共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In this study, we integrate 3D seismic reflection, wireline log, biostratigraphic and core data from the Egersund Basin, Norwegian North Sea to determine the impact of syn‐depositional salt movement and associated growth faulting on the sedimentology and stratigraphic architecture of the Middle‐to‐Upper Jurassic, net‐transgressive, syn‐rift succession. Borehole data indicate that Middle‐to‐Upper Jurassic strata consist of low‐energy, wave‐dominated offshore and shoreface deposits and coal‐bearing coastal‐plain deposits. These deposits are arranged in four parasequences that are aggradationally to retrogradationally stacked to form a net‐transgressive succession that is up to 150‐m thick, at least 20 km in depositional strike (SW‐NE) extent, and >70 km in depositional dip (NW‐SE) extent. In this rift‐margin location, changes in thickness but not facies are noted across active salt structures. Abrupt facies changes, from shoreface sandstones to offshore mudstones, only occur across large displacement, basement‐involved normal faults. Comparisons to other tectonically active salt‐influenced basins suggest that facies changes across syn‐depositional salt structures are observed only where expansion indices are >2. Subsidence between salt walls resulted in local preservation of coastal‐plain deposits that cap shoreface parasequences, which were locally removed by transgressive erosion in adjacent areas of lower subsidence. The depositional dip that characterizes the Egersund Basin is unusual and likely resulted from its marginal location within the evolving North Sea rift and an extra‐basinal sediment supply from the Norwegian mainland. 相似文献
4.
Summary. The lithospheric stretching model for the formation of sedimentary basins was tested in the central North Sea by a combined study of crustal thinning and basement subsidence patterns. A profile of crustal structure was obtained by shooting a long-range seismic experiment across the Central Graben, the main axis of subsidence. A seabed array of 12 seismometers in the graben was used to record shots fired in a line 530 km long across the basin. The data collected during the experiment were interpreted by modelling synthetic seismograms from a laterally varying structure, and the final model showed substantial crustal thinning beneath the graben. Subsidence data from 19 exploration wells were analysed to obtain subsidence patterns in the central North Sea since Jurassic times. Changes in water depth were quantified using foraminiferal assemblages where possible, and observed basement subsidence paths were corrected for sediment loading, compaction and changes in water depth through time. The seismic model is shown to be compatible with the observed gravity field, and the small size of observed gravity anomalies is used to argue that the basin is in local isostatic equilibrium. Both crustal thinning and basement subsidence studies indicate about 70 km of stretching across the Central Graben during the mid-Jurassic to early Cretaceous extensional event. This extension appears to have occurred over crust already slightly thinned beneath the graben, and the seismic data suggest that total extension since the early Permian may have been more than 100km. The data presented here may all be explained using a simple model of uniform extension of the lithosphere. 相似文献
5.
Orthogonal to oblique rifting: effect of rift basin orientation in the evolution of the North basin, Malawi Rift, East Africa 总被引:2,自引:1,他引:2
E. Mortimer D. A. Paton† C. A. Scholz‡ M. R. Strecker P. Blisniuk 《Basin Research》2007,19(3):393-407
The East African Rift system has long been considered the best modern example of the initial stages of continental rifting. The Malawi Rift is characteristic of the western branch of the East African Rift system, composed of half-grabens of opposing asymmetry along its length. There are striking similarities between basins within the Malawi Rift, and others along the western branch. Each exhibits similar bathymetry, border-fault length, rift zone width and fault segment length. The North Basin of the Malawi Rift differs from others in the rift only in its orientation: trending NW–SE as opposed to N–S. Although there is general agreement as to the geometry of the Malawi Rift; debate as to the amount of strike–slip vs. dip–slip deformation and the influence of underlying Pan-African foliation remains. This study presents new data from a closely spaced shallow [2 s two-way travel time (TWT)] seismic reflection data set integrated with basin-scale deeper (6 s TWT) seismic reflection data that document the structural evolution of the border and intra-basin faults. These data reveal that the different trend of the North Basin, most likely to have been influenced by the underlying Pan-African foliation, has played an extremely important role in the structural style of basin evolution. The border-fault and intra-basin structures nucleated during extension that was initially orthogonal (ENE). During this time (>8.6 to ∼0.5–0.4 Ma) intra-basin faults synthetic to the west-dipping border-fault nucleated, whereas strain was localised on the segmented border-fault early on. A later rotation of extension orientation (to NW) led to these established faults orienting oblique to rifting. This generated an overall dextral strike–slip setting that led to the development of transfer faults adjacent to the border-fault, and the generation of flower structures and folds over the greater displacement intra-basin faults. 相似文献
6.
