首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Shanchiao Fault is an active normal fault located in the Taipei metropolis, northern Taiwan. Faulting activities have been observed from both the long-term geological data and the short-term GPS surface deformation along the fault. Particularly, with recent studies suggesting the potential of triggering an Mw 7.0-plus earthquake, the Shanchiao Fault is posing a direct seismic threat to the most important, densely populated Taipei metropolitan area in Taiwan. As a result, this study aims to evaluate the earthquake recurrence probability of the Shanchiao Fault, in an attempt to estimate the seismic hazard and help in decision-making for the Taiwan government. Given the capability of capturing the stochastic nature of tectonic stress accumulating, this study used the Brownian model to calculate the earthquake recurrence of the Shanchiao Fault. From the analysis, the recurrence probabilities of the Shanchiao Fault are determined at 8.3 and 17.4% for the next 50 and 100 years, respectively.  相似文献   

2.
A probabilistic seismic hazard assessment at Kancheepuram in Southern India was carried out with the scope of defining the seismic input for the vulnerability assessment of historical and monumental structures at the site, in terms of horizontal Uniform Hazard Spectra and a suite of spectrum-compatible natural accelerograms to perform time-history analysis. The standard Cornell?CMcGuire and a zone-free approach have been used for hazard computations after the compilation of a composite earthquake catalogue for Kancheepuram. Epistemic uncertainty in the seismic hazard was addressed within a logic-tree framework. Deaggregation of the seismic hazard for the peak ground acceleration shows low seismicity at Kancheepuram controlled by weak-to-moderate earthquakes with sources located at short distances from the archaeological site. Suites of natural accelerograms recorded on rock have been selected by imposing a custom-defined compatibility criterion with the probabilistic spectra. The site of Kancheepuram is characterized by a seismicity controlled by weak-to-moderate earthquakes with sources at short distances from the site, the PGA expected for 475- and 2,475-year return period are, respectively, 0.075 and 0.132?g. The Indian code-defined spectra (DBE and MCE) tend to underestimate spectral ordinates at low periods. On the other hand, the PGA are comparable and the spectral ordinates for longer periods from the probabilistic study are significantly lower.  相似文献   

3.
Probabilistic seismic hazard analysis (PSHA) is carried out for the archaeological site of Vijayapura in south India in order to obtain hazard consistent seismic input ground-motions for seismic risk assessment and design of seismic protection measures for monuments, where warranted. For this purpose the standard Cornell-McGuire approach, based on seismogenic zones with uniformly distributed seismicity is employed. The main features of this study are the usage of an updated and unified seismic catalogue based on moment magnitude, new seismogenic source models and recent ground motion prediction equations (GMPEs) in logic tree framework. Seismic hazard at the site is evaluated for level and rock site condition with 10% and 2% probabilities of exceedance in 50 years, and the corresponding peak ground accelerations (PGAs) are 0.074 and 0.142 g, respectively. In addition, the uniform hazard spectra (UHS) of the site are compared to the Indian code-defined spectrum. Comparisons are also made with results from National Disaster Management Authority (NDMA 2010), in terms of PGA and pseudo spectral accelerations (PSAs) at T = 0.2, 0.5, 1.0 and 1.25 s for 475- and 2475-yr return periods. Results of the present study are in good agreement with the PGA calculated from isoseismal map of the Killari earthquake, \({\hbox {M}}_{\mathrm{w}} = 6.4\) (1993). Disaggregation of PSHA results for the PGA and spectral acceleration (\({\hbox {S}}_{\mathrm{a}}\)) at 0.5 s, displays the controlling scenario earthquake for the study region as low to moderate magnitude with the source being at a short distance from the study site. Deterministic seismic hazard (DSHA) is also carried out by taking into account three scenario earthquakes. The UHS corresponding to 475-yr return period (RP) is used to define the target spectrum and accordingly, the spectrum-compatible natural accelerograms are selected from the suite of recorded accelerograms.  相似文献   

