首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Hawaiian volcanoes, dominantly shields of tholeiitic basalt,form as the Pacific Plate migrates over a hotspot in the mantle.As these shields migrate away from the hotspot, highly alkaliclavas, forming the rejuvenated stage of volcanism, may eruptafter an interval of erosion lasting for 0·25–2·5Myr. Alkalic lavas with geochemical characteristics similarto rejuvenated- stage lavas erupted on the sea floor north ofOahu along the Hawaiian Arch. The variable Tb/Yb, Sr/Ce, K/Ce,Rb/La, Ba/La, Ti/Eu and Zr/Sm ratios in lavas forming the NorthArch and the rejuvenated-stage Honolulu Volcanics were controlledduring partial melting by residual garnet, clinopyroxene, Fe–Tioxides and phlogopite. However, the distinctively high Ba/Thand Sr/Nd ratios of lava forming the North Arch and HonoluluVolcanics reflect source characteristics. These characteristicsare also associated with shield tholeiitic basalt; hence theyarise from the Hawaiian hotspot, which is interpreted to bea mantle plume. Inversion of the batch melting equation usingabundances of highly incompatible elements, such as Th and La,requires enriched sources with 10–55% clinopyroxene and5–25% garnet for North Arch lavas. The 87Sr/86Sr and 143Nd/144Ndratios in lavas forming the North Arch and Honolulu Volcanicsare consistent with mixing between the Hawaiian plume and adepleted component related to mid-ocean ridge basalts. Specifically,the enrichment of incompatible elements coupled with low 87Sr/86Srand high 143Nd/144Nd relative to bulk Earth ratios is best explainedby derivation from depleted lithosphere recently metasomatizedby incipient melt (<2% melting) from the Hawaiian plume.In this metasomatized source, the incompatible element abundances,as well as Sr and Nd isotopic ratios, are controlled by incipientmelts. In contrast, the large range of published 187Os/188Osdata (0·134–0·176) reflects heterogeneitycaused by various proportions of pyroxenite veins residing ina depleted peridotite matrix. KEY WORDS: Hawaiian plume; Honolulu Volcanics; North Arch; plume–lithosphere interaction; rejuvenated stage; trace element geochemistry; alkalic lavas  相似文献   

2.
Most of the flows in the Palaeocene lava pile remnant of Skyeare members of the Skye Main Lava Series (SMLS), comprisingtransitional basalts and two associated suites of evolved lavas.The first suite evolves through Fe-rich hawaiites and mugearitesto benmoreites, and the second suite evolves through Fe-poorintermediates to trachytes. Ca-rich, alkali-poor olivine tholeiites(the Preshal Mhor magma type) occur as sparse flows in the stratigraphicallyhighest parts of the lava pile remnant and are abundant in thedyke swarm transecting it. Initial 87Sr/86Sr ratios rangingfrom 0.70308 to 0.70571 in 45 SMLS samples show no significantcorrelation with degree of zeolitization (H2O+), silica saturation,or 87Rb/86Sr. A moderately good negative correlation with totalSr confirms published Pb-isotope evidence of interaction withancient, sialic crust. Details of the (87Sr/86Sr)l versus Srpattern are consistent with previous hypotheses that the SMLSbasalt-benmoreite suite evolved at a depth near the Moho, whilstthe low-Fe trend to trachyte resulted from near-surface basaltfractionation. (87Sr/86Sr)l values ranging from 0.70307 to 0.70621 for PreshalMhor basalts show a strong positive correlation with total Sr,consistent with a model of extensive fractionation within theupper crust of a mantle-derived low 87Sr/86Sr-low Sr magma,which became progressively contaminated with comparatively radiogeniccrustal Sr. The lowest measured (87Sr/86Sr)l values of 0.70307and 0.70308, for a Preshal Mhor basalt and for an SMLS basaltrespectively, are consistent with the hypothesis that thesetwo magma types were produced by successive phases of partialmelting from a single volume of upper mantle. (87Sr/86Sr)l values for additional miscellaneous basaltic lavas,dykes and major intrusives from Skye and from nearby Isle ofMull exhibit considerable variability within the range 0.7038to 0.7072, whilst three basaltic dykes from Northern Englandare in the range 0.7089 to 0.7123. The latter values overlapwith published (87Sr/86Sr)l values for some of the granitesin the Tertiary Province of northwest Scotland and indirectlyremove objections based on Sr-isotopic arguments to the genesisof the granites by fractionation of basalt contaminated withcrustal Sr, but neither prove this nor disprove large-scalecrustal partial fusion.  相似文献   