S. A. Clark E. Glorstad‐Clark J. I. Faleide D. Schmid E. H. Hartz W. Fjeldskaar 《Basin Research》2014,26(4):550-566
We present tectonic models of progressive basin formation in the south‐west Barents Sea derived as part of the PETROBAR project (Petroleum‐related studies of the Barents Sea region). The basin architecture developed as a multi‐stage rift preceding the creation of the sheared/transtensional margin conjugate to NE Greenland. N‐ to NNE‐striking basins, with sediment thicknesses in places exceeding 15 km, are separated by basement highs. We use two basin analysis approaches, BMT? backstripping and TecMod?time‐forward modelling, to determine stretching factors through time along the profile PETROBAR‐07. This 550 km‐long profile derived from wide‐angle reflection/refraction seismic data acquired in 2007, coincident with deep multichannel seismic reflection data. Detailed stratigraphic analysis of the reflection profile, in concert with a dense grid of 2D profiles tied to wells, provides timing and water depth constraint for the models. Velocity analysis of the wide‐angle data provides constraint on the cumulative crustal stretching. The north‐west trending cross‐section extends from continental craton, at the Varanger Peninsula, to within 16 km of the interpreted continent–ocean boundary. Rifting along the profile was episodic, with four distinct phases of basin formation during the Carboniferous, the Late Permian–Triassic, the Late Jurassic–Early Cretaceous and the Late Cretaceous–Eocene. Collectively, the basins exhibit a general trend of younging, narrowing, and deepening oceanward, suggesting a gradual focusing of rifting prior to final breakup. Cumulative stretching factors derived from BMT and TecMod correlate well with observed crustal thinning, and the two models provide uncertainty bounds for stretching factors for the separate rift phases. In contrast to orthogonally rifted margins, stretching is relatively minor immediately prior to transform breakup, with greater stretching occurring during earlier rift phases. 相似文献
7.
Impact of normal faulting and pre‐rift salt tectonics on the structural style of salt‐influenced rifts: the Late Jurassic Norwegian Central Graben,North Sea 下载免费PDF全文
Studies of salt‐influenced rift basins have focused on individual or basin‐scale fault system and/or salt‐related structure. In contrast, the large‐scale rift structure, namely rift segments and rift accommodation zones and the role of pre‐rift tectonics in controlling structural style and syn‐rift basin evolution have received less attention. The Norwegian Central Graben, comprises a complex network of sub‐salt normal faults and pre‐rift salt‐related structures that together influenced the structural style and evolution of the Late Jurassic rift. Beneath the halite‐rich, Permian Zechstein Supergroup, the rift can be divided into two major rift segments, each comprising rift margin and rift axis domains, separated by a rift‐wide accommodation zone – the Steinbit Accommodation Zone. Sub‐salt normal faults in the rift segments are generally larger, in terms of fault throw, length and spacing, than those in the accommodation zone. The pre‐rift structure varies laterally from sheet‐like units, with limited salt tectonics, through domains characterised by isolated salt diapirs, to a network of elongate salt walls with intervening minibasins. Analysis of the interactions between the sub‐salt normal fault network and the pre‐rift salt‐related structures reveals six types of syn‐rift depocentres. Increasing the throw and spacing of sub‐salt normal