首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At the top of the Waimea Canyon Basalt on the island of Kauai, rare flows of alkalic postshield-stage hawaiite and mugearite overlie tholeiitic flows of the shield stage. These postshield-stage flows are 3.92 Ma and provide a younger limit for the age of the tholeiitic shield stage. The younger Koloa Volcanics consist of widespread alkalic rejuvenated-stage flows and vents of alkalic basalt, basanite, nephelinite, and nepheline melilitite that erupted between 3.65 and 0.52 Ma. All the flows older than 1.7 Ma occur in the west-northwestern half of the island and all the flows younger than 1.5 Ma occur in the east-southeastern half. The lithologies have no spatial or chronological pattern. The flows of the Koloa Volcanics are near-primary magmas generated by variable small degrees of partial melting of a compositionally heterogeneous garnet-bearing source that has about two-thirds the concentration of P2O5, rare-earth elements, and Sr of the source of the Honolulu Volcanics on the island of Oahu. The same lithology in the Koloa and Honolulu Volcanics is generated by similar degrees of partial melting of distinct source compositions. The lavas of the Koloa Volcanics can be generated by as little as 3 percent to as much as 17 percent partial melting for nepheline melilitite through alkalic basalt, respectively. Phases that remain in the residue of the Honolulu Volcanics, such as rutile and phlogopite, are exhausted during formation of the Koloa Volcanics at all but the smallest degrees of partial melting. The mantle source for Kauai lava becomes systematically more depleted in 87Sr/86Sr as the volcano evolves from the tholeiitic shield stage to the alkalic postshield stage to the alkalic rejuvenated stage: at the same time, the lavas become systematically more enriched in incompatible trace elements. On a shorter timescale, the lavas of the Koloa Volcanics display the same compositional trends, but at a lower rate of change. The source characteristics of the Koloa Volcanics, considered along with those of the Honolulu Volcanics, support a mixing model in which the source of rejuvenated-stage lava represents large-percent melts of a plume source mixed with small amounts of small-percent melts of a heterogeneous mid-ocean-ridge source.  相似文献   

2.
The population density of olivine phenocrysts of the tholeiites display an exponential variation, which is typical of igneous as well as contact metamorphic rocks. The exponential variation is explained by a new growth probability model, which is consistent with experimental work. The forsterite content of the olivine phenocrysts decreases with decreasing size. Various phenocryst features suggest that the tholeiites first crystallized slowly in a magma chamber, after which they underwent crystallization for a short period of time in a feeder dyke before eruption took place.  相似文献   

3.
The volcanic rocks of Aden, Little Aden, and Ras Imran, heredesignated as belonging to the Aden Volcanic Series, were eruptedthrough central-vent, strato-volcanoes about 5 m.y. ago. Inits major element chemistry the Aden Volcanic Series is intermediatebetween the alkaline and tholeiitic associations, and this isdemonstrated by comparing it with the alkaline suite of Hawaiiand the tholeiitic series of Thingmuli, Iceland. It is proposedthat the most acceptable ‘parental’ magma is a mildlyalkaline olivine basalt which, on fractionation, produced aseries ranging from trachybasalts through trachyandesites andtrachytes to rhyolites. These rhyolites are peralkaline as themolecular proportion of alumina is less than that of the combinedalkalis, and are comenditic as the series is poor in normativefemic constituents. Trace element data suggest that the peralkalinesilicic eruptives are chemically comparable with those of MayorIsland, New Zealand, where a mildly alkaline olivine basaltparent has also been postulated. Although the age of eruption of c. 5 m.y., given by K-Ar measurements,is entirely consistent with an age deduced from geomorphologicalcriteria, an 87Sr/86Sr versus 87Rb/86Sr isochron plot suggeststhat the series is related to a thermal event some 20-30 m.y.older than the age of eruption. As this earlier age correspondsdirectly to the age of the previous magmatic episode, the eruptionof the Yemen Trap Series, the upper part of which is petrologicallysimilar to the Aden Volcanic Series, and as the initial 87Sr/86Srratios suggest that the magma originated in the mantle, it isproposed that the most acceptable petrogenetic scheme, whichwould also explain the anomalously old Rb-Sr age, is: (a) Partialfusion in the upper mantle giving rise to the alkaline YemenTrap Series, (b) After the cessation of surface activity, alarge body of magma existed in the upper mantle and this magma,on crystallizing, fractionated to produce a layered sequence,(c) About 5 m.y. ago some event, either pressure relief or furtherthermal activity, resulted in the partial remelting of thisfractionated plutonic sequence and the liquids so formed reachedthe surface without significant mixing or chemical fractionation.  相似文献   