3.
The Hawaiian–Emperor Seamount Chain (ESC), in the northernPacific Ocean, was produced during the passage of the PacificPlate over the Hawaiian hotspot. Major and trace element concentrationsand Sr–Nd–Pb isotopic compositions of shield andpost-shield lavas from nine of the Emperor Seamounts providea 43 Myr record of the chemistry of the oldest preserved Hawaiianmagmatism during the Late Mesozoic and Early Cenozoic (from85 to 42 Ma). These data demonstrate that there were large variationsin the composition of Hawaiian magmatism over this period. Tholeiiticbasalts from Meiji Seamount (85 Ma), at the northernmost endof the ESC, have low concentrations of incompatible trace elements,and unradiogenic Sr isotopic compositions, compared with youngerlavas from the volcanoes of the Hawaiian Chain (<43 Ma).Lavas from Detroit Seamount (81 Ma) have highly depleted incompatibletrace element and Sr–Nd isotopic compositions, which aresimilar to those of Pacific mid-ocean ridge basalts. Lavas fromthe younger Emperor Seamounts (62–42 Ma) have trace elementcompositions similar to those of lavas from the Hawaiian Islands,but initial 87Sr/86Sr ratios extend to lower values. From 81to 42 Ma there was a systematic increase in 87Sr/86Sr of boththoleiitic and alkalic lavas. The age of the oceanic lithosphereat the time of seamount formation decreases northwards alongthe Emperor Seamount Chain, and the oldest Emperor Seamountswere built upon young, thin lithosphere close to a former spreadingcentre. However, the inferred distance of the Hawaiian plumefrom a former spreading centre, and the isotopic compositionsof the oldest Emperor lavas appear to rule out plume–ridgeinteraction as an explanation for their depleted compositions.We suggest that the observed temporal chemical and isotopicvariations may instead be due to variations in the degree ofmelting of a heterogeneous mantle, resulting from differencesin the thickness of the oceanic lithosphere upon which the EmperorSeamounts were constructed. During the Cretaceous, when theHawaiian plume was situated beneath young, thin lithosphere,the degree of melting within the plume was greater, and incompatibletrace element depleted, refractory mantle components contributedmore to melting. KEY WORDS: Emperor Seamounts; Hawaiian plume; lava geochemistry; lithosphere thickness; mantle heterogeneity  相似文献   

4.
Kohala Volcano, the oldest of five shield volcanoes comprising the island of Hawaii, consists of a basalt shield dominated by tholeiitic basalt, Pololu Volcanics, overlain by alkalic lavas, Hawi Volcanics. In the upper Pololu Volcanics the lavas become more enriched in incompatible elements, and there is a transition from tholeiitic to alkalic basalt. In contrast, the Hawi volcanics consist of hawaiites, mugearites, and trachytes. 87Sr/86Sr ratios of 14 Pololu basalts and 5 Hawi lavas range from 0.70366 to 0.70392 and 0.70350 to 0.70355, respectively. This small but distinct difference in Sr isotopic composition of different lava types, especially the lower 87Sr/86Sr in the younger lavas with higher Rb/Sr, has been found at other Hawaiian volcanoes. Our data do not confirm previous data indicating Sr isotopic homogeneity among lavas from Kohala Volcano. Also some abundance trends, such as MgO-P2O5, are not consistent with a simple genetic relationship between Pololu and Hawi lavas. We conclude that all Kohala lavas were not produced by equilibrium partial melting of a compositionally homogeneous source.  相似文献   

5.
The Edgecumbe volcanics, which range from basalt through rhyodacite,have Sr contents between 125 and 370 p.p.m., Rb contents of1 to 70 p.p.m., Ba ranging from 50–550 p.p.m. and initial87Sr/86Sr ratios between 0.70291 and 0.70404. No simple correlationexists between these components and silica. The highest 87Sr/86Srvalues occur in a group of intermediate lavas (55–60 wt.per cent SiO2) while the rhyodacites have initial ratios between0.7035 and 0.7038. With increasing silica, Sr increases to amaximum in the andesites and then steadily decreases; Ba andRb increase over the same compositional range. The highest 87Sr/86Srlavas have major and trace element concentrations which departfrom trends defined by most of the lavas. The variation in strontiumisotopic compositions suggests interaction between parentalbasaltic magma and crustal material. Attempts to model the assimilationprocess using fixed end-member assimilation and assimilation-fractionalcrystallization models have failed to produce the observed chemicaltrends. Because the parental basaltic liquid underwent littlefractionation, the variability in hybrid lavas is attributedto variation in contaminant composition. Initial melts werelow in CaO, A12O3, MgO and Sr and enriched in SiO2. K2O, Na2O,Rb and Ba. As melting progressed, melts became enriched in themore refractory components. Because hybrid strontium isotopiccomposition is a function of Sr concentration as well as isotopiccompositions, the Sr content of the assimilant strongly influencesresultant isotopic systematics. The development of the assimilantssuggests plagioclase was a residual phase during early melting.This model of crustal assimilation represents one end-memberin the spectrum of processes responsible for the generationof continental volcanic suites.  相似文献   