faults from rift segment to rift accommodation zone generally leads to simpler half‐graben geometries and an increase in the size and thickness of syn‐rift depocentres. In contrast, more complex pre‐rift salt tectonics increases the mechanical heterogeneity of the pre‐rift, leading to increased complexity of structural style. Along the rift margin, syn‐rift depocentres occur as interpods above salt walls and are generally unrelated to the relatively minor sub‐salt normal faults in this structural domain. Along the rift axis, deformation associated with large sub‐salt normal faults created coupled and decoupled supra‐salt faults. Tilting of the hanging wall associated with growth of the large normal faults along the rift axis also promoted a thin‐skinned, gravity‐driven deformation leading to a range of extensional and compressional structures affecting the syn‐rift interval. The Steinbit Accommodation Zone contains rift‐related structural styles that encompass elements seen along both the rift margin and axis. The wide variability in structural style and evolution of syn‐rift depocentres recognised in this study has implications for the geomorphological evolution of rifts, sediment routing systems and stratigraphic evolution in rifts that contain pre‐rift salt units. 相似文献
8.
Oliver B. Duffy Rob L. Gawthorpe Matthew Docherty Simon H. Brocklehurst 《Basin Research》2013,25(3):310-330
The Southern Tail‐End Graben, Danish Central Graben, is characterized by a lateral variation in the thickness and mobility of pre‐rift Zechstein Supergroup evaporites, allowing investigation of how supra‐basement evaporite variability influences rift structural style and tectono‐stratigraphy. The study area is divided into two structural domains based on interpretations of the depositional thickness and mobility of the Zechstein Supergroup. Within each domain, we examine the overall basin morphology and the structural styles in the pre‐Zechstein and supra‐Zechstein (cover) units. Furthermore, integration of two‐way travel‐time (TWT)‐structure and ‐thickness maps allows fault activity and evaporite migration maps to be generated for pre‐ and syn‐rift stratal units within the two domains, permitting constraints to be placed on: (i) the timing of activity on pre‐Zechstein and cover faults and (ii) the onset, duration and migration direction of mobile evaporites. The northern domain is interpreted to be free from evaporite‐influence, and has developed in a manner typical of brittle‐only, basement‐involved rifts. Syn‐rift basins display classical half‐graben geometries bounded by thick‐skinned faults. In contrast, the southern domain is interpreted to be evaporite‐influenced, and cover structure reflects a southward increase in the thickness and mobility of the Zechstein Supergroup evaporites. Fault‐related and evaporite‐related folding is prominent in the southern domain, together with variable degrees of decoupling of sub‐Zechstein and cover fault and fold systems. The addition of mobile evaporites to the rift results in: (i) complex and spatially variable modes of tectono‐stratigraphic evolution; (ii) syn‐rift stratal geometries which are condensed above evaporite swells and over‐thickened in areas of withdrawal; (iii) compartmentalized syn‐rift depocentres; and (iv) masking of rift‐related megasequence boundaries. Through demonstrating these deviations from the characteristics of rifts free from evaporite influence, we highlight the first order control evaporites may exert upon rift structural style and the distribution and thicknesses of syn‐rift units. 相似文献
9.
