首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects in Australia of a global spike of warm-wet climate during the middle Miocene (ca16 Ma) have been controversial, with one faction arguing for inland rain forest and the other faction for dry woodland. This question is here addressed using the Oligocene–Miocene sequence of fossil mammal localities at Lake Palankarinna, South Australia, which includes numerous paleosols that have been dated by paleomagnetism, palynology, biostratigraphy, and radiometric methods to straddle this paleoclimatic event. Paleosols of the Oligocene–Miocene Etadunna and Pliocene Tirari Formations formed in arid paleoclimates and include pedogenic gypsum. The Maralji paleosol, developed on early Miocene Etadunna Formation and overlain by late Miocene–Pliocene Mampuwordu Sands, is middle Miocene in age based on mammal fauna at correlative horizons in nearby Lake Ngapakaldi. The Maralji paleosol has shallow calcareous nodules and stout root traces suggesting vegetation like dry woodland (mallee). Mallee vegetation now grows no closer than 1200 km to the southwest, so middle Miocene warm-wet climate enabled range extension of mallee and woody thickening of plants in the Australia outback. There is no evidence in the outback of middle Miocene rain forest, which may have expanded its range to form kaolinitic Ultisols near Sydney, Mudgee and Gulgong, all in New South Wales. Nor is there evidence so far inland of swamp woodlands and heaths like those producing brown coals in the Latrobe Valley, Victoria.  相似文献   

2.
The first fossil echinoids are recorded from the Cayman Islands. A regular echinoid, Arbacia? sp., the spatangoids Brissus sp. cf. B. oblongus Wright and Schizaster sp. cf. S. americanus (Clark), and the clypeasteroid Clypeaster sp. are from the Middle Miocene Cayman Formation. Test fragments of the mellitid clypeasteroid, Leodia sexiesperforata (Leske), are from the Late Pleistocene Ironshore Formation. Miocene echinoids are preserved as (mainly internal) moulds; hence, all species are left in open nomenclature because of uncertainties regarding test architecture. All Miocene taxa are recorded from single specimens apart from the 27 assigned to Brissus. Schizaster sp. cf. S. americanus (Clark) is compared to a species from the Oligocene of the south‐east USA. Brissus sp. cf. B. oblongus is close in gross morphology to a taxon from the Miocene of Malta. Leodia sexiesperforata is identified from fragments with confidence, being the only extant Antillean sand dollar with elongate ambulacral petals that is limited to carbonate substrates. The Miocene echinoids of Grand Cayman, although of limited diversity, are mainly comprised of genera common in comparable mid‐Cenozoic carbonate environments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The present study deals with the lithostratigraphy and planktonic foraminiferal biostratigraphy of the Late Eocene-Middle Miocene sequence in the Al Bardia area, northeast Libya. The lithostratigraphical studies carried out on three stratigraphical surface sections, namely Wade Al Rahib, Wadi Al Hash and Wadi Al Zeitun, led to the recognition of three rock units from base to top: (1) the Al Khowaymat Formation (Late Eocene-Early Oligocene); (2) the Al Faidiyah Formation (Late Oligocene-Early Miocene); and (3) the Al Jaghboub Formation (Early-Middle Miocene). The planktonic foraminiferal biostratigraphical analysis led also to the recognition of nine planktonic foraminiferal zones ranged in age from Late Eocene to Early Miocene with one larger foraminiferal zone of Middle Miocene age. These are, from base to top, as follows: Truncorotaloides rohri Zone (Late-Middle Eocene, Lutetian), Globigerinatheka semiinvoluta and Turborotalia cerroazulensis s.l. Zones (Late Eocene, Priaborian), Cassigerinella chipolensis/Pseudohasitgerina micra Zone (Early Oligocene, Rupelian), Globigerina ciperoensis ciperoensis, Globorotalia kugleri Zones (Late Oligocene, Chattian), Globigerinoides primordius Zone (Early Miocene, Aquitanian), Globigerinoides altiaperturus/Catapsydrax dissimilis and Globigerinoides trilobus Zones (Early Miocene, Burdigalian), and the larger benthonic foraminiferal zone, Borelis melo melo Zone (Middle Miocene, Langhian to Serravallian). The study of planktonic foraminifera proved the existence of a regional unconformity between the Early and Late Oligocene, with the Middle Oligocene deposits being absent (absence of Globigerina ampliapertura and Globorotalia opima opima Zones), and another, smaller unconformity located between the Late Eocene and Early Oligocene, in which the uppermost part of the Late Eocene is missing.  相似文献   

