首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IMS data from Ottawa, Canada are analyzed to study the propagation characteristics of Pc1 pulsations. The majority of pulsations observed possessed periods of 1 second and lasted less than an hour. Shorter-period Pc1s are observed during the summer than during the winter. Periods of pulsations are also shorter during the noon hours than in the morning, and shorter during intervals of high magnetic activity. The diurnal variation of period at Ottawa is different from that at high-latitude stations. For Pc1s the calculated ratio of the spacing period to the pulse period at Ottawa is 86, in good agreement with values found for both higher- and lower-latitude stations. An IPDP (intervals of pulsations of diminishing periods) event occurred on April 19, 1977. The analysis supports the view that the energy dispersion of storm time protons, as well as the earthward movement of the instability region due to increasing magnetic activity, are involved in the production of such events. Earth Physics Branch Contribution No. 1087.  相似文献   

2.
Eyvind Sucksdorff (1899–1955) was an enthusiastic scientist who was the director of Sodankylä Geophysical Observatory (SGO) from 1927 to 1945. He continued magnetic measurements, which were started in 1913 when SGO was established. Sucksdorff observed events with periodically modulated amplitude in the registration of the new La Cour quick-run magnetometers in 1932–35. He interpreted these events to be due to short-period oscillations and called them “rapid micropulsations” or “pearl necklace” due to the shape of the signal in the registration. From the “pearl necklaces” he estimated the upper bound of the oscillation to be 2–3 s. Sucksdorff did not know the accurate values of the eigenperiods of the systems (H, D and Z components of the magnetometer). Later measurements have shown that they were 2–3 s. Nowadays, the pearl pulsations discovered by Sucksdorff 70 years ago are known as a subgroup of Pc1 magnetic pulsations. Sucksdorff published his observations in 1936. He studied both the annual and diurnal distributions of the new pulsations. Comparisons of the records made in Stockholm, Copenhagen and Sodankylä revealed for the first time the global features of Pc1 pulsations. Sucksdorff did not present any explanation for the pearl pulsations he had observed. Leiv Harang from the Auroral Observatory at Tromsø, Norway, published his analysis of rapid registrations made in Tromsø in 1932–36 in the same issue of the Terrestrial Magnetism and Atmospheric Electricity. He used the name “vibrations” for his short-period oscillations.  相似文献   

3.
The analysis of simultaneous observations of 128 cases of high-latitude magnetic impulse events (MIEs), as well as geomagnetic pulsations in the Pc1–2 band observed in the area of the dayside cusp, was carried out. We investigated magnetograms from the Mirny Observatory, Antarctica. As a result of the examination, three groups of impulses were identified: (1) impulses accompanied by impulsive bursts of intervals of pulsations with rising periods (IPRPs)-type geomagnetic pulsations—16% of all events, (2) impulses accompanied by impulsive bursts of the Pi1B type (bursts of irregular magnetic pulsations)—48% of all events, and (3) impulses which were not accompanied by geomagnetic pulsations within a high-frequency band—36% of all events.It was found that the maximum frequency of occurrence of the impulses accompanied by impulsive bursts of the IPRP and Pi1B types was observed between 1200 and 1300 MLT. The events of the first two groups were observed predominantly when Bz>0. It was shown that the filling frequency of impulsive bursts that accompany the occurrence of impulses depends on the amplitude of the bursts. The maximum frequency of the occurrence of impulses which were not accompanied by impulsive bursts is between 1000 and 1100 MLT. The events of the third group were observed predominantly when Bz<0. In most cases, the occurrence of impulsive bursts coincided with the leading edge of the MIE.It is supposed that the MIE generation is stimulated by intensification of the plasma turbulence level at the dayside magnetopause in consequence of modulation instability development or reconnection processes.  相似文献   

4.
The level of wave geomagnetic activity in the morning, afternoon, and nighttime sectors during strong magnetic storms with Dst varying from ?100 to ?150 nT has been statistically studied based on a new ULF wave index. It has been found out that the intensity of geomagnetic pulsations at frequencies of 2–7 mHz during the magnetic storm initial phase is maximal in the morning and nighttime sectors at polar and auroral latitudes, respectively. During the magnetic storm main phase, wave activity is maximal in the morning sector of the auroral zone, and the pulsation intensity in the nighttime sector is twice as low as in the morning sector. It has been indicated that geomagnetic pulsations excited after substorms mainly contribute to a morning wave disturbance during the magnetic storm main phase. During the storm recovery phase, wave activity develops in the morning and nighttime sectors of the auroral zone; in this case nighttime activity is also observed in the subauroral zone.  相似文献   

