首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Lunar and luni-solar geomagnetic components have been computed upto four harmonics for low latitude station Alibag, outside equatorial electrojet belt, and the equatorial electrojet stations Annamalainagar, Kodaikanal and Trivandrum in the south Indian region. The computations are confined to data of very high solar activity period 1958–61. Amplitudes of lunar semidiurnal component (L 2), in the horizontal intensity (H), undergo an equatorial enhancement. Phase difference of 2 hrs is noticed inL 2 (H) between nonelectrojet and electrojet stations. In the vertical intensity (Z), L 2 is maximum ine andj-seasons at Trivandrum, close to the magnetic equator. Ind-season, however, maximumL 2 (Z) occurs at Annamalainagar (dip 5°.4N). The phase difference between the electrojet and nonelectrojet stations observed inL 2 (H) is not noticed inL 2 (Z). The differential vertical upward drift motion of charged particles may explain the observed phase difference inL 2 (H). Seasonal variations in amplitudes and times of maxima are noticed at all the stations inL 2 (H) andL 2 (Z). Similar variation is also noticed at Alibag inL 2 of declination (D).  相似文献   

2.
Summary The article describes lunar daily magnetic variation inH, D andZ components of the earth's magnetic field at Istanbul. Maximum occurs at 10.03 l.hr. (lunar hour) in theH component, 3.38 l.hr. in theD and 2.15 l.hr. in theZ component, during the period 1949 to 1968. Also, the seasonal variation of the lunar magnetic variation has been determined and it is seen that the variation of the phase inD andZ are opposite from the phase of the lunar variation inH, and the amplitudes of the lunar variation inH, D andZ are greatest during the northern solstice.  相似文献   

3.
Summary The lunar daily (L) and lunar monthly (M) variations in horizontal magnetic field (H), maximum electron density (N max ), height of peak ionisation (h max ), semi-thickness (y m ) of theF 2 layer and total electron content (N t ) at Huancayo for the period January 1960 to December 1961 are described. The lunar tidal variations inh max follow sympathetically the variations inH such that an increase of magnetic field causes the raising of height of peak ionisation. Lunar tides inN max are opposite in phase to that ofh max with a delay of about 1–2 hours, suggesting that an increase of height causes a decrease in maximum electron density. The lunar tides in semi-thickness are very similar in phase to that inh max . The lunar tidal effects in any of the parameters are largest inD-months and least inJ-months. The amplitude of lunar tides in maximum electron density seems to increase with increasing height whereas the phase seems to be constant with height. It is concluded that lunar tides in the ionospheric parameters at magnetic equator are greatly controlled by the corresponding geomagnetic variations.Presented at the Third International Symposium on Equatorial Aeronomy, Ahmedabad, 3–10 February 1969.  相似文献   

4.
Summary A modified method of computing theS q -range in terms ofR x inH, D andZ has been suggested. Mean quiet-day daily rangesR x , have been computed for five Indian stations usingH, D andZ data for selected years. The seasonal and latitudinal variation ofR x (H), R x (Z) andR x (D) are discusses. Thee-season maximum inR x (H) andR x (Z) is attributed to the decrease in the distance between the foci during equinoxes; the electrojet and theS q -foci movement with seasons have little influence onS q (D). It is inferred that the electrojet current is independent of the worldwideS q current system and stands with its own return currents.The variation of lunar semi-diurnal tide inH[L 2 (H)] with the dip latitude in Indian region shows a secondary peak at 9° N dip latitude. This secondary peak in theL 2 (H) is termed as Lunar secondary electrojet, and it is suggested that this is possibly produced by magneto-acoustic oscillations due to the drift motion of the charged particles that produce the primary jet in a direct transverse to itself.  相似文献   

5.
Summary Results of sunspot cycle influence on solar and lunar ranges at a low latitude station, Alibag, outside the equatorial electrojet belt, show that the sunspot cycle association in solar ranges is three times that of the lunar ranges in thed- andj-seasons. This is in general agreement with the earlier results for non-polar latitude stations. The association with sunspot number of individual lunar amplitudes is greatest for lunar semidiurnal harmonic in thej-season. During this season, the sunspot cycle influence on lunar variations is more than that on solar variations, thereby indicating that the lunar current is situated at a level more favourable for sunspot cycle influence than the level of the current associated with solar variations. With the increase in solar activity a shift appears in the times of maxima of semidiurnal lunar variation towards a later lunar hour ine- andj-seasons and in the year.  相似文献   