The structural and sedimentological evolution of early synrift successions: the Middle Jurassic Tarbert Formation, North Sea 总被引:1,自引:0,他引:1
ABSTRACT This study addresses the complex relationship between an evolving fault population and patterns of synrift sedimentation during the earliest stages of extension. We have used 3D seismic and well data to examine the early synrift Tarbert Formation from the Middle–Late Jurassic northern North Sea rift basin. The Tarbert Formation is of variable thickness across the study area, and thickness variations define a number of 1- to 5-km-wide depocentres bounded by normal faults. Seismic reflections diverge towards the bounding faults indicating that the faults were active contemporaneous with the deposition of the formation. Many of these faults became inactive during later Heather Formation times. The preservation of the Tarbert Formation in both footwall and hangingwall locations demonstrates that, during the earliest synrift, the rate of deposition balanced the rate of tectonic subsidence. Local space generated by hangingwall subsidence was superimposed upon accommodation generated due to a regional rise in relative sea-level. In basal Tarbert Formation times, transgression across the prerift coastal plain produced lagoons and bays, which became increasingly marine. During continued transgression, barrier islands moved landward across the drowned bays. In the southern part of our study area, shallow marine sediments are erosionally truncated by fluvial deposition. These fluvial systems were constrained by fault growth monoclines, and flowed parallel to the main faults. We illustrate that stratal architecture and facies distribution of early sedimentation is strongly influenced by the active short-lived faults. Local depocentres adjacent to fault displacement maxima focused channel stacking and allowed the aggradation of thick shoreface successions. These depocentres formed early in the rift phase are not necessarily related to Late Jurassic – Early Cretaceous depocentres developed along the major linked normal fault systems. 相似文献
10.
Christopher A.‐L. Jackson Gavin M. Elliott Elisabeth Royce‐Rogers Robert L. Gawthorpe Tor E. Aas 《Basin Research》2019,31(3):514-538
“Salt” giants are typically halite‐dominated, although they invariably contain other evaporite (e.g. anhydrite, bittern salts) and non‐evaporite (e.g. carbonate, clastic) rocks. Rheological differences between these rocks mean they impact or respond to rift‐related, upper crustal deformation in different ways. Our understanding of basin‐scale lithology variations in ancient salt giants, what controls this and how this impacts later rift‐related deformation, is poor, principally due to a lack of subsurface datasets of sufficiently regional extent. Here we use 2D seismic reflection and borehole data from offshore Norway to map compositional variations within the Zechstein Supergroup (ZSG) (Lopingian), relating this to the structural styles developed during Middle Jurassic‐to‐Early Cretaceous rifting. Based on the proportion of halite, we identify and map four intrasalt depositional zones (sensu Clark et al., Journal of the Geological Society, 1998, 155, 663) offshore Norway. We show that, at the basin margins, the ZSG is carbonate‐dominated, whereas towards the basin centre, it becomes increasingly halite‐dominated, a trend observed in the UK sector of the North Sea Basin and in other ancient salt giants. However, we also document abrupt, large magnitude compositional and thickness variations adjacent to large, intra‐basin normal faults; for example, thin, carbonate‐dominated successions occur on fault‐bounded footwall highs, whereas thick, halite‐dominated successions occur only a few kilometres away in adjacent depocentres. It is presently unclear if this variability reflects variations in syn‐depositional relief related to flooding of an underfilled presalt (Early Permian) rift or syn‐depositional (Lopingian) rift‐related faulting. Irrespective of the underlying controls, variations in salt composition and thickness influenced the Middle Jurassic‐to‐Early Cretaceous rift structural style, with diapirism characterising hangingwall basins where autochthonous salt was thick and halite‐rich and salt‐detached normal faulting occurring on the basin margins and on intra‐basin structural highs where the salt was too thin and/or halite‐poor to undergo diapirism. This variability is currently not captured by existing tectono‐stratigraphic models largely based on observations from salt‐free rifts and, we argue, mapping of suprasalt structural styles may provide insights into salt composition and thickness in areas where boreholes are lacking or seismic imaging is poor. 相似文献
11.