4.
Kijko  A.  Retief  S. J. P.  Graham  G. 《Natural Hazards》2002,26(2):175-201
In this part of our study the probabilistic seismic hazard analysis (PSHA) for Tulbagh was performed. The applied procedure is parametric and consists essentially of two steps. The first step is applicable to the area in the vicinity of Tulbagh and requires an estimation of the area-specific parameters, which, in this case, is the mean seismic activity rate, , the Gutenberg-Richter parameter, b, and the maximum regional magnitude, mmax. The second step is applicable to the Tulbagh site, and consists of parameters of distribution of amplitude of the selected ground motion parameter. The current application of the procedure provides an assessment of the PSHA in terms of peak ground acceleration (PGA) and spectral acceleration (SA). The procedure permits the combination of both historical and instrumental data. The historical part of the catalogue only contains the strongest events, whereas the complete part can be divided into several subcatalogues, each assumed complete above a specified threshold of magnitude. In the analysis, the uncertainty in the determination of the earthquake was taken into account by incorporation of the concept of `apparent magnitude'. The PSHA technique has been developed specifically for the estimation of seismic hazard at individual sites without the subjective judgement involved in the definition of seismic source zones, when the specific active faults have not been mapped or identified, and where the causes of seismicity are not well understood. The results of the hazard assessment are expressed as probabilities that specified values of PGA will be exceeded during the chosen time intervals, and similarly for the spectral accelerations. A worst case scenario sketches the possibility of a maximum PGA of 0.30g. The results of the hazard assessment can be used as input to a seismic risk assessment.  相似文献   

5.
The paper describes an integrated approach to seismic hazard assessment, which was applied for the Taiwan region. First, empirical modelsfor ground motion estimation in the region were obtained on the basisof records from recent (1993-1999) earthquakes. The databaseincludes strong-motion data collected during the recent Chi-Chiearthquake (M=7.6, 21 September 1999) and large (M=6.8)aftershocks. The ground-motion database was also used for evaluationof generalised site amplification functions for typical soil classes(B, C and D). Second, the theoretical seismic catalogue (2001–2050)for the Taiwan region had been calculated using the 4D-model(location, depth, time) for dynamic deformation of the Earth' crustand 5D-model (location, depth, time, magnitude) for seismic process.The models were developed on the basis of available geophysical andgeodynamic data that include regional seismic catalogue. Third, theregion & site & time-dependent seismic analysis, which is basedon schemes of probable earthquake zones evaluated from the theoreticalcatalogue, regional ground motion models, and local site responsecharacteristics, has been performed. The seismic hazard maps arecompiled in terms of Peak Ground Acceleration (PGA) and ResponseSpectra (RS) amplitudes. The maps show distribution of amplitudesthat will not be exceeded with certain probability in condition oftypical soil classes during all possible earthquakes that may occur inthe region during time period of 2003–2025. The approach allowsintroducing new parameter that describes dependency of seismichazard on time, so-called 'period of maximum hazard'. Theparameter shows the period, during which every considered sitewill be subjected by the maximum value of ground motioncharacteristic (PGA or RS).  相似文献   

6.
香港地区地震风险评价和设防区划   总被引:3,自引:0,他引:3  
香港地区隶属于中国板内地震区中的东南沿海块缘地震带。港-九块体为晚中生代至早第三纪以来以持续稳定上升为主的块体, 块体活动性明显地低于其周边相对下沉的中新生代盆地。为此, 赋予港-九块体为最大可信震级M=5.5级潜在震源区, 而其周边中新生代断陷盆地则为最大可信震级M6.0潜在震源。从大陆地震构造成因的环境、潜在震源可信震级范围M=5.0~7.5和近源地震动饱和等三个方面的可比性, 结合中国大陆地震震源破裂尺度和地震烈度影响场, 所建立的反映中国地震构造和震源破裂及地震烈度影响场特点的PGA和反应谱地震动衰减预测关系式可用于香港地区。以50%概率时的中值对中国强震记录的对比, 本研究所提供的经验期望预测关系式, 能包络实际的资料。因此, 用此地震动衰减预测模式对香港地区地震危险性进行评估, 将会得到相对保守地震动预测值。通过香港地区基岩地震动危险性分析和计算, 参照中国大陆地震设防标准, 进行了基岩设计参数确定和区划。以年概率P=0.02、P=0.002、P=0.0004三个概率标准, 对应的地震动重复周期大约分别约为50a, 500a, 2500a的基岩PGA和反应谱, 作为香港地区基岩上构筑物和建筑物可选的基  相似文献   