4.
The Pleistocene to Holocene Honolulu Volcanic Series was eruptedfrom about 37 vents scattered over the older Koolau tholeiiteshield. The rocks of this series are compositionally zoned withrespect to the shield; near the Koolau caldera the predominantrocks are melilitenepheline basalts, but these give way outwardto nepheline basalts, and ultimately, at the apron of the shield,to alkalic olivine basalts. The xenoliths in these are likewisezoned: most of those in the caldera area consist of dunite,most of those at intermediate distances of lherzolite, and someof those in the apron of the shield consist of garnet pyroxeniteand peridotite. The zoning of the xenoliths, however, does notcoincide with that of the enclosing rocks. We believe that copiouseruption of Koolau tholeiite produced a lateral and verticalheterogeneity in the mantle beneath Oahu, and that the zoningin both Honolulu lavas and their xenoliths is caused by thatheterogeneity. The textures of the xenoliths indicate that thebasalts were mainly produced by fractional melting rather thanfractional crystallization. There is some evidence that thedunite xenoliths are mantle residua produced during the generationof the tholeiite, and that the Honolulu magmas were generatedat greater depths than the Koolau magmas, probably as a resultof elastic unloading.  相似文献   

5.
A thick lens of fresh groundwater exists in a large region of low permeability in the southern Lihue Basin, Kauai, Hawaii, USA. The conventional conceptual model for groundwater occurrence in Hawaii and other shield-volcano islands does not account for such a thick freshwater lens. In the conventional conceptual model, the lava-flow accumulations of which most shield volcanoes are built form large regions of relatively high permeability and thin freshwater lenses. In the southern Lihue Basin, basin-filling lavas and sediments form a large region of low regional hydraulic conductivity, which, in the moist climate of the basin, is saturated nearly to the land surface and water tables are hundreds of meters above sea level within a few kilometers from the coast. Such high water levels in shield-volcano islands were previously thought to exist only under perched or dike-impounded conditions, but in the southern Lihue Basin, high water levels exist in an apparently dike-free, fully saturated aquifer. A new conceptual model of groundwater occurrence in shield-volcano islands is needed to explain conditions in the southern Lihue Basin. Electronic Publication  相似文献   

6.
The widespread abundance of Hi-Alumina Basalt (HAB) lavas in most volcanic arcs has been suggested by some as evidence for a primary, parental HAB magma generated by the high pressure melting of subducted oceanic crust (quartz eclogite). Others suggest a parental, mantle-derived olivine tholeiite magma which produces HAB magmas through fractionation of olivine, clinopyroxene, chrome-spinel +/– plagioclase. The petrology and geochemistry of seven HAB lavas from the Aleutian Cold Bay Volcanic Center have been studied in order to specifically address these two possibilities. All lavas show mineralogical and compositional features typical of most Aleutian HAB lavas. Coexisting opx and cpx in a closely associated basaltic-andesite indicate a minimum pre-eruption temperature of 1,110° C. A comparison of the observed (plag-tmag-olivcpx) and experimentally determined crystallization sequences yields a minimum pre-eruption pressure estimate of 7 kb and estimated H2O contents of 0.7 wt.%. Maximum pre-eruption f o 2 values have been estimated at NNO+0.6 log units.Mass balance calculations demonstrate that the HAB compositions are satisfied by the fractionation of olivine, clinopyroxene +/– plagioclase from a primitive (Mg-# > 65) parental tholeiite. Plagioclase accumulation does not play a significant role in their origin. Many of the same compositional characteristics are also satisfied by high pressure melting of altered ocean ridge tholeiite +5 v.% pelagic sediment (quartz eclogite). The available HAB phase equilibria data do not support a fractionation origin but do support an origin involving high pressure melting of quartz eclogite. The lack of compositional zonation in the HAB phenocrysts, and the complete absence of disequilibrium MgO-rich mafic phenocrysts further argue against a tholeiite fractionation origin.Consideration of all these features indicates that the geochemical data are permissive in their interpretation. A process involving tholeiite fractionation successfully predicts the compositions of the HAB lavas but is at odds with the mineralogical and phase equilibria evidence. With some exceptions (notably Ni, Cr and Sr abundances), a process of high pressure quartz eclogite melting is consistent with the compositional, mineralogical and phase equilibria characteristics of these HAB lavas. When the relative merits of both origins are weighed it is apparent that a quartz eclogite source satisfies more of important features of these HAB lavas.Extrusive rocks have been grouped on a basis of SiO2 content into basalt (<52 wt.%), basaltic-andesite (52–56 wt.%) and andesite (>56 wt.%) after Ewart (1982)  相似文献   