《Basin Research》2018,30(Z1):15-35
Nearly all successions of the near‐shore strata exhibit cyclical movements of the shoreline, which have commonly been attributed to cyclical oscillations in relative sea level (combining eustasy and subsidence) or, more rarely, to cyclical variations in sediment supply. It has become accepted that cyclical change in sediment delivery from source catchments may lead to cyclical movement of boundaries such as the gravel front, particularly in the proximal segments of sediment‐routing systems. In order to quantitatively assess how variations in sediment transport as a consequence of change in relative sea‐level and surface run‐off control stratigraphic architecture, we develop a simple numerical model of sediment transport and explore the sensitivity of moving boundaries within the sediment‐routing system to change in upstream (sediment flux, precipitation rate) and downstream (sea level) controls. We find that downstream controls impact the shoreline and sand front, while the upstream controls can impact the whole system depending on the amplitude of change in sediment flux and precipitation rate. The model implies that under certain conditions, the relative movement of the gravel front and shoreline is a diagnostic marker of whether the sediment‐routing system experienced oscillations in sea level or climatic conditions. The model is then used to assess the controls on stratigraphic architecture in a well‐documented palaeo‐sediment‐routing system in the Late Cretaceous Western Interior Seaway of North America. Model results suggest that significant movement of the gravel front is forced by pronounced (±50%) oscillations in precipitation rate. The absence of such movement in gravel front position in the studied strata implies that time‐equivalent movement of the shoreline was driven by relative sea‐level change. We suggest that tracking the relative trajectories of internal boundaries such as the gravel front and shoreline is a powerful tool in constraining the interpretation of stratigraphic sequences. 相似文献
12.
Mid-Palaeocene palaeogeography of the eastern North Sea basin: integrating geological evidence and 3D geodynamic modelling 总被引:1,自引:0,他引:1
The Mid‐Palaeocene palaeogeography of Denmark and the surrounding areas have been reconstructed on the basis of published geological data integrated with 3D geodynamic modelling. The use of numerical modelling enables quantitative testing of scenarios based on geological input alone and thus helps constrain likely palaeo‐water depths in areas where the geological data are inconclusive or incomplete. The interpretation of large‐scale erosional valleys and small‐scale circular depressions at the Mid‐Palaeocene Top Chalk surface in the Norwegian–Danish basin as either submarine or subaerial features is enigmatic and has strong implications for palaeogeographical reconstructions of the eastern North Sea basin. A 3D thermo‐mechanical model is employed in order to constrain the likely palaeo‐water depths of the eastern North Sea basin during the Palaeocene. The model treats the lithosphere as an elasto‐visco‐plastic continuum and models the lithospheric response to the regional stress field and thermal structure. The model includes the effects of sea‐level change, sedimentation and erosion, from the Mid Cretaceous to the present. Modelling results reproduce to first order geological data such as present sediment isopachs and palaeo‐water depths. It is concluded that the Mid Palaeocene water depths in the Norwegian–Danish basin were about 250 m. The erosional valleys and circular depressions at the top of the Upper Cretaceous‐Danian Chalk Group are thus interpreted to have formed in relatively deep water rather than due to subaerial exposure. Likely interpretations of the structures are therefore submarine valleys and pockmarks. 相似文献
13.