5.
Results of the analysis of 15 unusual Pc1 pearl wave events with inverse dispersion in comparison with the dispersion of well-known electromagnetic ion-cyclotron (EMIC) waves in the form of classic pearl pulsations are presented. Pulsations with the dynamical spectrum consisting of both falling tones only (first type) and events with structures, which start with the falling tones and then develop into rising tones (second type), have been discovered. The first type corresponds to the frequency dispersion of magnetosonic waves (R-waves), and the second type corresponds to the mixed frequency dispersion of R-waves and EMIC waves (L-waves). All events were observed during quiet geomagnetic periods. The duration of the events is about 20–30 min. For the interpretation of these phenomena, the cyclotron instability driven by energetic proton beams with relative mean velocity v0 directed along the background magnetic field and corresponding to an energy ∼10–100 keV is considered. The interaction of such proton beams with waves having frequencies ω<ωi (ωi is the ion gyrofrequency) leads to the instability, which allows the fastest growth of electromagnetic oscillations with the dispersion of R-wave type. When the velocity of the proton beam decreases (v0≈0), R-waves attenuate and L-waves (for the proton temperature T>T) will be amplified. This instability is the reason for the generation of classic Pc1 pearl pulsations with the usual dispersion and allows explaining the transition of the dispersion from R- to L-waves.  相似文献   

6.
A hundred years have passed since the outstanding scientist Professor V.A. Troitskaya was born. This paper is dedicated to her centenary. It discusses her scientific contributions to studying ultralow frequency oscillations of the Earth’s electromagnetic field. The discussion covers permanent and sporadic oscillations, “pearl necklace,” pulsations of increasing frequency, specific oscillations observed in the Arctic and Antarctic. The paper also describes the current state of the scientific problems that were Professor Troitskaya’s focus of interest. Particular attention is given to the key role of the interplanetary magnetic field in forming the spatial-temporal structure of oscillations.  相似文献   

7.
The analysis results of a complex of phenomena that were developing in the evening and morning magnetospheric and ionospheric sectors during two events (January 18 and February 19, 2008) are presented. The analysis is based on the observation data in the magnetotail from the THEMIS satellites and ground-based observations in the morning (MIRACLE network) and nighttime (THEMIS ground-based network) sectors. The events with moderate substorms in the nighttime sector were preceded by strong geomagnetic Pc5 pulsations in the morning sector, the regime of which changed during the development of auroral disturbances. The substorms were accompanied by dipolizations in the magnetotail at distances of ~10 Re and unexpected jump-like fluxes of ~200-keV electrons. The fluxes appeared within several minutes after a breakup at three central THEMIS satellites simultaneously spaced up to 1.7 Re. According with the ASC data at the NAL observatory (3 frames/min) and with the THEMIS network of ASC data, onset of auroral activations in the night and morning sectors occurred simultaneously. Probable reasons for the sudden suppression or intensification of Pc5 pulsations are discussed.  相似文献   

8.
We investigate the features of the planetary distribution of wave phenomena (geomagnetic pulsations) in the Earth’s magnetic shell (the magnetosphere) during a strong geomagnetic storm on December 14–15, 2006, which is untypical of the minimum phase of solar activity. The storm was caused by the approach of the interplanetary magnetic cloud towards the Earth’s magnetosphere. The study is based on the analysis of 1-min data of global digital geomagnetic observations at a few latitudinal profiles of the global network of ground-based magnetic stations. The analysis is focused on the Pc5 geomagnetic pulsations, whose frequencies fall in the band of 1.5–7 mHz (T ~ 2–10 min), on the fluctuations in the interplanetary magnetic field (IMF) and in the solar wind density in this frequency band. It is shown that during the initial phase of the storm with positive IMF Bz, most intense geomagnetic pulsations were recorded in the dayside polar regions. It was supposed that these pulsations could probably be caused by the injection of the fluctuating streams of solar wind into the Earth’s ionosphere in the dayside polar cusp region. The fluctuations arising in the ionospheric electric currents due to this process are recorded as the geomagnetic pulsations by the ground-based magnetometers. Under negative IMF Bz, substorms develop in the nightside magnetosphere, and the enhancement of geomagnetic pulsations was observed in this latitudinal region on the Earth’s surface. The generation of these pulsations is probably caused by the fluctuations in the field-aligned magnetospheric electric currents flowing along the geomagnetic field lines from the substorm source region. These geomagnetic pulsations are not related to the fluctuations in the interplanetary medium. During the main phase of the magnetic storm, when fluctuations in the interplanetary medium are almost absent, the most intense geomagnetic pulsations were observed in the dawn sector in the region corresponding to the closed magnetosphere. The generation of these pulsations is likely to be associated with the resonance of the geomagnetic field lines. Thus, it is shown that the Pc5 pulsations observed on the ground during the magnetic storm have a different origin and a different planetary distribution.  相似文献   