7.
The Cold Bay Volcanic Center,Aleutian Volcanic Arc   总被引:1,自引:0,他引:1  
The Cold Bay Volcanic Center has experienced two major stages of eruptive activity. Early (M-Series) acitivity produced bimodal Hi-Alumina basalt and calc-alkaline andesite lavas while later (FPK-Series) activity produced only calc-alkaline andesite. The spectrum of basalt compositions is believed to be due to high pressure (8 kb) fractionation at or near the base of the crust. Abundant mineralogical and geochemical evidence support a lower pressure mixing origin for all andesites. Inspection of the mineralogical data has shown that the earliest (M-Series) andesites were produced by mixing of basalt (<53 wt% SiO2) and silicic andesite (60.5 to 62.5 wt%) while later (FPK-Series) andesites resulted from the mixing of basaltic-andesite (53 to 56 wt%) and less silicic andesite (58.5 to 60.0 wt%). The major element and trace element geochemical data are consistent with a low pressure fractionation origin for the silicic endmember magmas and support the temporal variations in both mafic and silicic endmember compositions. The complete lack of crustal inclusions in all lavas is taken as evidence for a minimal crustal melting and/or assimilation role in the origin of the silicic endmembers. Many of the features of all andesites, including the important long term convergence of endmember magma compositions, are consistent with the process of liquid fractionation, accompanied by large scale magma mixing. A deduced upper limit of 62.5 wt% SiO2 for the silicic endmember magmas suggests that liquid fractionation, in the absence of major crustal melting, cannot produce more silicic magmas. A possible explanation is the presence of a rheological barrier, based on the concept of critical crystallinity (Marsh 1981), which prohibits more silicic liquids from being extracted from a crystal-liquid suspension.  相似文献   

8.
ROACH  IAN C. 《Journal of Petrology》2004,45(4):739-758
Intraplate basalts of the Eocene–Oligocene Monaro VolcanicProvince (MVP), in southeastern New South Wales, include lower-crustaland refractory to weakly metasomatized upper-mantle xenoliths.Lower-crustal-derived xenoliths appear to be all two-pyroxeneplagioclase granulites (CpxFe:Mg:Ca 0·17–0·56:0·63–0·77:0·28–0·89OpxFe:Mg:Ca 0·39–0·52:1·37–1·47:0·02An72–86 and An48–50) but may also include garnetpyroxenites at depth. Mantle-derived xenoliths are principallyspinel-bearing lherzolites (Fo89·8–90·6CpxFe:Mg:Ca 0·07–0·45:0·70–1·70:0·01–0·94OpxFe:Mg:Ca 0·16–0·19:1·62–1·75:0·01–0·10)but also include amphibole ± spinel-bearing lherzolite(Fo88·7–89·1 CpxFe:Mg:Ca 0·09–0·21:0·61–0·91:0·73–0·93OpxFe:Mg:Ca 0·09–0·31:0·70–1·54:0·03–0·91),spinel-bearing harzburgite (Fo90·5–90·7CpxFe:Mg:Ca 0·08:0·91–0·93:0·74–0·84OpxFe:Mg:Ca 0·16–0·18:1·73–1·79:0·00–0·02),wehrlite, pyroxenite (CpxFe:Mg:Ca 0·08–0·10:0·84–0·90:0·80–0·85OpxFe:Mg:Ca 0·16–0·33:1·51–1·73:0·02–0·03)and rare garnet pyroxenite (GtFe:Mg:Ca 0·83–0·95:1·60–1·70:0·45–0·48CpxFe:Mg:Ca 0·14–0·21:0·69–0·77:0·78–0·86Opx Fe:Mg:Ca 0·31–0·42:1·43–1·56:0·02–0·03)and amphibole–apatite composites. Xenolith textures aregenerally weakly to moderately foliated, a few are mosaic-porphyroblasticand rare samples are veined or highly strained. MVP xenolithsappear to have equilibrated under similar pressure–temperature(PT) conditions to other southeastern Australian xenolithsequivalent to the South Eastern Australia (SEA) palaeogeotherm.PT estimates for the MVP suite of xenoliths reveal aheterogeneous lower crust and upper mantle that is thickly underplatedto c. 1·8 GPa or c. 50 km depth. MVP xenolith PTdata are compared with those used to derive the SEA palaeogeotherm,which is shown to be in need of revision using more modern geothermometersand geobarometers and new xenolith coexisting mineral data. KEY WORDS: xenolith; petrography; texture; geotherm; Monaro; eastern Australia  相似文献   

