首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Over 60 minerals, including native elements, intermetallic compounds, haloids, sulfides, sulfates, arsenides, oxides and hydroxides, silicates, borosilicates, wolframates, phosphates and REE phosphates, were established in Triassic siliceous rocks of Sikhote Alin. Allothigenic and authigenic minerals in the carbonaceous silicites were formed over a long period through several stages. Judging from morphology, chemical composition, and structural position, K-feldspar (K-Fsp), illite, kaolinite, metahalloysite, monazite, xenotime, zircon, rutile, or its polymorphs are the disintegration products of sialic rocks of continental crust. Authigenic sulfides are dominated by diagenetic pyrite (fine-crystalline, microglobular, framboidal, as well as those developed after biogenic siliceous and carbonate fragments), which has been formed prior to precipitation of siliceous cement and lithification of siliceous rocks. Most of other sulfides (sphalerite, galena, chalcopyrite, pyrrhotite, argentite, pentlandite, antimonite, ulmanite, and bravoite), arsenides and sulfoarsenides (arsenopyrite, nickeline, skutterudite, cobaltite, glaucodot, and gersdorffite), wolframates (scheelite and wolframite), intermetallides (Cu2Zn, Cu3Zn2, Cu3Zn, Cu4Zn, CuSn, Cu4Sn, Cu8Sn, Cu4Zn2Ni, Ni2Cu2Zn, Ni4Cd), and native elements (Au, Pd, Ag, Cu, Fe, W, Ni, Se) were crystallized later (during catagenesis after the lithification and brecciation of siliceous beds) from metals involved in the easily mobile fractions of bitumens. Supergene mineral formation was mainly expressed in the sulfide oxidation and replacement of diagenetic pyrite by jarosite and iron hydroxides.  相似文献   

2.
The formation of low-maturity asphaltic oils (immature asphalts) from carbonate source rocks was investigated. The Senonian bituminous rocks (SBR) in Israel are organic-rich carbonate rocks that were deposited in a high productivity environment, and they are part of a sedimentary sequence that also contains cherts and phosphorites. The SBR were studied in different basins, and the samples are from outcrops and three deep drillholes. The bitumen contents of the rocks are exceptionally high (up to 700 mg/g Corg), and immature asphalts are found to be associated with them. Geochemical analysis indicates that the bitumens are indigenous to the host SBR, and the associated asphalts are bitumens that have migrated a short distance with negligible chemical fractionation. The high heteroatom content of the kerogens (up to 30%) in the SBR is suggested as a possible cause of the generation of asphaltic oils in an early stage of maturation.  相似文献   

3.
Auriferous cherts in the Middle Carboniferous Jinchang Formation are the dominant host rocks of auriferous quartz veins and mixed orebodies comprised of gold-bearing quartz veins and cherts in the Mojiang gold deposit.The rocks exhibit sedimentary texture and structure and are composed of hot-water deposited minerals.The FeO,Fe2O3,Au and Ag contents of the auriferous cherts are high;the Cr,Ni and Co contents are also high but significantly variable;MnO/TiO2 and TFe/TiO2 ratios are relatively higy.As viewed from a few diagrams that distinguish different chert formations,the auriferous cherts are in or near the range of hot-water deposited cherts.Because the correlation coefficients between Au contents and those of Cr, Ni of the rocks are negative,a great Au amount in the cherts might not be brought about by later hydrothermal alterations.The rare-earth elements,O and Si isotopic compositions of the auriferous cherts demonstrate that the cherts belong to hot-water deposited rocks.The later hydrothermal alterations made the petrochemical compositions of the cherts deviate from the characteristics of hot-water deposition.In general,the geological and geochemical features of the auriferous cherts demonstrate that the rocks were formed by hot water deposition.  相似文献   