4.
依据丰富翔实的地层古生物资料,首次在内蒙古西部建立了比较完整的第三纪地层层序:命名或厘订了中始新统乌兰乌珠尔组、上始新统查干布拉格组、下渐新统乌兰塔塔尔组、上渐新统、下中新统乌尔图组、上中新统呼和好来组和上新统昂冈浩特组等7个地层单元;区分出了中始新世乌兰乌珠尔、晚始新世查干布拉格、早渐新世早期克克阿木、早渐新世晚期乌兰塔塔尔、晚渐新世因德里沟、早中新世乌尔图、晚中新世呼和好来和上新世昂冈浩特等8个动物群(组合)。  相似文献   

5.
Stratigraphic, geomorphological, and radiometric evidence shows that the laterite of the high plains and plateau of Kangaroo Island is older than the Middle Jurassic but younger than the Early Permian. Palaeoclimatic and palaeontological considerations suggest the Triassic as the most likely age of both the laterite and the surface on which it is developed. High‐level lateritized surfaces in the adjacent Mount Lofty Ranges and southern Eyre Peninsula are of similar age.  相似文献   

6.
Geological structure of the active foreland fold and thrust belt of Papua New Guinea has been interpreted using high-quality seismic-reflection data. Three en échelon anticlines, the Strickland, Cecilia and Wai Asi, are located along the frontal margin of the Papuan Fold Belt. All three are foreland-vergent and cut by hinterland-dipping thrust faults that sole into a common detachment beneath the Oligocene to Miocene Darai Limestone. Two of the anticlines are linked by a right-lateral transfer zone. Folding occurs primarily in the upper 2000 m of strata, which consist of Darai Limestone overlain by Miocene to Quaternary siliciclastic sedimentary rocks. Beneath the Darai Limestone lies the less-competent shaly Ieru Formation, which exhibits disharmonic folding and variable bed thickness. Seismic-reflection data clearly show that the Plio-Pleistocene upper Era Beds are deformed to the same extent as the underlying Darai Limestone, demonstrating that most of the observed deformation has occurred during the Late Pliocene and Pleistocene.  相似文献   

7.
Stable isotope data of the foraminiferal carbonate shells and bulk sediment samples from the Central Paratethys were investigated to contribute to better knowledge of the paleoenvironmental changes in Badenian (Middle Miocene). Five benthic (Uvigerina semiornata, U. aculeata, Ammonia beccarii, Elphidium sp. and Heterolepa dutemplei) and three planktonic taxa (Globigerina bulloides, G. diplostoma and Globigerinoides trilobus), characterising the bottom, intermediate and superficial layers of the water column, were selected from the Vienna Basin (W Slovakia). The foraminiferal fauna and its isotope signal point out to temperature-stratified, nutrient-rich and consequently less-oxygenated marine water during the Middle/Late Badenian. Negative carbon isotope ratios indicate increased input of 12C-enriched organic matter to the bottom of the Vienna Basin. Positive benthic δ18O implies that the global cooling tendency recorded in the Middle Miocene has also affected the intramountain Vienna Basin. In this time, the Central Paratethys has been in the process of isolation. Our stable isotope trend suggests that the communication with Mediterranean Sea has been still more or less active on the south of Vienna Basin (Slovak part) in the Late Badenian, whereas the seawater exchange towards north was apparently reduced already during the Middle Badenian.  相似文献   

