrease and the density increase just outside the dayside magnetopause as the interplanetary magnetic field turns southward. Two studies have recently reported results which confirm these expectations. In contrast, we briefly review our own theoretical predictions which indicate that precisely the opposite effect is expected. We survey new and previously reported magnetosheath observations and demonstrate that they are consistent with the predictions of our model. The conflicting results indicate a need for further theoretical and observational work.  相似文献   

14.
Intense quasimonchromatic geomagnetic pulsations with a period of ~15 min, observed on the Earth’s surface in the near-noon sector at the beginning of the recovery phase of a very strong (Dst min = ?260 nT) magnetic storm of May 15, 2005, are analyzed. The variations were registered at auroral latitudes only in the X field component, and wave activity shifted into the postnoon sector of the polar cap an hour later; in this case pulsations were observed in the X and Y field components. Within the magnetosphere the source of magnetic pulsations could be the surface waves on the magnetopause caused by the pulse of the solar wind magnetic pressure. Geomagnetic pulsations in the polar cap, observed in phase at different latitudes, could apparently reflect quasiperiodic variations in the NBZ system of field-aligned currents. Such variations can originate due to the series of pulsed reconnections in the postnoon outer cusp at large (~20 nT) positive B z values and large (about ?40 nT) negative values of IMF B x .  相似文献   

15.
日冕物质抛射(Coronal Mass Ejection,简称CME)和共转相互作用区(Corotating Interaction Region,简称CIR)是造成日地空间行星际扰动和地磁扰动的两个主要原因,提供了地球磁暴的主要驱动力,进而显著影响地球空间环境.为深入研究太阳风活动及受其主导影响的地磁活动的时间分布特征,本文对大量太阳风参数及地磁活动指数的数据进行了详细分析.首先,采用由NASA OMNIWeb提供的太阳风参数及地磁活动指数的公开数据,通过自主编写matlab程序对第23太阳活动周期(1996-01-01—2008-12-31)的数据包括行星际磁场Bz分量、太阳风速度、太阳风质子密度、太阳风动压等重要太阳风参数及Dst指数、AE指数、Kp指数等主要的地磁指数进行统计分析,建立了包括269个CME事件和456个CIR事件列表的数据库.采用事例分析法和时间序列叠加法分别对两类太阳活动的四个重要太阳风参数(IMF Bz、太阳风速度、太阳风质子密度、太阳风动压)和三个主要地磁指数(Dst、AE、Kp)进行统计分析,并研究了其统计特征.其次,根据Dst指数最小值确定了第23太阳活动周期内的355个孤立地磁暴事件,并以Dst指数最小值为标准将这些磁暴进一步分类为145个弱磁暴、123个中等磁暴、70个强磁暴、12个剧烈磁暴和5个巨大磁暴.最后,采用时间序列叠加法对不同强度磁暴的太阳风参数和地磁指数进行统计分析.统计分析表明,对于CME事件,Nsw/Pdyn(Nsw表示太阳风质子密度,Pdyn表示太阳风动压)线性拟合斜率一般为正;对于CIR事件,Nsw/Pdyn线性拟合斜率一般为负,这可作为辨别CME和CIR事件的一种有效方法.从平均意义上讲,相较于CIR事件,CME事件有更大的南向IMF Bz分量、太阳风动压Pdyn、AE指数、Kp指数以及更小的Dstmin.一般情况下,CME事件有更大的可能性驱动极强地磁暴.总体而言,对于不同强度的地磁暴,Dst指数的变化呈现出一定的相似性,但随着地磁暴强度的增强,Dst指数衰减的速度变快.CME和CIR事件以及其各自驱动的地磁暴事件有着很多不同,因此,需要将CME事件驱动的磁暴及CIR事件驱动的磁暴分开研究.建立CME、CIR事件及地磁暴的数据库以及获取的统计分析结果,将为深入研究地球磁层等离子体片、辐射带及环电流对太阳活动的响应特征提供有利的帮助.  相似文献   

16.
用欧亚大陆地面电离层垂测站资料考察1989年3月12~16日磁暴期间的电离层暴形态及其发展变化. 特强磁暴引发的电离层暴是全球性的,但自磁层沉降的高能粒子对热层低部的加热程度及区域分布不同,因而各经度链区域内电离层暴的特征也有所差异. 本文研究表明,与理论推断对照,欧洲地区内F2层最大电子密度NmaxF2(或f0F2)并不出现正暴现象,而负暴自高纬向低纬的发展则与典型的热层环流结果相符. 此外,此磁暴过程期间在中低纬区存在明显的波动过程. 在亚洲高纬地区,磁暴初期13日有约10 h的正暴,而负暴过程则与欧洲地区类似,但不太清晰;且无波动现象. 磁暴期间,同一经度链的中低纬地区,夜间常发生多站同时的h′F突增. 本文再次证实这是一般磁暴期间常出现的普遍现象.  相似文献   