6.
New mineral and bulk-rock analyses, as well as Nd, Sr and Pbisotope compositions are presented for lavas from Grande Comore,Moheli and Mayotte, thru of the four main islands of the ComoresArchipelago in the western Indian Ocean, and these data an usedto evaluate the petrogenesis, evolution and mantle source regioncharacteristics of Comorean lavas. The typically silica-undersaturated,alkaline lavas from all three islands can be grouped into twodistinct types: La Grille-type (LGT) lavas, which display strongrelative depletions in K, and Karthala-type (KT) lavas, whichdo not. With the exception of the lavas erupted by La Grillevolcano on Grande Comore, which exhibit the petrographic andgeochemical characteristics expected of primary mantle-derivedmagmas, all Comorean lavas analysed have experienced compositionalmodifications after they segregated from their source regions.Much of this variation can be explained quantitatively by fractionalcrystallization processes dominated by the fractionation ofolivineand clinopyroxene. Semi-quantitative modelling shows that theconsistent and fundamental difference in composition betweenK-depleted LGT lavas and normal KT lavas can be attributed topartial melting processes, provided amphibole is a residualmantle phase after extraction of LGT magmas at low degrees ofmelting. Low absolute abundances of the heavy rare earth elementsin LGT magmas are interpreted to reflect partial melting withinthe garnet stability field In contrast, KT magmas, which donot show relative K depletions, are considered to be the productsof somewhat larger degrees of partial melting of an amphibolefreesource at comparatively shallower depths. Whereas the Nd andSr isotopic compositions of Comorean lavas (which show a significantrange: 87Sr/86Sr = 0.70319–0.70393; 143Nd/Nd = 0.51263–0.51288)bear evidence for a time-averaged depletion in incompatibleelements, the high incompatible element abundances of the lavasare interpreted to reflect the effects of a recent mantle enrichmentevent. At depths well within the garnet stability field thismantle enrichment is interpreted to have taken the form of modalmetasomatism with the introduction of amphibole (giving riseto the source of LGT magmas), whereas cryptic metasomatism tookplace at shallower levels (giving rise to the source of KT lavas).The Nd, Sr and Pb isotope signature of the majority of Comoreanlavas (both LGT and KT) is proposed to be the result of predominant4contributions from a somewhat heterogeneous source4 4 4 presentativeof the ambient sub-Comorean mantle, comprising a mixture betweena HIMU component and a component on the depleted portion ofthe mantle array (possibly the source of Indian Ocean MORB),with only limited contributions from an EM I plume component.The lavas erupted by Karthala volcano (the youngest Comoreanlavas), however, have significantly different isotopic compositionsfrom all other Comorean lavas (lower 143Nd/144Nd and higher87Sr/86Sr), suggesting increased contributions from the EM Icomponent. KEY WORDS: basalt petrogenesis; Comores; mantle geochemistry; ocean island basalts *Telephone: 27-21-6502921. Fax: 27-21-6503781 e-mail: alr{at}geology.uct.ac.za.  相似文献   