8.
The heat flow evolution of a continental collisional zone is exemplified by the Eastern Alps. Heat flow maps for the syn-collision (Oligocene), syn-extrusion (Early/Middle Miocene), and post-extrusion (Late Miocene, Recent) stages are presented, and are discussed in relation to the orogenic evolution. Continental collision during Paleogene time was characterized by extremely low heat flow (<40 mW/m2) along the orogenetic front, and very high heat flow (>150 mW/m2) a few hundred kilometers south of it. The former was a result of crustal thickening and of thermal blanketing due to rapid sedimentation and nappe stacking. The latter was caused by slab break-off and magmatic activity. The Early/Middle Miocene syn-extrusion stage was characterized by rapid exhumation of metamorphic core complexes (Tauern and Rechnitz Windows), and by magmatic activity (Styrian Basin). Both mechanisms caused extremely high heat flow (>200 mW/m2). In contrast, the orogenetic front remained cold. Thereafter, magmatic activity ended and uplift rates decreased. Thus, Late Miocene heat flow is characterized by low to moderately high values. Heat flow values >75 mW/m2 were restricted to the transition zone of the Pannonian Basin characterized by thinned crust, and to the Tauern Window area. Recent temperature data indicate a subtle post-Miocene increase in heat flow.  相似文献   

9.
In the Linxia Basin on the northeast margin of the Tibetan Plateau, the Cenozoic strata are very thick and well exposed. Abundant mammalian fossils are discovered in the deposits from the Late Oligocene to the Early Pleistocene. The Dzungariotherium fauna comes from the sandstones of the Jiaozigou Formation, including many representative Late Oligocene taxa. The Platybelodon fauna comes from the sandstones of the Dongxiang Formation and the conglomerates of the Laogou Formation, and its fossils are typical Middle Miocene forms, such as Hemicyon, Amphicyon, Platybelodon, Choerolophodon, Anchitherium, and Hispanotherium. The Hipparion fauna comes from the red clay of the Liushu and Hewangjia Formations, and its fossils can be distinctly divided into four levels, including three Late Miocene levels and one Early Pliocene level. In the Linxia Basin, the Hipparion fauna has the richest mammalian fossils. The Equus fauna comes from the Wucheng Loess, and it is slightly older than that of the classical Early Pl  相似文献   

10.
A very rich and diversified dasycladalean algal assemblage has been discovered from the Sylhet Limestone Formation (lower-middle Eocene) of the Bengal Basin of India for the first time. The depositional environments of the Sylhet Limestone Formation have been discussed based on the presence of the 11 species of the dasycladalean algae belonging to the three families Dasycladaceae (Cymopolia inflataramosa Segonzac, C. mayaenese Johnson and Kaska, C. paronai Raineri, Cymopolia sp.), Triploporaceae (Dissocladella lunata Segonzac, Dissocladella sp., Jodotella sloveniaensis Deloffre and Radoicic) and Acetabulariaceae (Clypeina socanensis Deloffre and Radoicic, Clypeina sp., Terquemella sp., Neomeris sp.). The lower Eocene Sylhet Limestone Formation revealed predominance of dasycladalean algal assemblage with the halimedacean and udoteacean algae and rare occurrence of coralline algae. This suggests their luxuriant growth in the open lagoonal to shelf environment at the depth of 5–6 m in the warm waters. There is a gradual decrease in the dasycladalean species and genera in the middle Eocene Sylhet Limestone Formation. The predominance of coralline algae associated with the Sporolithon indicates that the limestone of middle Eocene Sylhet Limestone Formation have been deposited at the littoral to shallow, high energy open shelf marine environments at a depth of about 40–60 m in warm tropical waters.  相似文献   