9.
The high-pressure metamorphic rocks of the Sesia?CLanzo zone are partly covered by a volcano-sedimentary unit, the Biella Volcanic Suite. Calc-alkaline and shoshonitic lavas extruded sub-aerially on the Oligocene surface. Uranium?CLead zircon dating yields 32.44?C32.89?Ma for the eruption of the calc-alkaline lavas and therefore fixes a minimum age for the paleosurface. The Biella Volcanic Suite consists mainly of epiclastic rocks deposited in a high-energy fluvial environment and minor lava flows. The rocks of the suite display widespread post-eruption transformations. Illite and chlorite thermometry as well as fission track dating suggest a thermal overprint related to burial of the Biella Volcanic Suite. An upper crustal rigid block tilting in the area causes this burial. Hydrothermal tourmaline and ankerite veins related to the intrusion of the nearby Valle del Cervo Pluton crosscut the already tilted Biella Volcanic Suite. The intrusion age of Valle del Cervo Pluton at 30.39?±?0.50?Ma sets therefore the lower time limit for tectonic processes responsible for the tilting and burial. After the burial, the Biella Volcanic Suite remained for around 20?million years between the zircon and the apatite partial annealing zone. The apatite fission track ages spread between 16 and 20?Ma gives the time frame for the second exhumation of these units. The Biella Volcanic Suite and the adjacent rocks of the Sesia?CLanzo zone were the second time exhumed to the surface in Messinian times, after a long residence time within the apatite partial annealing zone.  相似文献   

10.
Volcán Colima is Mexico's most historically active andesitic composite volcano. It lies 150 km north of the Middle America Trench at the western end of the Mexican Volcanic Belt, closer to the trench than any other composite volcano in Mexico. Since its earliest reported eruption in 1576, V. Colima has evolved through three cycles of activity. Each cycle culminated in a major ashflow eruption, halting activity for 50 or more years. The last major ashflow eruption occurred in 1913. Andesitic block lava eruptions in 1961–1962 and 1975–1976 marked the inception of activity in a fourth historical cycle which may also terminate with a major ashflow eruption in the early part of the next century.Major and trace element analyses of whole rock samples and all constituent phases are presented for a suite of nine post-caldera hornblende and olivine-andesites. The suite includes samples from Colima's four major eruptions since 1869, spanning the last two eruptive cycles. Colima's post-caldera andesites are poor in K and other incompatible elements (Ti, P, Zn, Rb, Y, Zr, Ba, La, Yb, Hf, Th, and U) as may be characteristic of near trench andesites. From the 1913 ashflow eruption through the fourth cycle andesites, there have been increases in whole rock abundances of Si, Ba, and Cs, and decreases in Ti, Fe, Mg, Ni, Cr, and Sc. Crystal fractionation models can closely reproduce major element variations in the post-caldera suite, but systematically fail to predict sufficient concentrations of the compatible trace elements Cr, Ni, and Zn. Anomalous enrichments of compatible trace elements in Colima's andesites probably reflect simultaneous crystal fractionation and magma mixing in the subvolcanic system.Estimated pre-eruptive temperatures range from 940 °–1,000 ° C in the hornblende-andesites and 1,030 °–1,060 ° C in the olivine-andesites. Pre-eruptive magmatic water contents of 1.0–3.6 wt.% are calculated for the hornblende-andesites; the phenocryst assemblage of the olivine-andesite is calculated to equilibrate at 1,000 bars with 0.8% H2O.Orthopyroxenes and certain clinopyroxenes in all pre-1961 samples are reversely zoned, with relatively Mg-rich rims. The most pronounced Mg-rich rims occur in the olivine-andesites and are thought to reflect pre-eruptive magma mixing, involving a basic, olivine+/-clinopyroxene-bearing magma. In addition to their normally zoned pyroxenes, the post-1961, fourth cycle andesites display a number of other features which distinguish them from earlier post-caldera hornblende-andesites of similar bulk composition. These include: (1) higher total crystal contents, (2) lower modal hornblende contents, (3) higher calculated pre-eruptive silica activities, and (4) lower calculated pre-eruptive water contents. These features are all consistent with the interpretation that the fourth cycle andesites were less hydrous prior to eruption. The slight Mg-rich pyroxene rims in pre-1961 hornblende-andesites may record late-stage, pre-eruptive increases in magmatic water content, which act to raise magmatic f O 2 and Mg/Fe+2 ratios in the melt and in all crystalline phases. The fourth cycle andesites apparently did not experience a strong, pre-eruptive influx of water, resulting in lower magmatic water contents and normally zoned pyroxenes.  相似文献   