17.
Summary On the basis of investigating 10 storms (1965–1967) good correlation was found between the density of the solar wind energy (2=1/2mNv2) and the intensity of the main phase of the geomagnetic storms, expressed in terms of the maximum decrease of the horizontal intensity (B=H/cos). The relation between 2, or Nv2, and B could then be used to determine the quantities and 0 ( is the factor expressing the increase in energy density in the magnetosphere, 0 is the energy density of the particles in a quiet magnetosphere). A comparison with the directly observed distribution of the energy density of the particles in the magnetosphere indicates that the computed value of 0 seems to be realistic. The magnitude of the factor will have to be checked again.  相似文献   

18.
The X17 solar flare occurred on October 28, 2003, and was followed by the X10 flare on October 29. These flares caused very strong geomagnetic storms (Halloween storms). The aim of the present study is to compare the variations in two main ionospheric parameters (foF2 and hmF2) at two chains of ionosondes located in Europe and North America for the period October 23–28, 2003. This interval began immediately before the storm of October 28 and includes its commencement. Another task of the work is to detect ionospheric precursors of the storm or substorm expansion phase. An analysis is based on SPIDR data. The main results are as follows. The positive peak of δfoF2 (where δ is the difference between disturbed and quiet values) is observed several hours before the magnetic storm or substorm commencement. This peak can serve as a disturbance precursor. The amplitude of δfoF2 values varies from 20 to 100% of the foF2 values. The elements of similarity in the variations in the δfoF2 values at two chains are as follows: (a) the above δfoF2 peak is as a rule observed simultaneously at two chains before the disturbance; (b) the δfoF2 variations are similar at all midlatitude (or, correspondingly, high-latitude) ionosondes of the chain. The differences in the δfoF2 values are as follows: (a) the effect of the main phase and the phase of strong storm recovery at one chain differs from such an effect at another chain; (b) the manifestation of disturbances at high-latitude stations of the chain differ from the manifestations at midlatitude stations. The δhmF2 variations are approximately opposite to the δfoF2 variations, and the δhmF2 values lie in the interval 15–25% of the hmF2 values. The performed study is useful and significant in studying the problems of the space weather, especially in a short-term prediction of ionospheric disturbances caused by magnetospheric storms or substorms.  相似文献   

19.
The solar magnetic field B s at the Earth’s projection onto the solar-wind source surface has been calculated for each day over a long time interval (1976–2004). These data have been compared with the daily mean solar wind (SW) velocities and various components of the interplanetary magnetic field (IMF) near the Earth. The statistical analysis has revealed a rather close relationship between the solar-wind parameters near the Sun and near the Earth in the periods without significant sporadic solar and interplanetary disturbances. Empirical numerical models have been proposed for calculating the solar-wind velocity, IMF intensity, and IMF longitudinal and B z components from the solar magnetic data. In all these models, the B s value plays the main role. It is shown that, under quiet or weakly disturbed conditions, the variations in the geomagnetic activity index Ap can be forecasted for 3–5 days ahead on the basis of solar magnetic observations. Such a forecast proves to be more reliable than the forecasts based on the traditional methods.  相似文献   

20.
The solar wind–magnetosphere coupled system is characterized by dynamical processes. Recent works have shown that nonlinear couplings and turbulence might play a key role in the study of solar wind–magnetosphere interaction processes.Within this framework, this study presents a statistical analysis aimed to investigate the relationship between solar wind MHD turbulence and geomagnetic activity at high and low latitudes as measured by the AE and SYM-H indices, respectively. This analysis has been performed for different phases of solar cycle 23. The state of turbulence was characterized by means of 2-D histograms of the normalized cross-helicity and the normalized residual energy. The geomagnetic response was then studied in relation to those histograms.The results found clearly show that, from a statistical point of view, solar cycle 23 is somewhat peculiar. Indeed, good Alfvénic correlations are found unexpectedly even during solar activity maximum. This fact has implications on the geomagnetic response as well since a statistical relationship is found between Alfvénic fluctuations and auroral activity. Conversely, solar wind turbulence does not seem to play a relevant role in the geomagnetic response at low latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号