首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
The non‐linear dynamics of bending instability and vertical structure of a galactic stellar disc embedded into a spherical halo are studied with N‐body numerical modelling. Development of the bending instability in stellar galactic disc is considered as the main factor that increases the disc thickness. Correlation between the disc vertical scale height and the halo‐to‐disc mass ratio is predicted from the simulations. The method of assessment of the spherical‐to‐disc mass ratio for edge‐on spiral galaxies with a small bulge is considered. Modelling of eight edge‐on galaxies: NGC 891, NGC 4738, NGC 5170, UGC 6080, UGC 7321, UGC 8286, UGC 9422 and UGC 9556 is performed. Parameters of stellar discs, dark haloes and bulges are estimated. The lower limit of the dark‐to‐luminous mass ratio in our galaxies is of the order of one within the limits of their stellar discs. The dark haloes dominate by mass in the galaxies with very thin stellar discs (NGC 5170, UGC 7321 and UGC 8286) (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
We identify a large sample of isolated bright galaxies and their fainter satellites in the 2dF Galaxy Redshift Survey (2dFGRS). We analyse the dynamics of ensembles of these galaxies selected according to luminosity and morphological type by stacking the positions of their satellites and estimating the velocity dispersion of the combined set. We test our methodology using realistic mock catalogues constructed from cosmological simulations. The method returns an unbiased estimate of the velocity dispersion provided that the isolation criterion is strict enough to avoid contamination and that the scatter in halo mass at fixed primary luminosity is small. Using a maximum likelihood estimator that accounts for interlopers, we determine the satellite velocity dispersion within a projected radius of 175  h −1 kpc. The dispersion increases with the luminosity of the primary and is larger for elliptical galaxies than for spiral galaxies of similar b J luminosity. Calibrating the mass–velocity dispersion relation using our mock catalogues, we find a dynamical mass within 175  h −1 kpc of     for elliptical galaxies and     for spiral galaxies. Finally, we compare our results with recent studies and investigate their limitations using our mock catalogues.  相似文献   

14.
Satellite kinematics can be used to probe the masses of dark matter haloes of central galaxies. In order to measure the kinematics with sufficient signal-to-noise ratio, one uses the satellite galaxies of a large number of central galaxies stacked according to similar properties (e.g. luminosity). However, in general, the relation between the luminosity of a central galaxy and the mass of its host halo will have non-zero scatter. Consequently, this stacking results in combining the kinematics of satellite galaxies in haloes of different masses, which complicates the interpretation of the data. In this paper, we present an analytical framework to model satellite kinematics, properly accounting for this scatter and for various selection effects. We show that in the presence of scatter in the halo mass–luminosity relation, the commonly used velocity dispersion of satellite galaxies can not be used to infer a unique halo mass–luminosity relation. In particular, we demonstrate that there is a degeneracy between the mean and the scatter of the halo mass–luminosity relation. We present a new technique that can break this degeneracy, and which involves measuring the velocity dispersions using two different weighting schemes: host weighting (each central galaxy gets the same weight) and satellite weighting (each central galaxy gets a weight proportional to its number of satellites). The ratio between the velocity dispersions obtained using these two weighting schemes is sensitive to the scatter in the halo mass–luminosity relation, and can thus be used to infer a unique relation between light and mass from the kinematics of satellite galaxies.  相似文献   

15.
16.
17.
The kinematics of satellite galaxies reflect the masses of the extended dark matter haloes in which they orbit, and thus shed light on the mass–luminosity relation (MLR) of their corresponding central galaxies. In this paper, we select a large sample of centrals and satellites from the Sloan Digital Sky Survey and measure the kinematics (velocity dispersions) of the satellite galaxies as a function of the r -band luminosity of the central galaxies. Using the analytical framework presented in More, van den Bosch & Cacciato, we use these data to infer both the mean and the scatter of the MLR of central galaxies, carefully taking account of selection effects and biases introduced by the stacking procedure. As expected, brighter centrals on average reside in more massive haloes. In addition, we find that the scatter in halo masses for centrals of a given luminosity,  σlog  M   , also increases with increasing luminosity. As we demonstrate, this is consistent with  σlog  L   , which reflects the scatter in the conditional probability function   P ( L c| M )  , being independent of halo mass. Our analysis of the satellite kinematics yields  σlog  L = 0.16  ±  0.04  , in excellent agreement with constraints from clustering and group catalogues, and with predictions from a semi-analytical model of galaxy formation. We thus conclude that the amount of stochasticity in galaxy formation, which is characterized by  σlog  L   , is well constrained, independent of halo mass and in a good agreement with current models of galaxy formation.  相似文献   

18.
19.
20.
We present a highly simplified model of the dynamical structure of a disc galaxy where only two parameters fully determine the solution, mass and angular momentum. We show through simple physical scalings that once the mass has been fixed, the angular momentum parameter λ is expected to regulate such critical galactic disc properties as colour, thickness of the disc and bulge-to-disc ratio. It is, hence, expected to be the determinant physical ingredient resulting in a given Hubble type. A simple analytic estimate of λ for an observed system is provided. An explicit comparison of the distribution of several galactic parameters against both Hubble type and λ is performed using observed galaxies. Both such distributions exhibit highly similar characteristics for all galactic properties studied, suggesting λ as a physically motivated classification parameter for disc galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号