11.
The alkalic suite of Jan Mayen is of the trachybasaltic typewith a K2O/Na2O ratio of about 1·64. The suite includesall intermediate types of lavas between ankaramite and trachyte,with ankaramites being particularly prevalent. The major andtrace element trends are well defined. A new method allows distinctionbetween fractionated and accumulative ankaramites, and it isshown that the most primitive ankaramite contains 13–14per cent MgO. Experimentally determined P-T phase relationsof this composition suggest that it might be a primary composition,formed by partial melting of a spinel lherzolitic source at19·5kb and 1415°C. The fractionation from ankaramiteto trachybasalt occurred at low pressure, and was controlledby delayed gravitative settling of phenocrysts, while the fractionationfrom trachybasalt to trachyte is explained by crystallizationon the walls of the magma chambers.  相似文献   

12.
福建漳州牛头山火山地质公园火山喷发层序及岩相   总被引:3,自引:1,他引:3  
林长江 《福建地质》2002,21(4):195-199
牛头山火山地质公园位于风景壮观秀丽的闽南漳州市海滨,构造位置处于平潭一东山北东向断裂带中段,火山口坐落在龙海市隆教乡白塘村附近,涨潮时古火山口部分被海水淹没成为孤立于海中的小岛,退潮时,火山口全貌再露海面,火山口附近有一深槽(凹地),直径约8m,低于周围岩石3m,火山岩地层为新第三纪佛昙组上段玄武岩,根据岩性分布特征及岩石结构构造和岩层的产状等。可划分为喷溢相和火山颈相,是省内保存较完好的新生代古火山机构。  相似文献   

13.
14.
15.
张家口中生代火山盆地火山喷发对古气候的影响   总被引:5,自引:0,他引:5  
郭正府  刘嘉麟 《岩石学报》1998,14(3):318-331
本文在详细地研究了张家口中生代火山盆地火山喷发物的基础上,利用岩石学及大气环境化学的基本原理,提出了一套系统估算火山喷出气体及气溶胶总量的程序与方法,并对张家口中生代火山喷出气体的种类、总量及气溶胶总量进行了估算;分析了火山硫化物气体转化为火山硫酸盐气溶胶的光化学过程及可能途径。在分别研究了本区火山喷发导致的“阳伞效应”与“温室效应”的基础上,探讨了该区火山喷发对地表温度的综合影响。初步结果表明:张家口中生代火山盆地火山喷发向当时大气圈中输送了约9.96×1010kg的硫酸盐气溶胶,它们能导致当时北半球范围内太阳总幅射率降低0.81%~3.60%,最终造成地表温度下降约0.81℃~3.6℃。  相似文献   