7.
An important step in effectively reducing seismic risk and the vulnerability of a city located in an earthquake prone area is to conduct a ground motion microzonation study for the desired return period. The International Institute of Earthquake Engineering and Seismology (IIEES) initiated a number of seismic microzonation projects for Iran. This paper presents the steps followed by IIEES in ground motion microzonation. IIEES performs both probabilistic and deterministic seismic hazard analysis. IIEES uses his own fault map for seismotectonic studies and develops modulus and damping curves for the soils in the study area. The experience of ground motion microzonation shows that in almost all cases, the estimated 475-year peak ground acceleration (PGA) values are higher than the PGA proposed by the Iranian seismic code. Although ground motion microzonation in Iran has some shortcomings, IIEES is making new improvement. This includes development in deterministic seismic hazard analysis, two-dimensional and three-dimensional modelling of basin and topographical effects, using microtremor measurements to find shear-wave velocity profiles in high-density urban areas and providing maps for spectral acceleration in the study area.  相似文献   

8.
Probabilistic seismic hazard analysis for Bangalore   总被引:5,自引:3,他引:2  
This article presents the results of probabilistic seismic hazard analysis (PSHA) for Bangalore, South India. Analyses have been carried out considering the seismotectonic parameters of the region covering a radius of 350 km keeping Bangalore as the center. Seismic hazard parameter ‘b’ has been evaluated considering the available earthquake data using (1) Gutenberg–Richter (G–R) relationship and (2) Kijko and Sellevoll (1989, 1992) method utilizing extreme and complete catalogs. The ‘b’ parameter was estimated to be 0.62 to 0.98 from G–R relation and 0.87 ± 0.03 from Kijko and Sellevoll method. The results obtained are a little higher than the ‘b’ values published earlier for southern India. Further, probabilistic seismic hazard analysis for Bangalore region has been carried out considering six seismogenic sources. From the analysis, mean annual rate of exceedance and cumulative probability hazard curve for peak ground acceleration (PGA) and spectral acceleration (Sa) have been generated. The quantified hazard values in terms of the rock level peak ground acceleration (PGA) are mapped for 10% probability of exceedance in 50 years on a grid size of 0.5 km × 0.5 km. In addition, Uniform Hazard Response Spectrum (UHRS) at rock level is also developed for the 5% damping corresponding to 10% probability of exceedance in 50 years. The peak ground acceleration (PGA) value of 0.121 g obtained from the present investigation is slightly lower (but comparable) than the PGA values obtained from the deterministic seismic hazard analysis (DSHA) for the same area. However, the PGA value obtained in the current investigation is higher than PGA values reported in the global seismic hazard assessment program (GSHAP) maps of Bhatia et al. (1999) for the shield area.  相似文献   

9.
Probabilistic seismic hazard maps for the sultanate of Oman   总被引:2,自引:0,他引:2  
This study presents the results of the first probabilistic seismic hazard assessment (PSHA) in the framework of logic tree for Oman. The earthquake catalogue was homogenized, declustered, and used to define seismotectonic source model that characterizes the seismicity of Oman. Two seismic source models were used in the current study; the first consists of 26 seismic source zones, while the second is expressing the alternative view that seismicity is uniform along the entire Makran and Zagros zones. The recurrence parameters for all the seismogenic zones were determined using the doubly bounded exponential distribution except the zones of Makran, which were modelled using the characteristic distribution. Maximum earthquakes were determined and the horizontal ground accelerations in terms of geometric mean were calculated using ground-motion prediction relationships developed based upon seismic data obtained from active tectonic environments similar to those surrounding Oman. The alternative seismotectonic source models, maximum magnitude, and ground-motion prediction relationships were weighted and used to account for the epistemic uncertainty. Hazard maps at rock sites were produced for 5?% damped spectral acceleration (SA) values at 0.1, 0.2, 0.3, 1.0 and 2.0?s spectral periods as well as peak ground acceleration (PGA) for return periods of 475 and 2,475?years. The highest hazard is found in Khasab City with maximum SA at 0.2?s spectral period reaching 243 and 397?cm/s2 for return periods 475 and 2,475 years, respectively. The sensitivity analysis reveals that the choice of seismic source model and the ground-motion prediction equation influences the results most.  相似文献   