6.
Geomagnetic solar and lunar daily variationsS andL, at Alibag, India are derived, by the well-known Chapman-Miller method, from the series of homogeneous mean hourly magnetic data of the years 1932 to 1972. The data for all the three elements — declinationD and horizontal and vertical intensitiesH andZ — are analysed, by dividing the data suitably for a study of the seasonal variations, the effect of the changes in the solar and magnetic activities onS andL, the oceanic dynamo contribution toL, and their interactions with each other. The main results are as follows.
  1. ForS the daily pattern and its seasonal progression conform to the type expected from a northern-hemisphere station. On the other hand, the amplitudes of all the four harmonics ofL systematically have higher values in winter, and inD andZ the harmonics show large phase differences between summer and winter. The pattern ofL in winter suggests that the lunar current system consists of a single set of vortices in the summer hemisphere rather than the conventional vortices, one set in each of the hemispheres.
  2. Solar-cycle modulation on the solar ranges as well as on the amplitudes of the first three harmonics ofS is greater than that expected solely from the increase in E-region conductivity, whereas the corresponding modulation onL is comparable to that on the E-region conductivity.
  3. With increasing magnetic activity the first harmonic ofS shows an increase, and the first three harmonics ofL indicate a general decrease, in amplitude.
  4. Of the variability inS 96%, but inL only 32%, is found to be accounted for by the combined effect of the variations in the solar and magnetic activities.
  相似文献   

7.
Extended periods of very low geomagnetic activity as described by very quiet intervals (VQI's) occur only at those times when the solar wind velocityV has a generally decreasing trend, i.e., they mainly occur either after the velocity peak of a high speed solar stream has passed the Earth, or at times when the Earth is immersed in a low speed solar plasma provided that the daily mean value ofdV/dt is negative. The VQI's most frequently start whendV/dt<0 anddB Z/dt>0 (B Z is the geocentric solar magnetrospheric-GSMZ-component of the IMF) and end most likely whendV/dt>0 anddB Z/dt<0. The temporal trends of the solar wind (SW) velocity affect the variation of thea p index only when the level of geomagnetic activity is generally low.It is suggested that a gradual expansion or contraction of the magnetosphere, associated with a slow variation of the SW pressure, plays a role in the modification of the reconnection-driven magnetohydrodynamic (MHD) fluctuations in the magnetosphere.  相似文献   

8.
Summary Mean hourly values of magnetic declination, horizontal intensity and vertical intensity observed at Toolangi during two ten year periods (1924–1933 and 1949–1958) have been analysed to determine their solar and luni-solar diurnal components. The results, showing the variations of the first four harmonic components with season, degree of magnetic activity and annual sunspot number, are tabulated and discussed. It is shown that there are marked differences in the dependence ofS andL on the various parameters and a tentative explanation of this phenomenon is given.  相似文献   

9.
Summary The sunspot cycle variation of the amplitude of the solar magnetic variation has been investigated for magnetically moderate, quiet and disturbed days at Istanbul for the period 1949–1968, and fairly good linear relationship has been found forZ andD components of the earth's magnetic field. In some cases, it is rather difficult to say that there is any linear relationship between sunspot number and the amplitude of theH component of the earth's magnetic field. Meanwhile,K indices has also been considered with sunspot number by means of multiple regression analysis to overcome some uncertainties in this investigation.  相似文献   

10.
Summary The comparison of the geomagneticK-indices for Mogadiscio with the correspondingK p for the whole earth, during the 2.nd Intern. Polar Year 1932–33, allows to deduce some features of the equatorial geomagnetic activity. Furthermore, evidence is adduced indicating that the geomagnetic disturbance at Mogadiscio is normal inH andD, while it appears slightly abnormal inZ.

Communication presentée à l'Association Internationale de Magnétisme et Electricité Terrestres, IXe Assemblée Générale de l'UGGI, Bruxelles, Séance du 28 Août 1951.  相似文献   

11.
This work investigated an interrelationship between the monthly means of time derivatives of horizontal geomagnetic field, dH/dt, sunspot number, R z , and aa index for the period of substorms (from ?90 to ?1800 nT) during the years 1990–2009. A total of 232 substorms were identified during the period of study. The time derivative of horizontal geomagnetic field, dH/dt, used as a proxy for geomagnetically induced current (GIC) exhibited high positive correlation with sunspot number (0.86) and aa index (0.8998). The obtained geomagnetic activity is in 92.665% explicable by the combined effect of sunspot number and aa index. The distribution of substorms as a function of years gives a strong support for the existence of geomagnetic activity increases, which implies that as the sunspot number increases the base level of geomagnetic activity increases too.  相似文献   