16.
The Puu Hou littoral cones, on the south shoreline of Hawaii, were built in 5 days by steam explosions from two narrow lava streams of the 1868 Mauna Loa lava flows as they entered the sea. Explosions occurred in localized areas of both streams, from foci that migrated seaward as the flow built jetties into the sea. Debris, radially ejected from the migrating explosion centers, fell partly on land and partly at sea, and thus formed crescent shaped rims (half-cones) on land which overlap one another. The half-cones are breached through their centers by debris-free basalt corridors, because fragments that fell onto the flowing lava were carried seaward beyond the accumulating rims.Gray and red clastic layers are draped smoothly over the rim areas; thus the rims resemble anticlinal arches in cross section. Some beds can be traced from clastic layers on the ridges into irregular agglomeratic masses interbedded with basalt units of the source lava near the foci. The lower layers in the clastic sequence contain less olivine than those high in the sequence, which corresponds in time to an increasing olivine content during the 5 day flow, as recognized in the source lava.Fragments are angular to subangular blocks, lapilli and ash of crystalline basalt mixed with more abundant quickly chilled cognate material of similar sizes. The ash is mostly sideromelane in angular particles and rounded droplets (5–95%), tachylite (2–70%), crystalline basalt (1–40%), and broken olivine phenocrysts (1–9%). In some samples, the sideromelane droplets are partly oxidized on their surfaces, and internally are dark brown (R. I.=1.610–1.616), possibly due to dehydration and/or oxidation during the explosions. Samples with externally oxidized glass also contain etched olivine crystals and some iddingsite. Unaltered sideromelane droplets are pale yellowish-brown with R. I.=1.592–1.600, and are associated with unaltered, angular to subangular olivine crystals. The refractive index of the unaltered sideromelane droplets is the same as sideromelane crusts of pahoehoe on the lava flow farther inland, suggesting that the droplets are not hydrated or highly oxidized. None of the sideromelane fragments are palagonitized, presumably because little or no hydration has taken place since 1868.
Zusammenfassung Die littoralen Spratzkegel von Puu Hou an der Südküste von Hawaii sind innerhalb von 5 Tagen durch Dampfexplosionen in zwei naheliegenden Lavaströmen des Mauna Loa-Ausbruches im Jahre 1868 entstanden, als diese das Meer erreichten. Die Explosionen traten in eng begrenzten Bereichen beider Ströme auf; die Explosionsherde wanderten mit den Lavaströmen seewärts, wobei sich Landzungen in den Ozean bauten. Aus den seewärts wandernden Explosionsherden wurden Fragmente ausgeworfen, die teilweise auf das Land und in den Ozean fielen; es formten sich dabei halbkreisartige Ränder (Halbkegel), die sich am Land überlappen. Die Halbkegel sind in der Mitte von Basaltkorridoren durchbrochen, die frei von Explosionsfragmenten sind, da diese in die strömende Lava fielen und seewärts abtransportiert wurden.Graue und rote pyro-klastische Sedimentlagen legen sich über die Randzonen der Halbkegel, so daß sie im Querschnitt wie Antiklinalstrukturen aussehen. Einige dieser Schichten können mit klastischen Lagen vom randlichen Saum bis zu irregulären Agglomeratmassen verfolgt werden, die zwischen die Basalte nahe der Explosionsherde eingeschaltet sind. Die tieferen Lagen der klastischen Sedimente enthalten weniger Olivin als die höher liegenden. Dieses entspricht einem sich zeitlich vermehrenden Olivingehalt während der fünftägigen Ausbruchszeit, wie er auch in der Originallava erkannt werden kann.Die Bruchstücke bestehen aus angularen bis subangularen Blöcken, Lapilli und Kristallaschen, die mit rasch erkalteten Lavafetzen ähnlicher Korngröße vermischt sind. Die Asche enthält hauptsächlich Sideromelan in eckigen Bruchstücken und gefundeten Tröpfchen (5–95%), Tachylyt (2–70%), Kristallbasalt (1–40%) und zerbrochene Olivineinsprenglinge (1-9%).In einigen Proben sind die Sideromelantröpfchen teilweise auf ihren Oberflächen oxydiert und im Inneren möglicherweise durch Dehydrierung und/oder Oxydation während der Explosionen dunkelbraun gefärbt (R. I.=1.610-1.616).Proben mit äußerlich oxydiertem Glas enthalten auch angeätzte Olivinkristalle und einigen Iddingsit. Unveränderte Sideromelantröpfchen sind blaß gelblichbraun gefärbt (R. I.=1.592–1.600) und mit unveränderten, eckigen bis subangolaren Olivinkristallen vergesellschaftet. Der Brechungsindex der unveränderten Sideromelantröpfchen ist derselbe wie von Sideromelankrusten auf den Lavaströmen Pahoehoes. Daraus kann gefolgert werden, daß die Tröpfchen nicht hydratisiert oder stark oxydiert sind. Die Sideromelanbruchstücke enthalten keinen Palagonit, weil seit 1868 wahrscheinlich wenig oder gar keine Hydratisierung mehr stattgefunden hat.

Résumé Les cônes littoraux Puu Hou, sur la côte sud d'Hawai' ont été créés en cinq jours par les explosions de vapeur de deux branches étroites de la coulée de lave de Mauna Loa en 1868 lorsqu'elle entrait en contact avec la mer. Les explosions se sont produites dans des points localisés des deux branches de la coulée à partir du centre avançant en direction de la mer à mesure que la lave y construisait des jetées. Les débris projetés à la ronde depuis les centres d'explosion mobiles tombèrement en partie sur terre et en partie en mer formant ainsi sur le sol des bourrelets en forme de croissants (demi-cônes) qui s'entrecoupent. Les demi-cônes sont traversés dans leur centre par des couloirs de basalte dépourvus de débris, les fragments tombés dans la coulée de lave ayant été entraînés vers la mer au delà des bourrelets d'accumulation.Les couches élastiques grises et rouges sont drapées d'une manière égale au-dessus de la zone des bourrelets. Elle ressemble ainsi à des arches anticlinales en coupe. Certains lits peuvent être retracés à partir des couches élastiques sur les crêtes jusqu'à des masses agglomérées irrégulières mélangées à des éléments de basalte de la lave mère. Les couches inférieures de la séquence élastique contiennent moins d'olivine que les couches supérieures ce qui correspond à un accroissement de la proportion d'olivine pendant les 5 jours ue coulée, comme le lit de lave indique.Les fragments sont des blocs angulaires à sous-angulaires, des lapilli et de la cendre de basalte cristallin, mêlés à des matériaux apparentés de taille semblable, plus abondants et rapidement refroidis. La cendre est composée principalement de sidéromélane en particules anguleuses ou en gouttelettes rondes (5–95%), de tachylite (2–70%), de basalte cristallin (1–40%) et d'olivine phénocristale brisée (1–9%). Dans quelques échantillons, les gouttelettes de sidéromélane sont en partie oxydées à la surface et brun-foncé à l'intérieur (R. I.=1.610–1.616), peut-être par suite de déshydratation e/ou oxydation pendant l'explosion. Les échantillons comportant extérieurement du verre oxydé contiennent des cristaux d'olivine attaqués et une certaine proportion d'iddingsite. Les gouttelettes de sidéromélane intactes, sont d'un jaune-brun pâle, R. I.=1.592-1.600, et sont associées à des cristaux d'olivine non-attaquées, angulaires à sous-angulaires. L'indice de réfraction des gouttelettes intactes de sidéromélane est le même que celui de la croûte de sidéromélane du pahoehoe dans la coulée de lave plus à l'intérieur de l'île, suggérant que les gouttelettes ne sont pas hydratées ou très oxydées. Aucun des fragments de sidéromélane n'est palagonisé, sans doute parce que depuis 1868 il n'y a eu que peu ou pas d'hydratation.