7.
TAMURA  Y.; NAKAMURA  E. 《Journal of Petrology》1996,37(6):1307-1319
New Sr and Nd isotopic data are presented and integrated withprevious data for the Shirahama Group Mio-Pliocene medium-Kvolcanic are suite of south-central Honshu, Japan. Main resultsare: (1) The Shirahama lavas range in 87Sr/86Sr from 0.70315to 0.70337 and in 143Nd/144Nd from 0.51298 to 0.51306; the Srand Nd isotopic data cluster tightly within the mantle array,and all lie within an overlapping field of mid-ocean ridge basaltand ocean island basalt; (2) small differences exist among theShirahama tholeiitic series, calc-alkaline series and mixedlavas. The present isotopic data are consistent with a previouslypublished model, which proposes that chemical variations inmagmas of coexisting tholeiitic and calc-alkaline series areproduced through crystal fractionation from mantle-derived magmasof basalt and magnesian andesite, respectively. Moreover, thetholeiitic series and the calc-alkaline series are isotopicallyidentical. Thus, both magma series can be derived from a sourcemantle with the same isotopic composition, supporting the hypothesisof simultaneous generation of basalt and magnesian andesitemagmas from a single diapir rising through the mantle wedgeabove the subduction zone. The differences of water contentand temperature within the diapir are again thought to havebeen produced through dehydration and heating of an isotopicallyhomogeneous hydrous diapir. The isotopic data show that thehigh-SiO2 lavas have the same isotopic compositions as moremafic lavas. These data and liquid lines of descent of the Shirahamamagmas suggest that even rhyolites can be produced by differentiationfrom mantle-derived magmas without crustal contamination. Analysesfrom 38 other arc volcanoes have been compiled to investigatethe intravolcano variability of 87Sr/86Sr. Twelve of these displayno intravolcano strontium isotopic variability, as is the casewith the Shirahama Group, but others show greater variationof 87Sr/86Sr from individual volcanic centers, presumably reflectingcrustal contamination. Most of the latter volcanoes are underlainby thick continental crust. It is noteworthy, however, thatthe greater variations of 87Sr/86Sr correlate with SiO2 content;andesites or dacites, not basalts, from the same volcano havethe lowest 87Sr/86Sr, and these rocks are calc-alkaline in termsof FeO*/MgO and SiO2 Theoretically, assimilation of continentalcrust by the isotopically uniform Shirahama magmas could producethese relationships. Given that mantle-derived basalt and magnesianandesite both encounter continental crust on their ascent tothe surface, the hotter basalt magma would assimilate more crustalwallrocks than the cooler andesite, resulting in the basaltbeing more radiogenic. Fractional crystallization, magma mixing,and/or assimilation-fractional crystallization of these magmasin crustal magma chambers could produce large compositionalvariations, but the derivatives of the hotter basaltic magmas(tholeiitic series in the broad sense) would display greatercontamination than those derived from the cooler andesitic magmas(calc-alkaline series). *Telephone: 81-858-43-1215. Fax: 81-858-43-2184. e-mail: tamura{at}misasa.okayam-u.ac.jp  相似文献   

8.
Stratigraphically well-constrained sequences of late shield-buildingstage lavas from West Maui volcano, Hawaii, show age-dependentcompositional variability distinct from that seen in shield-stagelavas from any other Hawaiian volcano. These distinctions aredefined by 206Pb/204Pb–208Pb/204Pb variation as well as87Sr/86Sr correlation with 206Pb/204Pb and trace element compositions.The West Maui lavas from stratigraphically higher in the sequencehave major and trace element and Sr–Pb–Hf–Ndisotopic compositions similar to Kea-type lavas sampled at theyounger Mauna Kea and Kilauea volcanoes, indicating that theKea compositional end-member of Hawaiian lavas has remainedhomogeneous over  相似文献   

9.
《International Geology Review》2012,54(12):1456-1474
We present new major element, trace element, and Sr–Nd–Pb isotope data for 18 basaltic lavas and six glasses collected in situ from the Eastern Lau Spreading Centre (ELSC) and the Valu Fa Ridge (VFR). All lava samples are aphanitic and contain rare plagioclase and clinopyroxene microlites and microphenocrysts. The rocks are sub-alkaline and range from basalt and basaltic andesite to more differentiated andesite. In terms of trace element compositions, the samples are transitional between typical normal mid-ocean ridge basalt (MORB) and island arc basalt. Samples from the VFR have higher large ion lithophile element/high field strength element ratios (e.g. Ba/Nb) than the ELSC samples. VFR and ELSC Sr–Nd isotopic compositions plot between Indian MORB and Tonga arc lavas, but VFR samples have higher 87Sr/86Sr for a given 143Nd/144Nd ratio than ELSC analogues. The Pb isotopic composition of ELSC lavas is more Indian MORB-like, whereas that of VFR lavas is more Pacific MORB-like. Our new data, combined with literature data for the Central Lau Spreading Centre, indicate that the mantle beneath the ELSC and VFR spreading centres was originally of Pacific type in composition, but was displaced by Indian-type mantle as rifting propagated to the south. The mantle beneath the spreading centres also was variably affected by subduction-induced metasomatism, mainly by fluids released from the altered, subducting oceanic crust; the influence of these components is best seen in VFR lavas. To a first approximation, the effects of underflow on the composition and degree of partial melting of the mantle source of Lau spreading centre lavas inversely correlate with distance of the spreading centres from the Tonga arc. Superimposed on this general process, however, are the effects of the local geographic contrasts in the composition of subduction components. The latter have been transferred mainly by dehydration-generated fluids into the mantle beneath the Tonga supra-subduction zone.  相似文献   