12.
Summary The lunar tidal componentsO 1(p) andN 2(p) in the barometric pressure are determined for several observatories for which long series of data are available in machine readable form. AlsoN 2(p) results are derived from some earlier analyses. The results are compared with those predicted by equilibrium tidal theory.This paper was presented at the General Scientific Assembly of I.A.G.A., held in Madrid in September 1969.  相似文献   

13.
Summary Effects of mechanical shocks of about 0.5 msec in duration on the remanent magnetization of igneous rocks are experimentally studied. The remanent magnetization acquired by applying a shock (S) in the presence of a magnetic field (H), which is symbolically expressed asJ R (H+S Ho), is very large compared with the ordinary isothermal remanent magnetization (IRM) acquired in the same magnetic field.J R (H+S Ho) is proportional to the piezo-remanent magnetization,J R (H+P+Po Ho).The effect of applyingS in advance of an acquisition of IRM is represented symbolically byJ R (S H+ Ho).J R (S H+ Ho) can become much larger than the ordinary IRM, and is proportional to the advance effect of pressure on IRM,J R(P+ P0 H+ H0).The effect of shockS applied on IRM in non-magnetic space is represented by the shock-demagnetization effect,J R(H+ H0 S), which also is proportional toJ R(H+ H0 P+ P0).Because, the duration of a shock is very short, a single shock effect cannot achieve the final steady state. The effect ofn-time repeated shocks, is represented byJ 0+J *(n), whereJ 0 means the immediate effect and J *(n) represent the resultant effect of repeating, which is of mathematical expression proportional to [1–exp {–(n–1)}].
Zusammenfassung Die Effekte des mechanischen Stosses mit der Dauer von etwa 0.5 ms auf der remanenten Magnetisierung wurden experimentell nachgesucht. Das erworbene Remanenz der Magnetisierung nach dem Stoss (S) unter dem magnetischen Feld (H), das hier symbolisch alsJ R(H+ SH0) bezechnet wird, ist sehr stark im Vergleich mit der normalen isothermischen remanenten Magnetisierung (IRM) unter demselben magnetischen Feld.J R(H+ S H0) ist im Verhältnis zur piezoremanenten Magnetisierung,J R(H+ P+ P0 H0).Der Effekt vom Stoss vor der Erwerbung von IRM wird symbolisch alsJ R(S H+ H0) bezeichnet.J R(S H+ H0) kann viel stärker als die normale IRM werden, im verhältnis zum Effekt des vorausgegebenen Drucks auf IRMJ R(P+ P0 H+ H0).Der Effekt des Stosses auf IRM im Raum ohne magnetisches Feld wird mit dem Stossentmagnetisierungseffekt dargestellt,J R(H+ H0 S), der auch proportional zuJ R(H+ H0 P+ P0) ist.Da die Dauer einzelnen Stosses sehr kurz ist, kann der Effekt des einmaligen Stosses den endgültigen stabilen Zustand nicht erreichen. Der Effekt nachn-maligen wiederholten Stossen wird alsJ 0+J *(n) bezeichnet, wobeiJ 0 den unverzüglichen Effekt bedeutet, und J *(n) beschreibt den resultanten Effekt der Stosswiederholung, dessen mathematische Darstellung proporational zu [1–exp {–(n–1)}] ist.
  相似文献   

14.
Yearly averages of geomagnetic activity indices Ap for the years 1967–1984 are compared to the respective averages of v2 · Bs, where v is the solar wind velocity and Bs is the southward interplanetary magnetic field (IMF) component. The correlation of both quantities is known to be rather good. Comparing the averages of Ap with v2 and Bs separately we find that, during the declining phase of the solar cycle, v2 and during the ascending phase Bs have more influence on Ap. According to this observation (using Fourier spectral analysis) the semiannual and 27 days, Ap variations for the years 1932–1993 were analysed separately for years before and after sunspot minima. Only those time-intervals before sunspot minima with a significant 27-day recurrent period of the IMF sector structure and those intervals after sunspot minima with a significant 28–28.5-day recurrent period of the sector structure were used. The averaged spectra of the two Ap data sets clearly show a period of 27 days before and a period of 28–29 days after sunspot minimum. Moreover, the phase of the average semiannual wave of Ap is significantly different for the two groups of data: the Ap variation maximizes near the equinoxes during the declining phase of the sunspot cycle and near the beginning of April and October during the ascending phase of the sunspot cycle, as predicted by the Russell-McPherron (R-M) mechanism. Analysing the daily variation of ap in an analogue manner, the same equinoctial and R-M mechanisms are seen, suggesting that during phases of the solar cycle, when ap depends more on the IMF-Bs component, the R-M mechanism is predominant, whereas during phases when ap increases as v increases the equinoctial mechanism is more likely to be effective.  相似文献   