11.
Disperse and punctual studies; absence of integration of data ranging from local to regional focus; interpretations based only on lithostratigraphic features; and interpretation of data premised on an allochthonous origin of the Caribbean plate, are some of factors that increase the confusion and uncertainty in understanding the Sinú-San Jacinto Basin. The sedimentary record of Upper Cretaceous to Eocene has been traditionally interpreted as the record of deep-water settings. However, recently these sediments have been related to shallow marine and deltaic settings. Second problematic point is about the deposition environment of the Oligocene to Late Miocene succession. Some studies suggest canyons, turbidites and sediments deposited in deep-water settings. However, recent studies propose deltaic and shallow marine settings. The last stratigraphic problem is related to the controversial fluvial vs. shallow marine interpretations of the Pliocene sediments. Based upon seismic stratigraphic analysis in recent and reprocessed 2D seismic data, integrated with well data, we propose chronostratigraphic charts for the northern, central and southern zones of the Sinú-San Jacinto Basin. Twenty seismic facies based on amplitude, continuity, frequency and geometry of seismic reflectors and twelve seismic sequences were recognized. The seismic stratigraphic analysis in this study suggests that the sediments of Upper Cretaceous to Paleocene/Eocene were associated to continental to shallow marine settings. Lagoons, coastal plain and carbonate platform dominated during this period. The Oligocene to Middle Miocene record was characterized by deep-water deposition, whereas the Late Miocene to recent sedimentation was characterized by falling base level, characterized by deltaic and fluvial deposits. Five syn-rift sequences with wedge-shaped geometry were identified in this study. Three Triassic to Jurassic syn-rift sequences were characterized by seismic facies typical of fluvial to lacustrine and flood plain sedimentation. Two Cretaceous to Paleocene syn-rift sequences were characterized by seismic facies related to lagoons to coastal plain settings. Normal high-angle faults with a northeast-southwest direction related to rifting processes controlled the development of these sequences. The sheet-drape post-rift section was characterized by passive margin settings in the northern part of the Sinú-San Jacinto Basin and by diachronic tectonic inversion of older normal faults during Cenozoic, predominantly in the central and southern zones. The stratigraphic record related to the Mesozoic to Early Cenozoic rifting; the shallow marine sedimentation during Eocene and the tectono-stratigraphic continuity across the northern Colombia and northwestern Venezuela is coherent and well explained by the in situ origin of the Caribbean plate and is not explained by the “allochthonous” model.  相似文献   

12.
关于珠江口盆地BY7-1-1井上、下第三系界线的讨论   总被引:2,自引:0,他引:2  
根据多门类古生物(钙质超微、浮游有孔虫、沟鞭藻和孢粉化石)的研究结果,证明珠江口盆地最南部的BY7-1-1井珠海组时代归属晚渐新世无疑,因而证实秦国权(1992)所定、并由此推论到整个盆地的早中新世“珠海组”界线及时代应予修正。  相似文献   

13.
Radiometric and palynological data of the Upper Oligocene–Lower Miocene Soma Formation from the Kalk?m-Gönen Basin yield new results related to age and palynological contents. In this study, Upper Oligocene strata from the Dani?ment and Linfa areas and Lower Miocene strata from the Bengiler area were sampled palynologically and for radiometric dating. The Dani?ment assemblage, which is older than the Linfa assemblages, mainly contains coniferous and evergreen to deciduous mixed mesophytic forest elements. Relatively high quantities of the altitudinal plants Picea and Abies, indicate a cooler palaeoclimate. The Linfa associations mainly include coniferous and riparian elements. Pollen of the riparian plant Alnus and Taxodiaceae indicative for the swamp forest community was predominant, probably as a result of a high lake level. There is a hiatus during the Oligocene–Miocene transition, probably showing a non-depositional phase and sea-level fall indicating the Mi-1 glaciation event. Higher in the sequence, the Aquitanian Bengiler sediments include high amounts of coniferous forest elements as well as components indicative for the evergreen and deciduous mesophytic forest and also riparian forest and swamp forest. Due to presence of thermophilous taxa Reveesia, Mastixiaceae and Arecaceae, a warm and humid palaeoclimate is inferred according to quantitative analyses using the Coexistence Approach.  相似文献   