10.
Dykes of the East Greenland Tertiary dyke swarm can be dividedinto pre- and syn-break-up tholeiitic dykes, and post-break-uptransitional dykes. Of the pre- and syn-break-up dykes, themost abundant group (Tholeiitic Series; TS) has major elementcompositions similar to the main part of the East Greenlandflood basalts. A group of high-MgO tholeiitic dykes (Picrite–AnkaramiteSeries; PAS) are much less common, and are equivalent to someof the oldest lavas of the East Greenland flood basalts. Isotopiccompositions of the TS and PAS dykes partly overlap with thosefor Iceland, but Pb isotopic compositions extend to less radiogenicvalues than those seen in either Iceland or North Atlantic mid-oceanridge basalt (MORB). The isotopically depleted source requiredto account for this isotopic variation is interpreted as subcontinentallithospheric mantle with low 87Sr/86Sr and 206Pb/204Pb and high  相似文献   

11.
The Alaska–Aleutian island arc is well known for eruptingboth tholeiitic and calc-alkaline magmas. To investigate therelative roles of chemical and temporal controls in generatingthese contrasting liquid lines of descent we have undertakena detailed study of tholeiitic lavas from Akutan volcano inthe oceanic Aleutian arc and calc-alkaline products from Aniakchakvolcano on the continental Alaskan Peninsula. The differencesdo not appear to be linked to parental magma composition. TheAkutan lavas can be explained by closed-system magmatic evolution,whereas curvilinear trace element trends and a large range in87Sr/86Sr isotope ratios in the Aniakchak data appear to requirethe combined effects of fractional crystallization, assimilationand magma mixing. Both magmatic suites preserve a similar rangein 226Ra–230Th disequilibria, which suggests that thetime scale of crustal residence of magmas beneath both thesevolcanoes was similar, and of the order of several thousandyears. This is consistent with numerical estimates of the timescales for crystallization caused by cooling in convecting crustalmagma chambers. During that time interval the tholeiitic Akutanmagmas underwent restricted, closed-system, compositional evolution.In contrast, the calc-alkaline magmas beneath Aniakchak volcanounderwent significant open-system compositional evolution. Combiningthese results with data from other studies we suggest that differentiationis faster in calc-alkaline and potassic magma series than intholeiitic series, owing to a combination of greater extentsof assimilation, magma mixing and cooling. KEY WORDS: uranium-series; Aleutian arc; magma differentiation; time scales  相似文献   

12.
Peridotite xenoliths entrained in Plio-Pleistocene alkali basalts from Sardinia represent fragments of the uppermost lithospheric mantle, and are characterised by an anhydrous four-phase mineral assemblage. They range in bulk rock composition from fertile spinel-lherzolites to residual spinel-harzburgites. The Sr-Nd isotope and trace element composition of clinopyroxene mineral separates varies between LREE-depleted samples with 87Sr/86Sr as low as 0.70262 and 143Nd/144Nd up to 0.51323 and LREE-enriched samples with 87Sr/86Sr up to 0.70461 and 143Nd/144Nd down to 0.51252. The available data suggest that all the studied peridotite samples suffered variable degrees of partial melting during Pre-Mesozoic times (based on Nd model ages relative to CHUR and DMM). The overprinted enrichment is related to a subsequent metasomatism, induced by fluids rising through the lithosphere that preferentially percolated the originally most depleted domains. Despite the occurrence of orogenic volcanism in the area, preferential enrichment in elements typically associated with slab derived fluids/melts (K, Rb, Sr, Th) relative to LREE has not been detected, and metasomatism seems to be more likely related to the infiltration of highly alkaline basic melts characterised by an EM-like Sr-Nd isotopic composition. Similar 87Sr/86Sr-143Nd/144Nd compositions, characterised by an EM signature, are observed in anorogenic mafic lavas and peridotite xenoliths from widespread localities within the "European" plate, whereas they have not previously been recorded in peridotite xenoliths and associated alkaline mafic lavas from the stable "African" lithospheric domain.  相似文献   