9.
Geomagnetic pulsations in the frequency range of Pc1 pearl waves with the dynamic spectra having a very narrow spectrum width at the beginning of the event and a very broad spectrum width (Δf/f0 ∼ 1) in the later part of the event are analyzed. One of the observed events shown by the dynamic spectrum resembles a goose with the beak at the beginning of the event and with the wing in the later part of the event. Various interpretations of these geomagnetic pulsations are presented taking into account nonlinear effects, quasilinear interaction of electromagnetic ion-cyclotron waves with energetic, anisotropic protons and modulation of plasma parameters in the magnetosphere by Pc3–5 hydromagnetic waves. The ionospheric effect in the signal formation is determined by the ionospheric Alfvén resonator. It can control the frequency range of the dynamic spectra, but not the internal structure of the signal.  相似文献   

10.
Day-time Pc 3–4 (≃5–60 mHz) and night-time Pi 2 (≃5–20 mHz) ULF waves propagating down through the ionosphere can cause oscillations in the Doppler shift of HF radio transmissions that are correlated with the magnetic pulsations recorded on the ground. In order to examine properties of these correlated signals, we conducted a joint HF Doppler/magnetometer experiment for two six-month intervals at a location near L = 1.8. The magnetic pulsations were best correlated with ionospheric oscillations from near the F region peak. The Doppler oscillations were in phase at two different altitudes, and their amplitude increased in proportion to the radio sounding frequency. The same results were obtained for the O- and X-mode radio signals. A surprising finding was a constant phase difference between the pulsations in the ionosphere and on the ground for all frequencies below the local field line resonance frequency, independent of season or local time. These observations have been compared with theoretical predictions of the amplitude and phase of ionospheric Doppler oscillations driven by downgoing Alfvén mode waves. Our results agree with these predictions at or very near the field line resonance frequency but not at other frequencies. We conclude that the majority of the observations, which are for pulsations below the resonant frequency, are associated with downgoing fast mode waves, and models of the wave-ionosphere interaction need to be modified accordingly.  相似文献   

11.
A very strong magnetic storm of May 15, 2005, was caused by an interplanetary magnetic cloud that approached the Earths’ orbit. The sheath region of this cloud was characterized by a high solar wind density (~25–30 cm?3) and velocity (~850 km/s) and strong variations (to ~20 nT) in the interplanetary magnetic field (IMF). It has been indicated that an atypical bay-like geomagnetic disturbance was observed during the initial phase of this storm in a large longitudinal region at high latitudes: from the morning to evening sectors of the geomagnetic local time. Increasing in amplitude, the magnetic bay rapidly propagated to the polar cap latitudes up to the geomagnetic pole. An analysis of the global space-temporal dynamics of geomagnetic pulsations in the frequency band 1–6 mHz indicated that most intense oscillations were observed in the morning sector in the region of the equivalent ionospheric current at latitudes of about 72°–76°. The wavelet structure of magnetic pulsations in the polar cap and fluctuations in IMF was generally similar to the maximum at frequencies lower than 4 mHz. This can indicate that waves directly penetrated into the polar cap from the solar wind.  相似文献   

12.
Summary Spectral studies of a number of micropulsation pearl records are described. In particular, polarization, recurrence tendency, phase modulation and bandwidth were determined. Although each of the five records studied showed some tendency for pearls to recur, this tendency appears to depend inversely on magnetic activity. Bandwidth to frequency ratios are comparable to those observed byHolmberg in pulsations having periods of 20 seconds and 70 seconds.Theories of pearl sources are compared with observations. Agreement is observed in some aspects, but is lacking in others.  相似文献   

13.
The level of wave geomagnetic activity in the morning and daytime sectors of auroral latitudes during strong magnetic storms with Dst min varying from ?100 to ?150 nT in 1995–2002 have been studied using a new ULF index of wave activity proposed in [Kozyreva et al., 2007]. It has been detected that daytime Pc5 pulsations (2–6 mHz) are most intense during the main phase of a magnetic storm rather than during the recovery phase as was considered previously. It has been indicated that morning geomagnetic pulsations during the substorm recovery phase mainly contribute to daytime wave activity. The appearance of individual intervals with the southward IMF B z component during the magnetic storm recovery phase results in increases in the ULF index values.  相似文献   