Late syn‐rift evolution of the Vingleia Fault Complex,Halten Terrace,offshore Mid‐Norway; a test of rift basin tectono‐stratigraphic models 下载免费PDF全文
Gavin M. Elliott Christopher A.‐L. Jackson Robert L. Gawthorpe Paul Wilson Ian R. Sharp Lisa Michelsen 《Basin Research》2017,29(Z1):465-487
Rift basin tectono‐stratigraphic models indicate that normal fault growth controls the sedimentology and stratigraphic architecture of syn‐rift deposits. However, such models have rarely been tested by observations from natural examples and thus remain largely conceptual. In this study we integrate 3D seismic reflection, and biostratigraphically constrained core and wireline log data from the Vingleia Fault Complex, Halten Terrace, offshore Mid‐Norway to test rift basin tectono‐stratigraphic models. The geometry of the basin‐bounding fault and its hangingwall, and the syn‐rift stratal architecture, vary along strike. The fault is planar along a much of its length, bounding a half‐graben containing a faultward‐thickening syn‐rift wedge. Locally, however, the fault has a ramp‐flat‐ramp geometry, with the hangingwall defined by a fault‐parallel anticline‐syncline pair. Here, an unusual bipartite syn‐rift architecture is observed, comprising a lower faultward‐expanding and an upper faultward‐thinning wedge. Fine‐grained basinfloor deposits dominate the syn‐rift succession, although isolated coarse clastics occur. The spatial and temporal distribution of these coarse clastics is complex due to syn‐depositional movement on the Vingleia Fault Complex. High rates of accommodation generation in the fault hangingwall led to aggradational stacking of fan deltas that rapidly (<5 km) pinch out basinward into offshore mudstone. In the south of the basin, rapid strain localization meant that relay ramps were short‐lived and did not represent major, long‐lived sediment entry points. In contrast, in the north, strain localization occurred later in the rift event, thus progradational shorefaces developed and persisted for a relatively long time in relay ramps developed between unlinked fault segments. The footwall of the Vingleia Fault Complex was characterized by relatively low rates of accommodation generation, with relatively thin, progradational hangingwall shorelines developed downdip of the fault block apex, sometime after the onset of sediment supply to the hangingwall. We show that rift basin tectono‐stratigraphic models need modifying to take into account along‐strike variability in fault structure and basin physiography, and the timing and style of syn‐rift sediment dispersal and facies, in both hangingwall and footwall locations. 相似文献
14.
Trajectory analysis is an alternative approach to systems tract analysis in unravelling the sequence stratigraphic development of sedimentary successions. Whereas the latter anticipates a succession of the depositional history in terms of a given order of systems tracts, trajectory analysis combines trajectory classes in any order, thus providing a more flexible interpretation of the depositional evolution with fewer a priori assumptions about the type or the nature of the mechanisms driving sequence development. The overall regressive part of the Brent Delta (Middle Jurassic, Northern North Sea) has been analysed using this approach. The distribution, thicknesses and stacking patterns of facies associations have been analysed to unravel the trajectorial behaviour of the system. In proximal areas (Oseberg domain), thin shoreface/foreshore packages associated with a prograding strandplain are overlain by upper delta-plain (floodplain) and distributary channel deposits. Flat or descending regressive trajectories can explain the stratigraphic development in this area. A short distance to the north (Huldra domain), the presence of thicker shoreface/foreshore packages and lower delta-plain sediments suggests a low-angle ascending regressive trajectory. In more distal areas (Gullfaks and Visund domains), a higher rate of aggradation leads to the development of even thicker shoreface/foreshore packages and the development of lagoons and bays in the lower delta-plain realm. Alternating high- and low-angle ascending regressive trajectories can explain the distal development. 相似文献
15.
Ottar Basin, SW Barents Sea: a major Upper Palaeozoic rift basin containing large volumes of deeply buried salt 总被引:1,自引:0,他引:1
Seismic mapping and gravity modelling of the Ottar Basin - a little studied Upper Palaeozoic graben in the south-western Barents Sea - demonstrates the presence of a major rift basin with large accumulations of unmobilized salt. Buried beneath thick, flat-lying Mesozoic strata, the NE-trending fault-bounded basin is at least 170 km long, varies in width between 50 and 80 km and coincides with a negative gravity anomaly of more than — 10 mgal. Seismic observations show that the south-western part is a half-graben tilted to the north-west whereas the north-eastern part appears to be more symmetric in shape. A large mass deficiency in the north-eastern part of the basin, indicated by a gravity anomaly of more than — 30 mgal, makes it necessary to postulate large amounts of salt within the basin. The preferred gravity model shows a total basin depth of 9.5 km, basin relief of 4.2 km and a salt volume of 6800 km3 corresponding to a 2.4-km-thick salt layer. Similar basin depths, but only 500–600 km3 of salt, are indicated beneath the Samson Dome in the south-western part of the basin. Unlike salt bodies in other Barents Sea basins, the thick salt deposit in the north-eastern part of the Ottar Basin is relatively unaffected by halokinesis. Interfingering of different basin facies, lack of tectonic reactivation of the basin and a relatively late differential loading by protruding cover strata probably explain these differences in development. The large size and voluminous salt deposits establish the Ottar Basin as one of the major Barents Sea evaporite basins and an important structural component of the Upper Palaeozoic rift system. 相似文献
16.