4.
Over the last ninety years or so, archaeological field work on outcrops of raw materials in western France has allowed researchers to identify the use of a large number of deformed rock types in lithic industries. These materials include Armorican phtanites, which are cherts that were widely exploited during the Mesolithic, principally during its final phase (5500–5000 yrs cal. B.C.). Because of variations in the mineralogical composition and physical properties of phtanites, different mechanical properties are exhibited by samples from the four main geological formations containing this rock type in the Armorican Massif of western France. These geological and mechanical parameters influenced the quantity of rock used and the knapping methods employed. They also influenced the tool types produced and their transfer, as recorded in archaeological sequences. The types of raw materials used are also controlled by the distance to sources of coastal flint pebbles or other autochthonous siliceous rocks. Therefore, the role of raw material properties in the creation and persistence of techno‐cultural or economic characteristics is different for each type of phtanite and yields fundamental information on the interaction of society with the geological environment. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
The mineral and chemical compositions and physical properties of diatomaceous clayey–siliceous sediments in the Sea of Okhotsk are studied. Absolute masses of silica accumulation are determined. Their compositional model based on the silica content is similar to that of Late Jurassic and Olenekian–middle Anisian cherts of the Sikhote Alin region. The thickness of the Holocene siliceous unit and the absolute mass of siliceous deposits depended on bioproductivity in the upper water column and the seafloor topography. Absolute masses of SiO2 am (0.05–5.7 g cm–2 ka–1) and SiO2 fr (0.5–11.6 g cm–2 ka–1) are minimal on seamounts and maximal in depressions near foothills. These values match absolute masses of SiO2 fr accumulations in Triassic and Late Jurassic basins of the Sikhote Alin region (0.33–3 g cm–2 ka–1). Comparison of the composition and absolute masses of silica shows that Triassic and Late Jurassic siliceous sequences of Sikhote Alin could be accumulated in the marginal marine basin near a continent.  相似文献   

6.
The Paleocene ultraferrous Mn-rich phlogopite-olivine rocks of the Taukha terrane belong to the alkaline ultrabasic rocks of the potassic series. The olivine is represented by hortonolite, while the phlogopite is enriched in Cl. Other minerals are represented by Ti-magnetite, Mn-rich ilmenite, Zn-rich pleonaste, apatite, and zircon. There are also epigenetic serpentine, talc, carbonates, magnetite, breithauptite, nickeline, hedleyite, cobaltite, tsumoite, auricupride, cuproauride, and other minerals. The phlogopite-olivine rocks possibly represent a part of a magmatic complex previously unknown in Sikhote Alin, the rocks of which are associated with fluidolites of a large diatreme. There are grounds to suggest that they were formed by the injection of fluid-rich (mainly, H2O, Cl, F, and S) deep magmas into the upper lithosphere. Based on these specific features, as well as the sharp K predominance over Na and the enrichment in some incompatible elements (Sn, Ta, Nb, and Zr), the phlogopite-olivine rocks are the most close to lamproites but differ in the high contents of Fe, Mn, Au, Pt, and Pd and in the olivine’s composition. The manifestation of such magmatism in the Taukha terrane records the transition from subduction to transform continental margin settings.  相似文献   

7.
Abstract: Age of magmatism and tin mineralization in the Khingan‐Okhotsk volcano–plutonic belt, including the Khingan, Badzhal and Komsomolsk tin fields, were reviewed in terms of tectonic history of the continental margin of East Asia. This belt consists mainly of felsic volcanic rocks and granitoids of the reduced type, being free of remarkable geomagnetic anomaly, in contrast with the northern Sikhote‐Alin volcano–plutonic belt dominated by oxidized‐type rocks and gold mineralization. The northern end of the Khingan‐Okhotsk belt near the Sea of Okhotsk, accompanied by positive geomagnetic anomalies, may have been overprinted by magmatism of the Sikhote‐Alin belt. Tin–associated magmatism in the Khingan‐Okhotsk belt extending over 400 km occurred episodically in a short period (9510 Ma) in the middle Cretaceous time, which is coeval with the accretion of the Kiselevka‐Manoma complex, the youngest accretionary wedge in the eastern margin of the Khingan‐Okhotsk accretionary terranes. The episodic magmatism is in contrast with the Cretaceous‐Paleogene long–lasted magmatism in Sikhote–Alin, indicating the two belts are essentially different arcs, rather than juxtaposed arcs derived from a single arc. The tin‐associated magmatism may have been caused by the subduction of a young and hot back‐arc basin, which is inferred from oceanic plate stratigraphy of the coeval accre‐tionary complex and its heavy mineral assemblage of immature volcanic arc provenance. The subduction of the young basin may have resulted in dominance of the reduced‐type felsic magmas due to incorporation of carbonaceous sediments within the accretionary complex near the trench. Subsequently, the back‐arc basin may have been closed by the oblique collision of the accretionary terranes in Sikhote–Alin, which was subjected to the Late Cretaceous to Paleogene magmatism related to another younger subduction system. These processes could have proceeded under transpressional tectonic regime due to oblique subduction of the paleo‐Pacific plates under Eurasian continent.  相似文献   