14.
Recent work suggests that the quasi-periodic (QP) modulation \sim10-50 s of naturally occurring ELF-VLF radio emissions (\sim0.5-5 kHz) is produced by the compressional action of Pc3 magnetic pulsations on the source of the emissions. Whilst it is generally accepted that these magnetic pulsations have an exogenic source, it is not clear what the mechanism of their generation is. A study of QP emissions observed during 1988 at Halley, Antarctica, in conjunction with IMP-8 satellite solar wind data, shows that the occurrence and modulation frequency of the emissions are strongly dependent upon the direction and strength of the IMF, respectively. The observed relationships are very similar to those previously reported for Pc3 pulsations associated with upstream ion-cyclotron resonance, involving proton beams reflected at the bowshock. In comparing the observed QP modulation frequencies with upstream wave theory, agreement was found by considering wave excitation exclusively associated with a proton beam reflected from a position on the bowshock at which the shock normal is parallel to the ambient IMF direction. Other geometries were found to be either impropitious or uncertain. The work indicates the useful diagnostic role QP emissions could play in the study of compressional ULF waves in the upstream solar wind and in monitoring the IMF conditions responsible for their generation.  相似文献   

15.
Simultaneous morning Pc5 pulsations (f ~ 3–5 mHz) in the geomagnetic field, aurora intensities (in the 557.7 and 630.0 nm oxygen emissions and the 471.0 nm nitrogen emission), and riometer absorption, were studied based on the CARISMA, CANMOS, and NORSTAR network data for the event of January 1, 2000. According to the GOES-8 satellite observations, these Pc5 geomagnetic pulsations are observed as incompressible Alfvén waves with toroidal polarization in the magnetosphere. Although the Pc5 pulsation frequencies in auroras, the geomagnetic field, and riometer absorption are close to one another, stable phase relationships are not observed between them. Far from all trains of geomagnetic Pc5 pulsations are accompanied by corresponding auroral pulsations; consequently, geomagnetic pulsations are primary with respect to auroral pulsations. Both geomagnetic and auroral pulsations propagate poleward, and the frequency decreases with increasing geomagnetic latitude. When auroral Pc5 pulsations appear, the ratio of the 557.7/630.0 nm emission intensity sharply increases, which indicates that auroral pulsations result from not simply modulated particle precipitation but also an additional periodic acceleration of auroral electrons by the wave field. A high correlation is not observed between Pc5 pulsations in auroras and the riometer absorption, which indicates that these pulsations have a common source but different generation mechanisms. Auroral luminosity modulation is supposedly related to the interaction between Alfvén waves and the region with the field-aligned potential drop above the auroral ionosphere, and riometer absorption modulation is caused by the scattering of energetic electrons by VLF noise pulsations.  相似文献   

16.
The geomagnetic observations, performed at the global network of ground-based observatories during the recovery phase of the superstrong magnetic storm of July 15–17, 2000 (Bastille Day Event, Dst = ?301 nT), have been analyzed. It has been indicated that magnetic activity did not cease at the beginning of the storm recovery phase but abruptly shifted to polar latitudes. Polar cap substorms were accompanied by the development of intense geomagnetic pulsations in the morning sector of auroral latitudes. In this case oscillations at frequencies of 1–2 and 3–4 mHz were observed at geomagnetic latitudes higher and lower than ~62°, respectively. It has been detected that the spectra of variations in the solar wind dynamic pressure and the amplitude spectra of geomagnetic pulsations on the Earth’s surface were similar. Wave activity unexpectedly appeared in the evening sector of auroral latitudes after the development of near-midnight polar substorms. It has been established that the generation of Pc5 pulsations (in this case at frequencies of 3–4 mHz) was spatially asymmetric about noon during the late stage of the recovery phase of the discussed storm as took place during the recovery phase of the superstrong storms of October and November 2003. Intense oscillations were generated in the morning sector at the auroral latitudes and in the postnoon sector at the subauroral and middle latitudes. The cause of such an asymmetry, typical of the recovery phase of superstrong magnetic storms, remains unknown.  相似文献   

17.
About 100 breakups of different types and intensities are studied on the basis of Lovozero Observatory data. Magnetic pulsations in different frequency ranges, VLF emissions, and auroral activity are analyzed using the TV data. It is found that magnetic pulsations in all frequency ranges lag behind the moment of breakup by 0.5–2.0 min, and bursts of low-intensity broadband VLF emission hiss are observed 3–10 min before breakup. Hiss leading breakup corresponds to feeble auroras located northward of a pre-breakup arc.  相似文献   