10.
The most important seismic hazard parameters required to demarcate seismic zones are the peak horizontal acceleration (PHA) and spectral acceleration (SA). The two approaches for evaluation of seismic hazard are the probabilistic seismic hazard analysis and the deterministic seismic hazard analysis (DSHA). The present study evaluates the seismic hazard of the South Indian Peninsular region based on the DSHA methodology. In order to consider the epistemic uncertainties in a better manner, a logic tree approach was adopted in the evaluation of seismic hazard. Two types of seismic sources and three different attenuation relations were used in the analysis. The spatial variation of PHA (mean and 84th percentile values) and SA values for 1 Hz and 10 Hz at bedrock level (84th percentile values) for the entire study area were evaluated and the results are presented here. The surface level peak ground acceleration (PGA) values will be different from that of the bedrock level values due to the local site conditions. The PGA values at ground surface level were evaluated for four different National Earthquake Hazard Reduction Program site classes by considering the non-linear site response of different soil types. The response spectra for important cities in South India were also prepared using the deterministic approach and the results are presented in this paper.  相似文献   

11.
This article presents the results of deterministic and probabilistic seismic hazard analyses (DSHA and PSHA) of the city of Hamedan and its neighboring regions. This historical city is one of the developing cities located in the west of Iran. For this reason, the DSHA and PSHA approaches have been used for the assessment of seismic hazards and earthquake risk evaluation. To this purpose, analyses have been carried out considering the historic and instrumented earthquakes, geologic and seismotectonic parameters of the region covering a radius of 100?km, keeping Hamedan as the center. Therefore, in this research, we studied the main faults and fault zones in the study area and calculated the length and distance of faults from the center of Hamedan. In the next step, we measured the maximum credible earthquake (MCE) and peak ground acceleration (PGA) using both DSHA and PSHA approaches and utilized the various equations introduced by different researchers for this purpose. The results of DSHA approach show that the MCE-evaluated value is 7.2 Richter, which might be created by Nahavand fault activities in this region. The PGA value of 0.56?g will be obtained from Keshin fault. The results of PSHA approach show that the MCE-evaluated value is 7.6 Richter for a 0.64 probability in a 50-year period. The PGA value of 0.45?g will be obtained from Keshin fault. Seismic hazard parameters have been evaluated considering the available earthquake data using Gutenberg?CRichter relationship method. The ??a?? and ??b?? parameters were estimated 5.53 and 0.68, respectively.  相似文献   

12.
Seismic ground motion caused by earthquakes mainly affects the constructions and structures around its area of influence. In this context, the probabilistic seismic hazard analysis (PSHA) is a scientific step towards the safety analysis of any major construction such as nuclear power plant. Thus, the present study focused to estimate seismic hazard level at different probabilities for Kakrapar nuclear power plant located in the Western India. The hazard curves for the study area are developed following the procedure of PSHA suggested by Cornell–McGuire. Three source zones, Narmada-Tapti zone (NTZ), Rann of Kuchchh (ROK), and west passive margin (WPM), are classified on the basis of seismicity and tectonic setting of the study area. The estimated maximum magnitude (m max) for NTZ, ROK, and WPM are 6.9 ± 0.57, 6.5 ± 0.64, and 6.1 ± 0.64, respectively. Logic tree approach has been used for the development of hazard curves to account the epistemic uncertainties associated with the analysis. For maximum credible earthquake [MCE, i.e., the probability of exceedance of 2 % in 50 years (return period of ~2,500 years)], the peak spectral acceleration (i.e., PSA at 0.2 s) expected around 5 km of the Kakrapar nuclear power plant (site) is 0.23 g from all source zones; however, at exact site location, it is 0.18 g. The PSA values due to NTZ, ROK, and WPM based on MCE are 0.22, 0.065, and 0.052 g, respectively. In case of design-based earthquake (DBE, i.e., 50 % probability in 50 years (return period of ~110 years)), the calculated maximum spectral acceleration (SA) from all source zones is about 0.045 g. The PSA distribution for the DBE from the NTZ has reached a maximum value of 0.042 g; however, PSA for ROK and WPM is considerably low with a maximum value of 0.022 and 0.021 g, respectively. Considering the MCE and DBE, the estimated PSA at 0.2 s has a highest value of ~0.23 g from all source zones. Spectral accelerations (SAs) correspond to different periods are presented, and SA plots for NTZ zone can be considered as response spectra for the KAPS site. Deaggregation of PSHA in the present study is also discussed. PGA values reported in seismic zonation map and global seismic hazard analysis program around the present study area range from 0.05 to 0.2 g which is slightly lower than the peak acceleration obtained in this study. The results of this study would facilitate in the performance of the site-specific seismic probabilistic safety analysis.  相似文献   

