首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
为研究不同应力状态(包括主应力相对大小)和摩擦系数对大量地震P波初动辐射花样(综合P波辐射花样)的影响,首先给出了不同应力状态下的剪应力、摩擦应力和库仑破裂应力在断层面法向上的三维分布.表明即使在不考虑摩擦的情况下,剪应力在不同取向断层面上的分布也有很大差别,摩擦应力也在不同取向断层面上造成一定影响.其次,根据库仑破裂...  相似文献   

2.
本文基于结合速率-状态摩擦定律(RSF)的二维准动力学数值模型,以半空间垂直走滑断层为研究对象,通过比较两种正应力随深度变化模型的模拟结果,研究了浅层正应力变化对断层演化参数、地震孕育过程、震后滑移传播等方面的影响.结果显示,我们的数值模型在给定模型参数和约束条件下,能够完整模拟出地震周期中震间、震前、同震以及震后多个特征阶段.常数正应力模型下,动态破裂在浅层速率强化区停止,而在浅层变化正应力模型下动态破裂可以传播至自由表面,导致浅层更高的最大滑移速率和同震滑移量.两种模型下的地震矩、地震周期、平均应力降和震后滑移传播等差别不明显.两种滑移模型的傅氏振幅谱与理论K-2模型傅氏振幅谱均符合较好,且浅层变化正应力模型下的拐角波数值高于常数正应力模型,说明两种模型均符合地震同震滑移模型的运动学特征,并且浅层变化正应力模型下最终应该产生高于常数正应力模型的高频强地面运动水平.我们认为选用不同的模型参数对最终结果存在显著影响,应当根据具体问题来选择模型参数,这样才能在保证结果准确前提下有效提高计算效率.  相似文献   

3.
利用中国地震局在汶川地震前后对四川盆地以及龙门山断裂进行的水压致裂绝对应力测量数据、近断层强震记录、以及由美国USGS公布的包括地震矩和地震波能量等在内的远场震源参数解,从简单断层模型出发,应用地震能量分配原理和库仑摩擦准则,初步估算和判断了2008年Ms8.0汶川地震断层破裂过程和震源参数,以及滑移弱化模型下应力变化...  相似文献   

4.
苏门答腊—安达曼MW9.1级地震的破裂过程持续了大约500秒,这一时间几乎是一般情况下用于计算远震辐射能量的P到时和PP到时之间时间窗长度的两倍。为了测量整个地震所辐射的P波,我们将时间窗扩展为从P波到时到S波到时,并用扩展窗对震中距大于60°的台站的地震记录进行分析。这些持续时间8~10分钟的窗内包含了PP,PPP,ScP震相和其他一些多次反射震相。为了测量包含这些附加震相的影响,我们计算了由扩展窗(P波到时和S波到时之间)得到的震源谱和由标准窗(P波到时和PP波到时之间)得到的震源谱的比值。对扩展窗的分析是在假设它只包含P-pP-sP波群的情况下进行的。我们分析了发生在MW9.1级主震附近具有相似深度和震源机制的4个相对较小的地震事件。这些地震的震级范围从2005年1月9日的MW6.0级余震到震中位于苏门答腊-安达曼地震南部的2005年3月28日MW8.6级的尼亚斯地震。将得到的这4个地震事件的震源谱比值取平均,就得到扩展窗的频变算子。然后对扩展窗得到的2004年12月26日主震的震源谱进行校正,就得到苏门答腊-安达曼地震整个破裂过程(~600秒)的完整的或校正的震源谱。我们计算的地震辐射总能量为1.4×1017J。经过对整个地震的校正震源谱与破裂过程的前~250秒的震源谱(由标准远震窗得到)比较,我们发现主震破裂过程的前半部分辐射的地震波能量多于破裂过程后半部分辐射能量,尤其对于周期从3秒到40秒的地震波,这种现象更加明显。  相似文献   

5.
本文在二维模型实验研究基础上,通过模拟实际断层初动的三维地震模型实验,给出了p波辐射图象与断层运动和构造应力之间的关系。并通过p波传播和辐射特征的研究,认为有限移动震源单侧破裂传播可较好地解释实际地震的发生机制。   相似文献   

6.
近年来,通过计算库仑破裂应力变化研究地震触发及断层的相互作用,进而估计地震灾害已经成为国际上研究的热点.研究中,为考察库仑模型触发地震的效果,计算时往往要改变模型参数进行检验,特别是让有效摩擦系数从0.0到0.8之间变化.许多研究人员的计算结果表明,库仑破裂应力随着摩擦系数的增加而增大,即断层上摩擦系数的增大可以导致触发地震能力的提高.这显然与我们的常识相违背:摩擦总是阻碍断层滑动、抑制地震发生的,即断层面上的摩擦越大,地震越是难以被触发.文中通过对库仑破裂应力的计算公式进行详细分析后发现,之所以出现摩擦越大,地震越容易被触发的现象,其原因是研究者在计算中没有考虑在构造应力作用的环境里,摩擦系数本身的变化所带来的附加库仑应力变化.若某个地震使一个位于地下15km的典型断层面上的正应力增加2 MPa,如果只考虑静岩压力,当摩擦系数从0.3增大到0.4后,传统库仑破裂应力变化为0.8 MPa;而综合库仑应力变化则大约为-39.2 MPa.所以,若从整体上来分析断层在地震位错及摩擦系数变化所造成的综合库仑应力改变,就不可能出现库仑应力随摩擦系数增加而增加的不正常现象.由此可见,今后在利用库仑模型研究地震触发问题时,应综合考虑构造应力场及摩擦系数本身变化所带来的库仑应力变化.  相似文献   