, 1868 Puu Hou . Ha , .


Dedicated to Professor Dr. A.Rittmann on the occasion of his 75. birthday  相似文献   

17.
Geochemistry of tholeiites from Lanai,Hawaii   总被引:3,自引:0,他引:3  
Lanai is the third smallest of the fifteen principal subaerial shield volcanoes of the Hawaiian hotspot. This volcano apparently became extinct during the shield-building stage of volcanism, as shown by the absence of both alkalic cap and post-erosional lavas. Major and trace element analyses of 22 new samples collected primarily from 3 stratigraphic sections show that Lanai tholeiites span a large range in composition. Some Lanai lavas are unique geochemically among Hawaiian tholeiites in having the lowest abundances of incompatible trace elements of any Hawaiian lavas and well-developed positive Eu anomalies. The geochemical characteristics of these low-abundance Lanai tholeiites are not the result of alteration, differences in mantle source modal mineralogy, the presence of residual accessory mantle phases or fractional crystallization of such phases, assimilation of depleted [MORB] wall-rock, or accumulation/resorption of phenocrysts or xenocrysts. Incompatible trace element ratios (e.g., Nb/La, Nb/Th, La/Th, La/Hf, Ce/Pb) in Lanai tholeiites span considerable ranges and form coherent trends with each other and with absolute abundances of these elements. Large variations in La/Sm, La/Yb, and absolute REE abundances at constant MgO suggest that Lanai tholeiites formed by variable amounts of partial melting. However, large ranges in incompatible element ratios cannot be explained solely by variations in partial melting of a geochemically homogeneous source, but must reflect geochemical heterogeneities in the Lanai source. Partial melting modeling indicates that the mixed Lanai source is probably LREE-enriched [i.e., (La/Yb)CN>1]. One component in the Lanai source, exemplified by the low-abundance tholeiites, has markedly lower REE/HFSE, Th/HFSE, alkali/HFSE, and Ce/Pb ratios than other Lanai or Hawaiian tholeiites and may indicate the presence of recycled residual subduction zone materials in the Hawaiian plume source. The positive Eu anomalies that characterize the low-abundance Lanai tholeiites are not the result of plagioclase accumulation or assimilation but are a feature of this source component. Progressive temporal geochemical variations in Lanai tholeiites from 2 stratigraphic sections indicate that the source composition of these lavas probably evolved over time. This change could have resulted from a progressive decrease in the extent of partial melting of the Lanai source. The compositional variability of Lanai tholeiites suggests that geochemical heterogeneities in their source are larger than the scale of partial melting. Lanai tholeiites could not have formed by smaller degrees of partial melting of plume material than did the larger-volume Hawaiian shields. Therefore, volume differences between Hawaiian shields must be controlled primarily by differences in the volume of supplied plume material rather than by differences in the degree of partial melting. The premature cessation of eruptive activity at Lanai may be attributed to relatively large degrees of partial melting of a small plume.  相似文献   