13.
A systematic search for evidence of high-temperature hydrousalteration within the gabbros of the Samail ophiolite (Oman)shows that most of the gabbros have been affected by successivestages of alteration, starting above 975°C and ending below500°C. Sr and O isotopic analyses provide constraints onthe nature and origin of the fluids associated with these alterationevents. Massive gabbros, dykes and veins and their associatedminerals depart from mid-ocean ridge basalt (MORB)-source magmasignatures (87Sr/86Sr >0·7032 and depleted  相似文献   

14.
The results of experimental studies and examination of variations in major elements, trace elements and Sr isotopes indicate that fractionation, assimilation and magma mixing combined to produce the lavas at Medicine Lake Highland. Some characteristics of the compositional differences among the members of the calc-alkalic association (basalt-andesite-dacite-rhyolite) can be produced by fractional crystallization, and a fractionation model reproduces the major element trends. Other variations are inconsistent with a fractionation origin. Elevated incompatible element abundances (K and Rb) observed in lavas intermediate between basalt and rhyolite can be produced through assimilation of a crustal component. An accompanying increase in 87Sr/86Sr from ∼ 0.07030 in basalt to ∼0.7040 in rhyolite is also consistent with crustal assimilation. The compatible trace element contents (Ni and Sr) of intermediate lavas can not be produced by fractional crystallization, and suggest a magma-mixing origin for some lavas. Unusual phenocryst assemblages and textural criteria in these lavas provide additional evidence for magma mixing. A phase diagram constructed from the low pressure melting experiments identifies a distributary reaction point, where olivine+augite react to pigeonite. Parental basalts reach this point at low pressures and undergo iron-enrichment at constant SiO2 content. The resulting liquid line of descent is characteristic of the tholeiitic trend. Calc-alkalic differentiation trends circumvent the distributary reaction point by three processes: fractionation at elevated pH2O, assimilation and magma mixing.  相似文献   

15.
The petrology and geochemistry of the Azores Islands   总被引:7,自引:0,他引:7  
Forty lavas from the Azores Islands have been analyzed for 87Sr/86Sr ratios, major elements, first transition series metals, and LIL elements. The samples belong to the alkali basalt magma series but range from transitional hy-normative basalts from Terceira to basanitoids from Santa Maria. Differentiated lavas include both typical trachytes and comenditic trachytes and comendites. Major and trace element concentrations define smooth trends on variation diagrams, and these trends can be related to phases crystallizing in the rocks. Systematic interisland differences are also apparent in these variation diagrams. LIL element concentrations in island basalts are roughly twice as high as those in tholeiites from the adjacent Mid-Atlantic Ridge which transects the Azores Plateau. 87Sr/86Sr ratios in lavas from 6 of the 9 islands range from 0.70332 to 0.70354, a range similar to that found in tholeiites from the Mid-Atlantic Ridge transect of the Azores Plateau. This suggests that lavas from these islands and this portion of the Mid-Atlantic Ridge may be derived from a similar source. However, lavas from the islands of Faial and Pico have 87Sr/86Sr ratios up to 0.70394 and ratios in Sao Miguel lavas range up to 0.70525, suggesting basalts from these islands are derived from a chemically distinct source. Differences in the average LIL element concentrations of the least fractionated ridge tholeiites from the Azores Plateau and alkali basalts from the islands result from differences in extent of partial melting and residual mineralogy. The alkali basalts are derived by roughly half as much melting as are the tholeiites. Trace element concentrations in Azores peralkaline lavas preclude their derivation by partial melting of peridotitic mantle or basaltic crust; rather the data suggest they are produced by fractional crystallization of a basaltic parent.  相似文献   

16.
We report Sr, Nd, and Pb isotope compositions for 17 bulk-rocksamples from the submarine Hana Ridge, Haleakala volcano, Hawaii,collected by three dives by ROV Kaiko during a joint Japan–USHawaiian cruise in 2001. The Sr, Nd, and Pb isotope ratios forthe submarine Hana Ridge lavas are similar to those of Kilauealavas. This contrasts with the isotope ratios from the subaerialHonomanu lavas of the Haleakala shield, which are similar toMauna Loa lavas or intermediate between the Kilauea and MaunaLoa fields. The observation that both the Kea and Loa componentscoexist in individual shields is inconsistent with the interpretationthat the location of volcanoes within the Hawaiian chain controlsthe geographical distribution of the Loa and Kea trend geochemicalcharacteristics. Isotopic and trace element ratios in Haleakalashield lavas suggest that a recycled oceanic crustal gabbroiccomponent is present in the mantle source. The geochemical characteristicsof the lavas combined with petrological modeling calculationsusing trace element inversion and pMELTS suggest that the meltingdepth progressively decreases in the mantle source during shieldgrowth, and that the proportion of the recycled oceanic gabbroiccomponent sampled by the melt is higher in the later stagesof Hawaiian shields as the volcanoes migrate away from the centralaxis of the plume. KEY WORDS: submarine Hana Ridge; isotope composition; melting depth; Hawaiian mantle plume  相似文献   