8.
We studied the distribution of organic carbon in rocks of the Bazhenov horizon, a unique object of predominantly biogenic sedimentation in the West Siberian sedimentary basin. The contents of organic carbon in the rocks were determined using the data from 4094 core analyses and core-log relationships derived from 48,500 radioactive- and electrical-log measurements. For the Bazhenov and Tutleima Formations, both approaches gave the same results. The average content of organic carbon in the rocks is 7.7%. These data were used to compile a detailed map of the distribution of organic carbon contents in sedimentary rocks of the basin. It was shown that the average organic carbon content in the rocks increases from 2-4% on the periphery of the basin to 10-12% in its central, deepest part. The distribution of Corg values in the basin is highly asymmetric. The highest Corg values are observed in the southwestern part of the basin interior, where beds with > 10% Corg range in thickness from 5 to 12-15 m. In sections, the highest Corg values are observed in their middle and upper parts, composed predominantly of silicites and mixtites enriched in biogenic silica.  相似文献   

9.
The results of study of the volcanic rocks of the Khabarovsk accretionary complex, a fragment of the Jurassic accretionary prism of the Sikhote Alin orogenic belt (the southern part of the Russian Far East), are presented. The volcanic rocks are associated with the Lower Permian limestones in the mélange blocks and Triassic layered cherts. The petrography, petrochemistry, and geochemistry of the rocks are characterized and their geodynamic formation conditions are deduced. The volcanic rocks include oceanic plume basalts of two types: (i) OIB-like intraplate basalts formed on the oceanic islands and guyots in the Permian and Triassic and (ii) T(transitional)-MORBs (the least enriched basalts of the E-MORB type) formed on the midoceanic ridge in the Permian. In addition to basalts, the mélange hosts suprasubduction dacitic tuff lavas.  相似文献   

10.
Specific structural–textural and mineralogical–petrographic features of clastic rocks, which make up sparse thin layers within Permian and Triassic cherty sequences in Sikhote Alin and Japan, are discussed. The cherty sequences were retained in the Jurassic accretionary complex as fragments of sedimentary cover of an ancient oceanic basin. They were mainly formed by turbidity currents that originated on intrabasinal uplifts composed of tholeiitic basalts in the Permian. In the Triassic, the currents originated on uplifts consisting of ocean-island alkali basalts along with Permian and Lower Triassic cherty and cherty–clayey rocks. The compositional difference of provenances was apparently caused by tectonic events in the oceanic basin at the Permian/Triassic boundary.  相似文献   

11.
Rare strontium mineral tausonite and a peculiar Al- and F-rich titanite variety were found in the metamorphosed metalliferous sediments of the Triassic chert formation of the Sikhote Alin, which are distinguished by the abundance of native elements, intermetallic compounds, and metal solid solutions, as well as the presence of diverse Au, Ag, and PGE minerals. Tausonite was documented in the manganese (metamorphosed siliceous-rhodochrosite) rocks of the Ol’ga mining district and in the “brown cherts” (siliceous rocks with manganese garnet and spessartine) of the Dal’nerechensk district, Primorye. It forms rather numerous grains 2–10 μm across usually occurring as inclusions in quartz or rhodonite. According to the electron microprobe analysis, in addition to Sr, Ti, and O, the mineral contains only Fe3+ (up to 0.20 a.f.u.). Aluminum-fluorine titanite was found in the “brown cherts” of the Dal’nerechensk district of Primorye (upper reaches of the Gornaya River). Its crystals are up to 200 × 200 μm in size. The recalculation of the microprobe analyses to crystal chemical formulas indicated that up to half of the Ti sites in the structure of this mineral may be occupied by Al. The decrease of the total positive charge owing to the Al3+ substitution for tetravalent Ti4+ is compensated for by a decrease in the total negative charge owing to F? substitution for O2? via the scheme Al3+F? → Ti4+O2?. The occurrence of considerable amounts of F substituting for oxygen in the titanite structure and, as a consequence (owing to the crystal chemical features of the mineral), the high Al content were related to the reduced character of the metamorphism of the metalliferous deposits.  相似文献   