15.
This paper presents some results on the following subjects obtained from in-situ forced vibration tests and earthquake observations. (1) The characteristics of the radiation damping of soil-foundation interaction systems vs. non-dimensional frequency a0 (=ωr/Vs) were experimentally estimated by the equivalent damping ratios hH ( = KH/2KH) and hR ( = KR/2KR), which were defined by complex stiffnesses 1KH (= KH + iKH) and 1KR (= KR + iKR) of soil. The results for hH and hR of base rock were compared with those of soft soil. (2) A comparative study of experimental and theoretical results was made. The theoretical results were obtained from elastic half-space theory. (3) A semi-empirical equation to estimate the equivalent S-wave velocity for the elastic half-space model is proposed here, considering the effects of layered media. (4) Various comparisons of the results of 1 KH, 1 KR, hH and hR of forced vibration tests and earthquake observations were made.  相似文献   

16.
Based on satellite observation data, using dynamics equation, the ionospheric O+ ion’s distribution in the synchronous altitude region for different geomagnetic activity indexK p is studied by theoretical modeling and numerical analyzing, and semi-empirical models for the O+ ion’s density and flux versus longitude in the synchronous altitude region for differentK p are given. The main results show that in the synchronous altitude region: (i) The O+ ion’s density and flux in day-side are larger than those in nightside. (ii) With longitude changing, the higher the geomagnetic activity indexK p is, the higher the O+ ion’s density and flux, and their variation amplitude will be. The O+ ion’s density and flux whenK p 6 will be about ten times as great as that whenK p = 0. (iii) WhenK p = 0 orK p 6, the O+ ion’s density reaches maximum at longitudes 120° and 240° respectively, and minimum in the magnetotail. WhenK p = 3−5, the O+ ion’s density gets to maximum at longitude 0°, and minimum in the magnetotail. However, the O+ ion’s flux reaches maximum at longitude 120° and 240° respectively, and minimum in the magnetotail for anyK p value.  相似文献   

17.
Magnetic hysteresis loops and the derived hysteresis ratios RH and RI are used to classify the various natural dilute magnetic materials. RI is the ratio of saturation isothermal remanence (IR) to saturation (IS) magnetization, and RH is the ratio of remanent coercive force (HR) to coercive force (HC). The RH and RI values depend on grain size, the characteristics of separate size modes in mixtures of grains of high and low coercivity, and the packing characteristics. Both RH and RI are affected by thermochemical alterations of the ferromagnetic fraction. Hysteresis loop constriction is observed in lunar samples, chondrite meteorites and thermochemically-altered basaltic rocks, and is due to mixtures of components of high and low coercivity. Discrete ranges of RH and RI for terrestrial and lunar samples and for chondrite meteorites provide for a classification of these natural materials based on their hysteresis properties.  相似文献   

18.
A new single-station model (SSM) for monthly median values of the ionospheric parameters foF2 and M(3000)F2 has been developed. Fourier analysis provides a tool for decomposing the time-varying ionospheric parameters. The 12–month smoothed sunspot number R 12 was used as an external solar characteristic because of its availability and predictability. However, for the first time, the solar activity is described not only by R 12 , but also by the linear coefficient K R representing the tendency of the change of solar activity. A general non-linear approximation of the influence of the solar-cycle characteristics R 12 and K R and ionospheric parameters foF2 and M(3000)F2 was accepted. The new SSM is applied to several European stations and its statistical evaluation shows better results than the other two SSMs used in the paper. The approach described in the paper does not contradict the use of different synthetic ionospheric indices (as the T-index, MF2–index); the basic aim is to show only that using one additional new characteristic of the solar-cycle variations, such as K R , improves the monthly median model.  相似文献   

19.
Summary The stress sensitivitiesS x andS R of susceptibility and remanence for titanomagnetite-bearing rocks are calculated in terms of magnetostriction constants 100 and 111 and anisotropy constantsK 1,K 2 of the magnetic minerals.S x andS R are represented by quite different algebraic expressions but happen to have comparable numerical values over the whole range of titanomagnetite compositions. Both increase strongly with titanium content. This leads to more optimistic calculations of tectonomagnetic effects than with the previously assumed stress sensitivity for pure magnetite.  相似文献   

20.
Results of photospheric magnetic field extrapolation in a potential approximation and of the technique for separating the open part of magnetic flux have revealed that changes in the relationship between the open part of the south polarity magnetic flux obtained in the chromosphere and corona from July to November 2006 correlate with variations in the Akasofu parameter calculated from data on the solar wind parameters and interplanetary magnetic field at Lagrange point L1, and with the K p index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号