17.
Geochemical data from back-arc volcanic zones in the Manus Basinare used to define five magma types. Closest to the New Britainarc are medium-K lavas of the island arc association and back-arcbasin basalts (BABB). Mid-ocean ridge basalts (MORB), BABB andmildly enriched T-MORB (transitional MORB) occur along the ManusSpreading Center (MSC) and Extensional Transform Zone (ETZ).The MSC also erupted extreme back-arc basin basalts (XBABB),enriched in light rare earth elements, P, and Zr. Compared withnormal MORB, Manus MORB are even more depleted in high fieldstrength elements and slightly enriched in fluid-mobile elements,indicating slight, prior enrichment of their source with subduction-relatedcomponents. Chemical variations and modeling suggest systematic,coupled relationships between extent of mantle melting, priordepletion of the mantle source, and enrichment in subduction-relatedcomponents. Closest to the arc, the greatest addition of subduction-relatedcomponents has occurred in the mantle with the greatest amountof prior depletion, which has melted the most. Variations inK2O/H2O indicate that the subduction-related component is bestdescribed as a phlogopite and/or K-amphibole-bearing hybridizedperidotite. Magmas from the East Manus Rifts are enriched inNa and Zr with radiogenic 87Sr/86Sr, possibly indicating crustalinteraction in a zone of incipient rifting. The source for XBABBand lavas from the Witu Islands requires a mantle componentsimilar to carbonatite melt. KEY WORDS: Manus back-arc basin, mantle metasomatism, magma generation  相似文献   

18.
The island of St Martin lies inthe inactive part of the northernLesser Antilles island arc. The island consists of volcaniclasticsediments overlain and intruded by volcanic and plutonic rocks,which are in turn overlain by Miocene limestones. The extrusiveand intrusive rock suites are closely spaced in time (around27 Ma) although field relations suggest that the volcanic rockswere intruded by the plutons. Pluton emplacement gave rise tothermal metamorphism of the volcanic and volcaniclastic carapace,and to widespread hydrothermal alteration throughout the island. Geochemically, the igneous rocks of St Martin form a mildlytholeiitic to calc-alkaline typical subduction-related suite.The extrusive rocks are basalts to andesites, and the magmasappear to have differentiated largely through fractional crystallizationof plagioclase, clinopyroxene, and olivine. The REE displayflat chondrite-normalized patterns, with no significant Eu anomalydespite convincing evidence for plagioclase fractionation. Theplutonic rocks are more silica-rich diorites to granites, containingplagioclase, amphibole, and, less commonly, K-feldspar, sphene,zircon, and pyroxene. REE patterns are slightly LREE enrichedbut display distinct negative Eu anomalies. The fractionationof amphibole and accessory phases may have been important inthe evolution of the plutonic suite, as REE contents do notincrease overall with differentiation. Sr and Nd isotopic ratios of the St Martin suite form restrictedranges which vary little with differentiation, or between theextrusive and intrusive suiteSi 87Sr/86Sr ratios are slightlyhigher and 143Nd/l44Nd slightly lower than for volcanic rocksuites from the currently active northern Lesser Antilles volcanicarc. Some of the high 87Sr/86Sr ratios are explained in termsof hydrothermal alteration involving a high 87Sr/86Sr fluid,associated with pluton emplacement. Pb isotope ratios are similarto those of the currently active northern Lesser Antilles arc,and correlate with SiO2. Such correlations, together with largeranges of incompatible (and immobile) trace element ratios suggestthat open-system differentiation occurred during the evolutionof the St Martin suite. The composition of magma sources in the northern Lesser Antillesarc apparently has not changed significantly over the last 30Ma, despite a westward shift in the locus of arc magmatism.Addition of a slab-derived fluid to the mantle wedge is responsiblefor the high relative abundances of large ion lithophile elements(LILE) and enrichment in radiogenic Pb and Sr relative to mid-oceanridge basalt (MORB). Subsequent differentiation may involveassimilation of the arc basement in St Martin, which is believedto consist of Cretaceous to early Tertiary arc material, similarto that encountered in the Greater Antilles. *Present address: Department of Geosciences, University of Arizona, Tucson, Arizona 85721  相似文献   