12.
Basalts developed on the right bank of the Matai River belong to the Samarka terrane (Central Sikhote Alin), which is a fragment of the Jurassic accretionary prism. They associate with Carboniferous-Permian reef limestones, Permian pelagic cherts, Jurassic hemipelagic cherty-clayey deposits, and terrigenous rocks of the near-continental sedimentation area. The petrogeochemical features of the basalts provide insight into the character of the volcanism in different settings of the ancient Pantalassa ocean. In terms of chemistry, the Carboniferous-Permian basalts are similar to the within-plate ocean-island basalts related to plume mantle sources. They were presumably formed in an oceanic area with numerous islands and seamounts. The Permian basalts associated with cherts are tholeiitic in composition and were formed from depleted mantle in a spreading center located in the pelagic area. The Jurassic basalts are of plume origin and, in terms of geochemistry, occupy an intermediate position between OIB and E-MORB. They were presumably formed in a convergent zone in a geodynamic setting of rapid oblique subduction.  相似文献   

13.
云南墨江金矿床含金硅质岩的地球化学特征和成因   总被引:21,自引:1,他引:21  
应汉龙  蔡新平 《地球化学》1999,28(4):307-317
中石炭统金厂组(C2j)下部含金硅质岩是云南墨江金矿庆的主要围岩之一,具有沉积结构构造,含热水沉积矿物。岩石的FeO、Fe2O3、Au和Ag含量高;Cr、Ni和Co含量高、变化大;MnO/TiO2和TFe/TiO2比值较大;Au含量与NiCr含量相关性低,Au可能不是后期热液作用带入的。在判别硅质岩形成作用的一系列元素和微量元素关系图上,含金硅质岩位于热水沉积作用的范围内或接近于热水沉积作用。岩石  相似文献   

14.
We present paleomagnetic results of Paleocene welded tuffs of the 53–50 Ma Bogopol Group from the northern region (46°N, 137°E) of the Sikhote Alin volcanic belt. Characteristic paleomagnetic directions with high unblocking temperature components above 560 °C were isolated from all the sites. A tilt-corrected mean paleomagnetic direction from the northern region is D=345.8°, I=49.9°, α95=14.6° (N=9). The reliability of the magnetization is ascertained through the presence of normal and reversed polarities. The mean paleomagnetic direction from the northern region of the Sikhote Alin volcanic belt reflects a counterclockwise rotation of 29° from the Paleocene mean paleomagnetic direction expected from its southern region. The counterclockwise rotation of 25° is suggested from the paleomagnetic data of the Kisin Group that underlies the Bogopol Group. These results establish that internal tectonic deformation occurred within the Sikhote Alin volcanic belt over the past 50 Ma. The northern region from 44.6° to 46.0°N in the Sikhote Alin volcanic belt was subjected to counterclockwise rotational motion through 29±17° with respect to the southern region. The tectonic rotation of the northern region is ascribable to relative motion between the Zhuravlevka terrane and the Olginsk–Taukhinsk terranes that compose the basements of the Sikhote Alin volcanic belt.  相似文献   

15.
Abstract: Seven zircon fission-track ages and 30 magnetic susceptibilities were measured on welded pyroclastic rocks from the Bogopol and Sijanov Groups of the Cretaceous to Paleogene volcanic rocks in the southeastern part of the eastern Sikhote Alin volcano-plutonic belt, Far East Russia. The fission-track ages range from 42. 7 Ma to 64. O Ma which indicate that both the groups are of Early Paleogene time. Two thirds of the samples from the Bogopol Group have high magnetic susceptibility values, more than 3 A- 10-3 SI unit, which imply that they are of the magnetite–series, whereas the samples from the Sijanov Group show 3 A- 10-3 to 8 A- 10-5 SI unit which suggest this group of probably the ilmenite-series.
The Paleogene age and high magnetic susceptibility of the Bogopol Group are quite similar to the Paleogene igneous rocks of the San'in belt, Southwest Japan. This suggests, taking accounts of the opening of the Japan Sea, that the eastern Sikhote Alin volcano-plutonic belt continued to the San'in Belt, and that the Paleogene igneous rocks along the Japan Sea coast of Northeast Japan were situated along the volcanic front of the eastern Sikhote Alin volcano-plutonic belt.  相似文献   