13.
Seismic hazard in terms of peak ground acceleration (PGA) has been evaluated in northern Algeria using spatially smoothed seismicity data. We present here a preliminary seismic zoning in northern Algeria as derived from the obtained results.Initially, we have compiled an earthquake catalog of the region taking data from several agencies. Afterwards, we have delimited seismic areas where the b and mmax parameters are different. Finally, by applying the methodology proposed by Frankel [Seismol. Res. Lett. 66 (1995) 8], and using four complete and Poissonian seismicity models, we are able to compute the seismic hazard maps in terms of PGA with 39.3% and 10% probability of exceedance in 50 years.A significant result of this work is the observation of mean PGA values of the order of 0.20 and 0.45 g, for return periods of 100 and 475 years, respectively, in the central area of the Tell Atlas.  相似文献   

14.
Cáceres  Diego  Kulhánek  Ota 《Natural Hazards》2000,22(1):49-69
In this paper we have described the proceduresused, input data applied and results achieved in ourefforts to develop seismic hazard maps of Honduras.The probabilistic methodology of Cornell is employed.Numerical calculations were carried out by making useof the computer code SEISRISK III. To examine theimpact of uncertainties in seismic and structuralcharacteristics, the logic tree formalism has beenused. We compiled a de-clustered earthquake cataloguefor the region comprising 1919 earthquakes occurringduring the period from 1963 to 1997. Unified momentmagnitudes were introduced. Definition of aseismotectonic model of the whole region under review,based on geologic, tectonic and seismic information,led to the definition of seven seismogenetic zones forwhich seismic characteristics were determined. Fourdifferent attenuation models were considered. Resultsare expressed in a series of maps of expected PGA for60% and 90% probabilities of nonexceedence in a50-year interval which corresponds to return periodsof 100 and 475 years, respectively. The highest PGAvalues of about 0.4g (90% probability ofnon-exceedence) are expected along the borders withGuatemala and El Salvador.  相似文献   

15.
The region of interest is characterized by incomplete data sets and little information about the tectonic features. Therefore, two methodologies for estimating seismic hazard were used in order to elucidate the robustness of the results: the method of spatially smoothed seismicity introduced by Frankel (1995) and later extended by Lapajne et al. (1997) and a Monte Carlo approach presented by Ebel and Kafka (1999). In the first method, fault-rupture oriented elliptical Gaussian smoothing was performed to estimate future activity rates along the causative structures. Peak ground accelerations were computed for a grid size of 15 km × 415 km assuming the centre of the grids as epicentres, from which the seismic hazard map was produced. The attenuation relationship by Ambraseys et al. (1996) was found suitable for the region under study. PGA values for 10% probability of exceedence in 50 years (return period of 475 years) were computed for each model and a combined seismic hazard map was produced by subjectively assigning weights to each of these models. A worst-case map is also obtained by picking the highest value at each grid point from values of the four hazard maps. The Monte Carlo method is used to estimate seismic hazard, for comparison to the results from our previous approach. Results obtained from both methods are comparable except values in the first set of maps estimate greater hazard in areas of low seismicity. Both maps indicate a higher hazard along the main tectonic features of the east African and Red Sea rift systems. Within Eritrea, the highest PGA exceeded a value 25% of g, located north of Red Sea port of Massawa. In areas around the capital, Asmara, PGA values exceed 10% of g.  相似文献   

16.
A method for conducting a seismic hazard analysis of active faults using a fault-rupture model and a point-source model is presented. Based on a peak ground acceleration (PGA) attenuation formula, the annual probability of exceedance at a specific site is calculated. The uniform hazard spectrum is also determined based on a spectral amplitude attenuation formula. To improve the reliability of the seismic hazard analysis, a detailed study of hazard parameters is conducted and discussed. A specific site in Taiwan is chosen to illustrate the hazard analysis.  相似文献   

17.
A Probabilistic method is used to evaluate the seismic hazard of nineteen embankment dam sites in Jordan. A line source model developed by McGuire (1978) is used in this study. An updated earthquake catalogue covering the period from 1 A.D. to 1991 A.D. is used for this purpose. This catalogue includes all earthquakes that occurred in Jordan and adjacent areas, more specifically between latitudes 27.0°–35.5° N and longitudes 32.0°–39.0° E.Nine distinct seismic sources of potential seismic activities are identified. The seismic hazard parameters are determined using the method suggested by Kijko and Sellevoll (1989).The Peak Ground Acceleration (PGA) is selected as a measure of ground motion severity. Esteva (1974) attenuation relationship is used in evaluating PGA values at each dam site. Analysis is carried out for 50%, 90%, and 95% probability that is not being exceeded in a life time of 50, 100, and 200 years.Results of analysis indicate that PGA values are higher for dam sites closer to the Dead Sea Fault. This fault is believed to be responsible for most earthquake activities in Jordan and vicinity. The highest PGA value is found to be for Al-Karama dam site.  相似文献   