14.
Potassium‐argon ages on alkali feldspar phenocrysts from trachyte lavas and on trachyandesites of the Cape Hillsborough Beds, which crop out north of Mackay, Queensland, yield concordant ages of 32.5 ± 0.4 m.y. This age is Early Oligocene and by correlation provides much firmer control than previously available on the age of the sediments deposited in the Hillsborough Basin. Isotopic ages on an altered biotite and on alkali feldspar from the Mount Jukes Syenite Complex, to the southwest of Cape Hillsborough, are indistinguishable from those measured on the Cape Hillsborough Beds, suggesting a possible genetic relationship between the lavas and the syenite intrusions. Present evidence indicates that Cainozoic volcanism in Queensland occurred in two main eruptive episodes. The earlier episode covered much of the Oligocene and its products are widespread in the southern half of the State. After a long hiatus of little or no volcanism there followed a later episode of volcanism in the Pliocene and Quaternary when widespread basaltic eruptions occurred, mainly in North Queensland.  相似文献   

15.
The Oligocene represents a key interval during which coralline algae became dominant on carbonate ramps and luxuriant coral reefs emerged on a global scale. So far, few studies have considered the impact that these early reefs had on ramp development. Consequently, this study aimed at presenting a high‐resolution analysis of the Attard Member of the Lower Coralline Limestone Formation (Late Oligocene, Malta) in order to decipher the internal and external factors controlling the architecture of a typical Late Oligocene platform. Excellent exposures of the Lower Coralline Limestone Formation occurring along continuous outcrops adjacent to the Victoria Lines Fault reveal in detail the three‐dimensional distribution of the reef‐associated facies. A total of four sedimentary facies have been recognized and are grouped into two depositional environments that correspond to the inner and middle carbonate ramp. The inner ramp was characterized by a very high‐energy, shallow‐water setting, influenced by tide and wave processes. This setting passed downslope into an inner‐ramp depositional environment which was colonized by seagrass and interfingered with adjacent areas containing scattered corals. The middle ramp lithofacies were deposited in the oligophotic zone, the sediments being generated from combined in situ production and sediments swept from the shallower inner ramp by currents. Compositional characteristics and facies distributions of the Attard ramp are more similar to the Miocene ramps than to those of the Eocene. An important factor controlling this similarity may be the expansion of the seagrass colonization within the euphotic zone. This expansion may have commenced in the Late Oligocene and was associated with a concomitant reduction in the aerial extent of the larger benthonic foraminifera facies. Stacking‐pattern analysis shows that the depositional units (parasequences) at the study section are arranged into transgressive–regressive facies cycles. This cyclicity is superimposed on the overall regressive phase recorded by the Attard succession. Furthermore, a minor highstand (correlated with the Ru4/Ch1 sequence) and subsequent minor lowstand (Ch2 sequence) have been recognized. The biota assemblages of the Attard Member suggest that carbonate sedimentation took place in subtropical waters and oligotrophic to slightly mesotrophic conditions. The apparent low capacity of corals to form wave‐resistant reef structures is considered to have been a significant factor affecting substrate stability at this time. The resulting lack of resistant mid‐ramp reef frameworks left this zone exposed to wave and storm activity, thereby encouraging the widespread development of coralline algal associations dominated by rhodoliths.  相似文献   