18.
The island of St Martin lies inthe inactive part of the northernLesser Antilles island arc. The island consists of volcaniclasticsediments overlain and intruded by volcanic and plutonic rocks,which are in turn overlain by Miocene limestones. The extrusiveand intrusive rock suites are closely spaced in time (around27 Ma) although field relations suggest that the volcanic rockswere intruded by the plutons. Pluton emplacement gave rise tothermal metamorphism of the volcanic and volcaniclastic carapace,and to widespread hydrothermal alteration throughout the island. Geochemically, the igneous rocks of St Martin form a mildlytholeiitic to calc-alkaline typical subduction-related suite.The extrusive rocks are basalts to andesites, and the magmasappear to have differentiated largely through fractional crystallizationof plagioclase, clinopyroxene, and olivine. The REE displayflat chondrite-normalized patterns, with no significant Eu anomalydespite convincing evidence for plagioclase fractionation. Theplutonic rocks are more silica-rich diorites to granites, containingplagioclase, amphibole, and, less commonly, K-feldspar, sphene,zircon, and pyroxene. REE patterns are slightly LREE enrichedbut display distinct negative Eu anomalies. The fractionationof amphibole and accessory phases may have been important inthe evolution of the plutonic suite, as REE contents do notincrease overall with differentiation. Sr and Nd isotopic ratios of the St Martin suite form restrictedranges which vary little with differentiation, or between theextrusive and intrusive suiteSi 87Sr/86Sr ratios are slightlyhigher and 143Nd/l44Nd slightly lower than for volcanic rocksuites from the currently active northern Lesser Antilles volcanicarc. Some of the high 87Sr/86Sr ratios are explained in termsof hydrothermal alteration involving a high 87Sr/86Sr fluid,associated with pluton emplacement. Pb isotope ratios are similarto those of the currently active northern Lesser Antilles arc,and correlate with SiO2. Such correlations, together with largeranges of incompatible (and immobile) trace element ratios suggestthat open-system differentiation occurred during the evolutionof the St Martin suite. The composition of magma sources in the northern Lesser Antillesarc apparently has not changed significantly over the last 30Ma, despite a westward shift in the locus of arc magmatism.Addition of a slab-derived fluid to the mantle wedge is responsiblefor the high relative abundances of large ion lithophile elements(LILE) and enrichment in radiogenic Pb and Sr relative to mid-oceanridge basalt (MORB). Subsequent differentiation may involveassimilation of the arc basement in St Martin, which is believedto consist of Cretaceous to early Tertiary arc material, similarto that encountered in the Greater Antilles. *Present address: Department of Geosciences, University of Arizona, Tucson, Arizona 85721  相似文献   

19.
Kohala Volcano, the oldest of five shield volcanoes comprising the island of Hawaii, consists of a basalt shield dominated by tholeiitic basalt, Pololu Volcanics, overlain by alkalic lavas, Hawi Volcanics. In the upper Pololu Volcanics the lavas become more enriched in incompatible elements, and there is a transition from tholeiitic to alkalic basalt. In contrast, the Hawi volcanics consist of hawaiites, mugearites, and trachytes. 87Sr/86Sr ratios of 14 Pololu basalts and 5 Hawi lavas range from 0.70366 to 0.70392 and 0.70350 to 0.70355, respectively. This small but distinct difference in Sr isotopic composition of different lava types, especially the lower 87Sr/86Sr in the younger lavas with higher Rb/Sr, has been found at other Hawaiian volcanoes. Our data do not confirm previous data indicating Sr isotopic homogeneity among lavas from Kohala Volcano. Also some abundance trends, such as MgO-P2O5, are not consistent with a simple genetic relationship between Pololu and Hawi lavas. We conclude that all Kohala lavas were not produced by equilibrium partial melting of a compositionally homogeneous source.  相似文献   

20.
Previous studies of alkalic lavas erupted during the waning growth stages (<0.9 Ma to present) of Haleakala volcano identified systematic temporal changes in isotopic and incompatible element abundance ratios. These geochemical trends reflect a mantle mixing process with a systematic change in the proportions of mixing components. We studied lavas from a 250-m-thick stratigraphic sequence in Honomanu Gulch that includes the oldest (1.1 Ma) subaerial basalts exposed at Haleakaka. The lower 200 m of section is intercalated tholeiitic and alkalic basalt with similar isotopic (Sr, Nd, Pb) and incompatible element abundance ratios (e.g., Nb/La, La/Ce, La/Sr, Hf/Sm, Ti/Eu). These lava compositions are consistent with derivation of alkalic and tholeiitic basalt by partial melting of a compositionally homogeneous, clinopyroxene-rich, garnet lherzolite source. The intercalated tholeiitic and alkalic Honomanu lavas may reflect a process which tapped melts generated in different portions of a rising plume, and we infer that the tholeiitic lavas reflect a melting range of 10% to 15%, while the intercalated alkalic lavas reflect a range of 6.5% to 8% melting. However, within the uppermost 50 m of section. 87Sr/86Sr decreases from 0.70371 to 0.70328 as eruption age decreased from 0.97 Ma to 0.78 Ma. We infer that as lava compositions changed from intercalated tholeiitic and alkalic lavas to only alkalic lavas at 0.93 Ma, the mixing proportions of source components changed with a MORB-related mantle component becoming increasingly important as eruption age decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号