18.
The development of the new seismic hazard map of metropolitan Tehran is based on probabilistic seismic hazard computation using the non-Poisson recurrence time model. For this model, two maps have been prepared to indicate the earthquake hazard of the region in the form of iso-acceleration contour lines. They display the non-Poisson probabilistic estimates of peak ground accelerations over bedrock for 10 and 63 % probability of exceedance in 50 years. To carry out the non-Poisson seismic hazard analysis, appropriate distributions of interoccurrence times of earthquakes were used for the seismotectonic provinces which the study region is located and then the renewal process was applied. In order to calculate the seismic hazard for different return periods in the probabilistic procedure, the study area encompassed by the 49.5–54.5°E longitudes and 34–37°N latitudes was divided into 0.1° intervals generating 1,350 grid points. PGA values for this region are estimated to be 0.30–0.32 and 0.16–0.17 g for 10 and 63 % probability of exceedance, respectively, in 50 years for bedrock condition.  相似文献   

19.
The assessment of local site effects on seismic ground motions is of great importance in earthquake engineering practice. Several destructive earthquakes in the past have demonstrated that the amplification of ground motion and associated damage to structures due to local site conditions is a significant consideration in earthquake hazard analysis. A recent paper published in this journal highlights the hazard posed by earthquakes in the megacity of Kolkata in India due to its seismic and geological settings. The seismic hazard assessment study speculates that the deep alluvial deposit in the city may increase the seismic hazard probably due to the amplification of the seismic energies. This paper focuses on the seismic response studies of the various soil strata (i.e. for local subsurface conditions) obtained from various construction sites in the city for predicted earthquake. It is very well recognized that site response studies (a part of seismic microhazard zonation for urban areas) are the first step towards performance-based foundation design or seismic risk analysis and mitigation strategy. One of the problems for carrying out site-specific study in Kolkata is the lack of recorded strong motion data in the city. Hence, this paper outlines a methodology to carry out site-specific study, where no strong motion data or seismic data are available. The methodology uses wavelet-based spectrum compatibility approach to generate synthetic earthquake motions and equivalent linear method for seismic site response analysis. The Mega City of Kolkata has been considered to explain the methodology. Seismic hazard zonation map by the Bureau of Indian Standards classifies the City of Kolkata as moderate seismic zone (Zone III) with a zone factor 0.16. On the other hand, GSHAP(Global Seismic Hazard Assessment Program) map which is based on 10% probability of exceedance in 50 years specifies a maximum peak ground acceleration (PGA) of 1.6 m/s2 (0.163 g) for this region. In the present study, the seismic response has been carried out based on GSHAP. The results of the analysis indicate the amplification of ground motion in the range of 4.46–4.82 with the fundamental period ranging from 0.81 to 1.17 s. Furthermore, the maximum spectral accelerations vary in the range of 0.78–0.95 g.  相似文献   

20.
In this paper, we consider the time at which earthquake events occur when analyzing seismic structural damage to a deteriorating RC bridge within a specified period. Because the uncertainty exists in the occurrence time of earthquake events, Monte Carlo simulation is applied. The proposed procedure for evaluating the exceedance probability, which corresponds to a specified limit state, is then applied to a case study of RC bridges in Taiwan to demonstrate its applicability. This study selects three typical RC bridges located in the Taipei Basin, Taiwan, to analyze exceedance probabilities of specified damage states during various specified periods and then discusses the cumulative damage effect on the exceedance probabilities of specified damage states. Additionally, for the chloride-induced deteriorating bridges at various distances to the sea in Suao, Taiwan, the effects of the deterioration and seismic structural damage on the exceedance probabilities of specified damage states are demonstrated and discussed. The proposed assessment procedure can help engineers understand whether the deterioration would accelerate the declining seismic performance of bridges and shorten their serviceability-related and safety-related service lives, as well as provide reference for repairing RC bridges and retrofitting their seismic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号