16.
An integrated stratigraphic analysis has been made of the Tarcău Nappe (Moldavidian Domain, Eastern Romanian Carpathians), coupled with a geochemical study of organic-rich beds. Two Main Sequence Boundaries (Early Oligocene and near to the Oligocene–Aquitanian boundary, respectively) divide the sedimentary record into three depositional sequences. The sedimentation occurred in the central area of a basin supplied by different and opposite sources. The high amount of siliciclastics at the beginning of the Miocene marks the activation of the “foredeep stage”. The successions studied are younger than previously thought and they more accurately date the deformation of the different Miocene phases affecting the Moldavidian Basin. The intervals with black shales identified are related to two main separate anoxic episodes with an age not older than Late Rupelian and not before Late Chattian. The most important organic-rich beds correspond to the Lower Menilites, Bituminous Marls and Lower Dysodilic Shales Members (Interval 2). These constitute a good potential source rock for petroleum, with homogeneous Type II oil-prone organic matter, highly lipidic and thermally immature. The deposition of black shales has been interpreted as occurring within a deep, periodically isolated and tectonically controlled basin.  相似文献   

17.
Due to its intermediate geographical position between the Mediterranean and W Pacific, the Oligocene shallow-marine sequence of Kutch (India) is of key importance in paleobiogeographical interpretations. Larger benthic foraminifera (LBF) are a fundamental link for the correlation between the Mediterranean shallow benthic zones (SBZ) and the W Pacific ‘letter stages’. LBF were re-evaluated by morphometric studies of the internal test from five stratigraphic sections of the Maniyara Fort Formation. Based on their significant affinity to coeval fauna in the Mediterranean, they were assigned to W Tethyan SBZ zones, supported by Sr-isotope stratigraphy. In the Basal Member, traditionally considered as early Rupelian, we identified Nummulites bormidiensis, N. kecskemetii and Heterostegina assilinoides assigning it to the early Chattian SBZ 22B Zone. The Coral Limestone Member, previously considered as late Rupelian, is also assigned to this zone, for the presence of N. bormidiensis, Eulepidina formosoides-dilatata and Nephrolepidina morgani-praemarginata. Its early Chattian age (26.5–29 Ma) is further supported by Sr-isotope data. Miogypsinoides complanatus and Spiroclypeus margaritatus in the Bermoti Member (the top of the formation) document the late Chattian SBZ 23 Zone and the Sr-isotope data (22.5–24 Ma) place it close to the Oligocene–Miocene boundary.  相似文献   

18.
The Cablac Limestone, widely recorded in Timor, has its type area on Cablac Mountain where it was regarded as a Lower Miocene shallow-marine carbonate-platform succession. The Bahaman-like facies placed in the Cablac Limestone are now known to belong to the Upper Triassic–Lower Jurassic rather than the Lower Miocene. On the northern slopes of Cablac Mountain, a crush breccia, formerly regarded as the basal conglomerate of the formation, is now considered to have developed along a high-angle fault separating Banda Terrane units of Asian affinity from an overthrust limestone stack containing units belonging to the Gondwana and Australian-Margin Megasequences. The Cablac breccia includes rock fragments that were probably derived locally from these tectonostratigraphic units after terrane emplacement and overthrusting. Clasts include peloid and oolitic limestones of the Upper Triassic–Lower Jurassic derived from the Gondwana Megasequence, deep-water carbonate pelagites of the Cretaceous and Paleogene derived from the Australian-Margin Megasequence, Upper Oligocene–Lower Miocene (Te Letter Stage) shallow-water limestone derived from the Banda Terrane, and a younger Neogene calcarenite containing clasts of mixed tectonostratigraphic affinity. There is no evidence for significant sedimentary or tectonic transport of clasts that form the breccia. The clast types and the present understanding of the geological history of Timor suggest that the crush breccia formed late in the Plio-Pleistocene uplift history of Timor. It is not the basal conglomerate of the Cablac Limestone. However, the clasts of an Upper Oligocene–Lower Miocene limestone found in the breccia suggest that a shallow-marine limestone unit of this age either outcrops in the region and has not been detected in the field, or has been eroded completely during late Neogene uplift. The clasts are similar in age and lithology to an Upper Oligocene–Lower Miocene formation that unconformably overlies a metamorphic complex in the Booi region of West Timor, similar to the Lolotoi Metamorphic Complex (Banda Terrane) that is juxtaposed against the crush breccia of Cablac Mountain. The Cablac Limestone at its type area includes a mixed assemblage of carbonate rock units ranging in age from Triassic to Plio-Pleistocene and representing diverse facies. As a formation, the name “Cablac Limestone” should be discarded for a Cenozoic unit. The Upper Oligocene–Lower Miocene shallow-water limestone unit that is typified by outcrops in the Booi region of West Timor, and that has contributed to clasts in the Cablac breccia, is informally named the Booi limestone. It is considered part of the allochthonous Banda Terrane of Asian affinity and represents the only shallow-marine Lower Miocene unit known from Timor. The only other Miocene sedimentary unit known from Timor includes carbonate pelagites – designated the Kolbano beds – probably deposited on an Australian continental terrace at water depths between 1000 and 3000 m. On the northeastern edge of Cablac Mountain, oolitic limestone and associated units of the Gondwana Megasequence, the Kolbano beds of the Australian-Margin Megasequence, and the Booi limestone and associated metasediments of the Banda Terrane were juxtaposed by a Plio-Pleistocene high-angle fault along which the Cablac crush breccia formed.  相似文献   