Basin modelling studies are carried out in order to understand the basin evolution and palaeotemperature history of sedimentary basins. The results of basin modelling are sensitive to changes in the physical properties of the rocks in the sedimentary sequences. The rate of basin subsidence depends, to a large extent, on the density of the sedimentary column, which is largely dependent on the porosity and therefore on the rate of compaction. This study has tested the sensitivity of varying porosity/depth curves and related thermal conductivities for the Cenozoic succession along a cross‐section in the northern North Sea basin, offshore Norway. End‐member porosity/depth curves, assuming clay with smectite and kaolinite properties, are compared with a standard compaction curve for shale normally applied to the North Sea. Using these alternate relationships, basin geometries of the Cenozoic succession may vary up to 15% from those predicted using the standard compaction curve. Isostatic subsidence along the cross‐section varies 2.3–4.6% between the two end‐member cases. This leads to a 3–8% difference in tectonic subsidence, with maximum values in the basin centre. Owing to this, the estimated stretching factors vary up to 7.8%, which further gives rise to a maximum difference in heat flow of more than 8.5% in the basin centre. The modelled temperatures for an Upper Jurassic source rock show a deviation of more than 20 °C at present dependent on the thermal conductivity properties in the post‐rift succession. This will influence the modelled hydrocarbon generation history of the basin, which is an essential output from basin modelling analysis. Results from the northern North Sea have shown that varying compaction trends in sediments with varying thermal properties are important parameters to constrain when analysing sedimentary basins. 相似文献
17.
Our understanding of sedimentation in alluvial basins is best for very short and very long time‐scales (those of bedforms to bars and basinwide deposition, respectively). Between these end members, the intermediate time‐scales of stratigraphic assembly are especially hard to constrain with field data. We address these ‘mesoscale’ fluvial dynamics with data from an experimental alluvial system in a basin with a subsiding floor. Observations of experimental deposition over a range of time‐scales illustrate two important properties of alluvial systems. First, ephemeral flows are disproportionately important in basin filling. Lack of correlation between flow occupation and sedimentation indicates that channelized flows serve mainly as conduits for sediment, while most deposition occurs via short‐lived unchannelized flow events. Second, there is a characteristic time required for individual depositional events to average to basin‐scale stratal patterns. This time can be scaled in terms of the time required for a single channel‐depth of aggradation, and in this form is constant through a four‐fold variation of experimental subsidence rate. 相似文献
18.
19.
20.
This paper describes the development of a regressive-to-transgressive shoreline wedge within the Middle Jurassic Tarbert Formation in the Oseberg South area (northern North Sea), as interpreted from core and log data from more than hundred wells. The wedge is described in terms of four facies associations (FA1–FA4). The lower, regressive portion of the wedge (FA1–FA2) contains both coarsening upward wave/storm-dominated shoreline deposits as well as coal-bearing paralic deposits, and was deposited during ascending regression. The upper, transgressive portion of the wedge (FA3–FA4) is characterised by wave-dominated estuarine deposits, exhibiting an upward change from inner to central to outer estuarine deposits. In contrast to some earlier studies, it is argued that this part was deposited during accretionary transgression. The present study documents an estuarine system that developed without any preceding fall of relative sea level and valley incision. It is argued that differential fault-induced subsidence created a broad gentle sag wherein one or several estuarine systems developed as the depositional system became transgressive. The subtle fault-induced subsidence is related to the tectonic evolution in the North Sea Basin. 相似文献