19.
Lavas from Heard Island, located on the Kerguelen Plateau inthe southern Indian Ocean, exhibit the largest range (e.g.,87Sr/86Sr=0.7047–0.7079) of isotopic compositions yetobserved on a single oceanic island. Isotopic compositions arewell correlated and are accompanied by systematic changes inincompatible trace element ratios, particularly those involvingNb. These variations are interpreted as resulting from mixingbetween two components. One is characterized by high 87Sr/86Sr,low 206Pb/204Pb and 143Nd/144Nd ratios, and negative Nb andEu anomalies, and is derived ultimately from the upper continentalcrust. The other has lower 87Sr/86Sr, and higher 206Pb/204Pband 143Nd/144Nd ratios, and lacks the depletions in Nb and Eu.Two possible compositions are considered for the low-87Sr/86Srcomponent of the source. The first is at the low-87Sr/86Sr endof the Heard Island data array, represented most closely bylavas from the Laurens Peninsula. However, trace element variationssuggest that these lavas might not be representive of the Heardplume. The second is close to the low-87Sr/86Sr end of the isotopicarray for lavas from the main volcano. In this case a lithosphericmantle origin is suggested for the Laurens Peninsula lavas.The relationships between isotopic data, major element compositions,and incompatible trace element ratios indicate that the continent-derivedmaterial is probably present in the mantle source, where itmakes a maximum contribution of <4 wt.% for all but one HeardIsland sample. However, if the Kerguelen Plateau is a submergedcontinental block, shallow-level contamination cannot be ruledout. The binary mixing model developed to explain the Heard Islandgeochemical variations is extended to include other Indian Oceanoceanic island and mid-ocean ridge basalts (OIB and MORB). Weshow that isotopic compositions of Indian Ocean OIB are consistentwith sampling of a regional reservoir in which the same twocomponents exist in variable proportions (generally 1–5wt.% of the continent-derived component). The distinctive isotopiccompositions of Indian Ocean MORB are consistent with mixingof a similar component into an Atlantic-or Pacific-like MORBmantle source. The relatively unradiogenic 206Pb/204Pb isotopiccompositions of these ‘enriched’ Indian Ocean mantlecomponents are unlike any present-day marine sediments and indicatethat their source has had 238U/204Pb ratios (µ) much lowerthan typical upper continental crust for > 1 Ga. These agespre-date the formation of Gondwana (600-130 Ma) and thereforedo not support sediment subduction beneath Gondwana as the causeof enrichment in the sub-Indian Ocean mantle. We propose thatthe enrichment of Indian Ocean OIB sources was due to subductionof upper-crustal material beneath a Proterozoic precursor ofGondwana at 1–2 Ga. The enrichment of the Indian OceanMORB sources could have had a similar origin, or could havebeen derived from sub-continental lithospheric mantle returnedto the asthenospheric mantle, perhaps during the break-up ofGondwana (200–130 Ma).  相似文献   

20.
Tertiary volcanic rocks from the Westerwald region range frombasanites and alkali basalts to trachytes, whereas lavas fromthe margin of the Vogelsberg volcanic field consist of morealkaline basanites and alkali basalts. Heavy rare earth elementfractionation indicates that the primitive Westerwald magmasprobably represent melts of garnet peridotite. The Vogelsbergmelts formed in the spinel–garnet peridotite transitionregion with residual amphibole for some magmas suggesting meltingof relatively cold mantle. Assimilation of lower-crustal rocksand fractional crystallization altered the composition of lavasfrom the Westerwald and Vogelsberg region significantly. Thecontaminating lower crust beneath the Rhenish Massif has a differentisotopic composition from the lower continental crust beneaththe Hessian Depression and Vogelsberg, implying a compositionalboundary between the two crustal domains. The mantle sourceof the lavas from the Rhenish Massif has higher 206Pb/204Pband 87Sr/86Sr than the mantle source beneath the Vogelsbergand Hessian Depression. The 30–20 Ma volcanism of theWesterwald apparently had the same mantle source as the QuaternaryEifel lavas, suggesting that the magmas probably formed in apulsing mantle plume with a maximum excess temperature of 100°Cbeneath the Rhenish Massif. The relatively shallow melting ofamphibole-bearing peridotite beneath the Vogelsberg and HessianDepression may indicate an origin from a metasomatized portionof the thermal boundary layer. KEY WORDS: continental rift volcanism; basanites; trachytes; assimilation; fractional crystallization; partial melting  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号