19.
In the Lake Frome area of South Australia there is a sedimentary sequence of non‐marine (or possibly distant marginal marine) pale‐green to grey, fine elastics and carbonates (Namba Formation). The base of these deposits is Medial Miocene in age and they are overlain unconformably by Pleistocene (and ? Pliocene) sediments. The Miocene sequence is equivalent to the Etadunna Formation of the Lake Eyre Basin, and the clay mineralogy is similar.

Combining evidence from mineralogy, palynology, and vertebrate palaeontology, a warm high‐rainfall climate operating on a subdued topography is indicated for the lower part of the Miocene Lake Frome sequence. This caused the illite‐chlorite‐kaolinite suite of the largely Precambrian provenance to be transformed to smectite and randomly‐interstratified clay. A palygorskite‐dolomite assemblage accumulated in alkaline lakes of extreme marginal marine situation during periods of seasonal dry intervals superposed on the previous climate.

A change to illite‐dominated clay, stratigraphically about halfway up the sequence, occurred simultaneously with initial uplift of the Flinders Ranges. These ranges were previously represented by, at the most, a region of low hills. Uplift, without intervention of climatic change, is sufficient to alter the clay mineralogy by promoting increased leaching. Higher in the sequence, and correlated with the major phase of uplift in the Flinders Ranges, smectite re‐appears. In this case the clay suite is believed to have resulted from increased aridity. The smectite‐rich sediments accumulated above the water table in extensive fan and mud‐flow deposits.

The Neogene sequence records a major palaeogeographic change from low energy rivers, swamps, and lakes in a low relief terrain, probably connected to the sea, to a landscape approaching that of the present during Miocene‐Pliocene times. When the Pleistocene Millyera Formation accumulated, the landscape resembled the present, though the ancestral Lake Frome was larger, and rainfall higher.  相似文献   

20.
Oligocene and Lower Miocene sediments from High Folded Zone of Iraqi Zagros have been studied paleontologically at south of Sulaimaniyah, Kurdistan Region, NE Iraq. The identified fauna are consisted of (25) genera and species of benthonic and (16) species of planktonic foraminifera. The fauna comprises relatively abundant foraminiferal assemblages of moderate diversity. Based on the stratigraphic distribution of these species, two biozones have been recognized which are NummulitesRotalia and Globoquadrina dehiscens zones. These biozones indicate that the studied sections of Basara and Khewata are of Late Oligocene–Early Miocene age. Based on the microfossils, it has been found that the age of sediments is equivalent to or represents Anah and Serikagni Formations. Some previous studies described Oligocene rocks (Kirkuk Group) as interior sag basin. In the present study, the occurrence of the group inside High Folded Zone and its rich fauna content are used for the discussion of the sag basin versus normal marine water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号