16.
Bedded cherts occurring in the Early Permian Gufeng Formation in the Lower Yangtze region, eastern China, are nearly 20-80 m in thickness and contain varying amounts of radiolarians and sponge spicules. There are three types of section for the Gufeng Formation: chert, carbonate and chert-carbonate mixing types. Bedded cherts mainly occur in the first and third types of section. The depocentres of silica are marked by some small (not larger than a few thousand square kilometres in area) rhombic or elliptic hollows and their formation was controlled by faults. Argillaceous volcanic rocks in cherts occur as numerous thin layers. Bedded cherts are characterized by higher Fe and lower Al contents, enrichment in such trace elements as As, Sb, Bi, Ga, Au, Ag and Cr, lower total REE abundance, negative Ce anomaly and varying degrees of HREE enrichment. These characteristics are important evidence for hydrothermal cherts. Minor amounts of substances of non-hydrothermal origin are mixed in the cherts. The tempera  相似文献   

17.
This paper reports new geochemical data on the low temperature nitric thermal waters of Sikhote Alin. The studied alkaline waters belong to the HCO3-Na type with significant trace element variations. The waters demonstrate an increase in temperature and TDS from the south northward of Sikhote Alin. The oxygen and hydrogen isotopic data suggest their infiltration origin. The chemical composition of these waters was formed by water-rock interaction.  相似文献   

18.
The lithology and geochemistry of upper Oxfordian sedimentary rocks enriched in marine organic matter (OM) have been studied. These rocks occur as a persistent unit of Upper Jurassic rocks exposed on the right bank of the Unzha River in the Kostroma district. The OM was investigated in detail in both the carbon-rich rocks and their hosts. It was established that the OMs from the Oxfordian rocks are characterized by a low degree of thermal (catagenetic) maturity and their geochemical signature reflects specific features of synsedimentary and early diagenetic processes. Kerogen in the carbon-rich sedimentary rocks is markedly enriched in Sorg, and its formation was related to the early diagenetic sulfate reduction (sulfurization of the lipid fraction of the initial OM). The composition of kerogen from the host clay is sharply distinct in many parameters. No derivatives of isorenieratene were revealed in the aromatic fraction of bitumen in the carbon-rich rocks. The Oxfordian carbonaceous rocks are distinguished by slightly enriched in S, Mo, V, and Ni. Anoxic conditions were unstable in the water column during the deposition of carbon-rich sediments (such conditions were probably episodic). The Corg-rich unit formed due to a short-term abrupt increase in the productivity of phytoplankton related to eutrophication of water, probably, as a result of the recycling and redistribution of biophile elements.  相似文献   

19.
This paper presents the results of studying the Cenozoic volcanogenic-sedimentary cover of the Vanchinskaya depression of Sikhote Alin. It was established that, in terms of the taxonomic composition of the fossil plants, the basal part of the Cenozoic section is attributed to the Paleocene, while the overlaying coal-bearing sequence, to the Early Eocene. The geochronological (K-Ar) dating showed that the volcanic rocks intruding and overlaying the coal-bearing deposits are Middle Eocene in age: rhyolites—44.7 ± 1.0; trachyandesites—43.7 ± 1.4 Ma. The petrographic and geochemical characteristics of the volcanic and volcanogenic-sedimentary rocks and related zeolitites are described. The zeolitized rocks containing plant detritus differ in their extremely high contents of Y and HREE. The zeolitization of the volcanic glass in tuffs, tuffites, and perlites was caused by hydrothermal solutions that ascended along NW fault zones from the subsurface magmatic chamber.  相似文献   

20.
《Comptes Rendus Geoscience》2002,334(16):1177-1183
A new section in the Silurian graptolitic ‘phtanites’ (black cherts) of Les Fresnaies at Chalonnes-sur-Loire (SE Armorican Massif) shows for the first time that these rocks (1) succeed conformably to Uppermost Ordovician (Hirnantian) glaciomarine deposits and (2) contain successive graptolite assemblages that characterise the base of the Silurian, the whole Rhuddanian and Aeronian stages and the lower part of the Telychian. To cite this article: J.M. Piçarra et al., C. R. Geoscience 334 (2002) 1177–1183.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号