18.
2007年3月3日位于磁层昏侧THEMIS的5颗卫星、同步轨道晨侧和午前的GOES 3颗卫星和地面地磁台站同时观测到了持续近4 h的Pc5 ULF波.我们用交叉小波相关分析计算脉动的传播速度,用MVA分析求解脉动的传播方向,然后结合两者的计算结果获得了Pc5相速度矢量信息.THEMIS卫星观测到Pc5具有压缩特性,且向阳传播,速度约在6~20 km/s左右,相比于磁层中阿尔芬速度(1000 km/s)较低.这些Pc5 ULF波动可能产生于磁尾或磁层内部不稳定性.GOES 3颗卫星观测到不同情况的Pc5 ULF波,极向模占主要成分,且具有波包结构,具有阿尔芬驻波特性,可能产生于K-H(Kelvin-Helmholtz)不稳定性.地面台站观测到ULF波扰动幅度随纬度升高而增强,Pc5脉动在地理纬度60°附近达到最大值, Dumont durville台站观测到的脉动与THEMIS观测到波形有很好的相似性.  相似文献   

19.
We have examined the spatial and temporal correlation of high-latitude Pi1B and Pi2 pulsations, mid-latitude Pi2 pulsations, and auroral substorm onsets identified in the IMAGE far ultraviolet imager (FUV) data. Numerous search coil and fluxgate magnetometers at high latitudes (65–80° in Antarctica and Greenland) and mid-latitude fluxgate magnetometers are used. We find that Pi1B onset times agree well with onset times of intense isolated auroral substorms identified by the IMAGE FUV instrument: Pi1B onsets occurred within the 2 min cadence of the imager. For any given event, we find that Pi1B are localized to approximately 4 h of local time and 7° of magnetic latitude relative to the initial auroral brightening location as observed by IMAGE FUV. Not surprisingly, we also find that Pi1B pulsations occur typically between 2100 and 0200 MLT. Comparison to Pi2 records from these and other lower-latitude stations shows that in almost all cases Pi1B activity coincides within ±2 min with Pi2 activity. Power law fits showed that Pi1B amplitude fell off with distance−2.9 for two strong events (i.e., similar to the r−3 falloff of the signal from a dipolar source), and only slightly more rapidly than the falloff of Pi2 activity (d−2.8). Given the global nature of Pi2 pulsations versus the localized nature of Pi1B events in this study, we conclude that the mechanism that drives Pi1B pulsations is likely different from that responsible for Pi2 pulsations.  相似文献   

20.
Quasi-periodic Pc 5 pulsations have been reported inside and just outside the Earth’s magnetotail during intervals of low geomagnetic activity. In order to further define their characteristics and spatial extent, we present three case studies of simultaneous magnetic field and plasma observations by IMP-8, ISEE-1 (and ISEE-2 in one case) in the Earth’s magnetotail and ISEE-3 far upstream of the bow shock, during intervals in which the spacecraft were widely separated. In the first case study, similar pulsations are observed by IMP-8 at the dawn flank of the plasma sheet and by ISEE-1 near the plasma sheet boundary layer (PSBL) near midnight local time. In the second case study, simultaneous pulsations are observed by IMP-8 in the dusk magnetosheath and by ISEE-1 and 2 in the dawn plasma sheet. In the third case study, simultaneous pulsations are observed in the north plasma sheet boundary layer and the south plasma sheet. We conclude that the pulsations occur simultaneously throughout much of the nightside magnetosphere and the surrounding magnetosheath, i.e. that they have a global character. Some additional findings are the following: (a) the observed pulsations are mixed mode compressional and transverse, where the compressional character is more apparent in the close vicinity of the plane ZGSM=0; (b) the compressional pulsations of the magnetic field in the dusk magnetosheath show peaks that coincide (almost one-to-one) with similar peaks observed inside the dawn plasma sheet; (c) in the second case study the polarization sense of the magnetic field and the recurrent left-hand plasma vortices observed in the dawn plasma sheet are consistent with antisunward moving waves on the magneto-pause; (d) pulsation amplitudes are weaker in the PSBL(or lobe) as compared with those in the magneto-tail’s flanks, suggesting a decay with distance from the magnetopause; (e) the thickness of the plasma sheet (under extremely quiet conditions) is estimated to be \sim22 RE at an average location of (X, Y)GSM=(16, 17) RE, whereas at midnight local time the thickness is \sim14 RE. The detected pulsations are probably due to the pressure variations (recorded by ISEE-3) in the solar wind, and/or the Kelvin Helmholtz instability in the low-latitude boundary layer or the magnetopause due to a strongly northward IMF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号