7.
孟令媛  史保平 《地震学报》2011,33(5):637-649
对有限断层地震波能量辐射的估算通常采用断层面上子源能量的逐点求和方法。基于Brune圆盘模型,Anderson推导出有限断层地震波能量辐射S波的求解公式,即 ,其中 为断层面上地震矩, 为剪切模量, 和 分别为动态应力降和静态应力降,并指出在复合震源模型强地面运动预测应用中 以满足能量守恒。Rivera和Kanamori则从能量辐射表象定理出发,给出了有限断层中辐射能量的积分表达式,明确地指出了逐点求和所存在的问题。依据该积分表达式,本文推导出了复合源模型中新的辐射能完整的求解方法,指出Anderson方法实为断层面上点源辐射能量的简单叠加求和,后者则充分考虑了断层面上任一点在任一时刻能量传播过程中受到的断层面上所有位移破裂路径的交互影响。以1976年唐山7.6地震为例,应用上述方法分别计算了有限断层模型的辐射能量及近场强地面运动,如质点运动加速度,速度。结果表明如果模型参数满足 时,由本文给出的求解方法计算所得到的地震波辐射能已远远超出实际的辐射能量值,直接导致了对近场强地面运动参数如质点速度、加速度等的过高估算。因此,Zeng等和Anderson工作的局限性是非常明显的:地震矩守恒以及非物理的 无法准确地预测近场地面运动。未来工作中,对于有限断层模型的建立,在地震矩守恒这一约束条件的基础上,远场和近场能量解(或视应力)将可作为另一个重要的约束条件,为强地面运动的模拟提供一个更为恰当的求解方案。   相似文献   

8.
不对称双侧破裂过程的研究及其在海城地震的应用   总被引:10,自引:3,他引:10       下载免费PDF全文
本文计算并分析了不对称双侧破裂方式的矩形断层辐射的 P 波远场位移谱, 提出研究不对称双侧破裂过程的初步方法, 并将它应用于1975年2月4日辽宁省海城7.3级地震的震源破裂过程的研究.研究结果表明, 海城地震的破裂方式是在震源地区北西西断层上发生的不对称双侧破裂过程, 断层总长度为54公里, 主破裂朝北西西方向, 破裂长度为38公里, 破裂速度为1.3公里/秒, 向南东东方向破裂的长度为16公里, 破裂速度亦为1.3公里/秒.进而求得海城地震的震源参数为:走向滑动平均错距117厘米;倾向滑动平均错距33厘米;地震矩5.2×1026 达因·厘米;应力降22巴;应变降3.3×10-5; 释放的总能量3.4×1022尔格.   相似文献   

9.
当断层破裂期间剪应力超过通常为流体静压力状态的地壳表层屈服强度时,沿断层深部成核的地震破裂才能传播到地表。例如圣安德烈斯断层系,对于错位断层的地震活化来说,深部需要超流体静压力。根据围岩和断层岩石的破裂准则,能造成地面破裂的滑动事件估计发生在沿与主压应力成小于65°角的断层面的孕震深度上。这些滑动事件在震源深度上需要的最小剪应力约为30 MPa。对地震间隔期长且推断粘结强度高的断层,预测的活化角≤55°,表明南加利福尼亚圣安德烈斯的一些地段,包括圣贝纳迪诺地区、埃尔西诺断层带和圣哈辛托断层的部分,为能使地表破裂的未来大地震的最可能的震源场地。为了进一步约束这些地震的位置,我们急切需要使用实验室试验、震源机制研究及对这类圣安德烈斯断层系的地震活断层进行钻孔,来探查深部断层岩石的摩擦性质和应力状态。  相似文献   

10.
运用变分原理,我们得到了最小地震波辐射能量约束准则并用于研究震源的物理过程.通过研究1995年ML4.1河北沙城地震序列主震和余震的动力学过程,可知主震和余震震源的动态破裂过程明显不同;ML4.1主震的破裂速度与瑞利波速相近,约为剪切波速度的0.89倍;而28个余震的破裂速度远远小于剪切波速度,大约是剪切波速度的0.05到0.55倍.根据裂纹扩展模型,计算得到其余震的地震波辐射效率多在10%以下,这也说明了余震的地震效率较低.我们认为余震震源的动态破裂过程应与断层内部新生裂纹的扩展有关,而非简单的岩体间的相对滑动.余震震源的动态破裂传播与破裂能占主导地位的小地震有关.这些小震所带来的破裂能也导致了断层的进一步扩展.在对该地震序列的研究中,我们发现主震与余震的震源破裂过程在能量分配上有着本质的区别.因此当地震断层尺度相当小时,破裂能的贡献不能忽略,它的大小将显著地影响地震波辐射能的大小.  相似文献   

11.
运用变分原理,我们得到了最小地震波辐射能量约束准则并用于研究震源的物理过程.通过研究1995年ML4.1河北沙城地震序列主震和余震的动力学过程,可知主震和余震震源的动态破裂过程明显不同;ML4.1主震的破裂速度与瑞利波速相近,约为剪切波速度的0.89倍;而28个余震的破裂速度远远小于剪切波速度,大约是剪切波速度的0.05到0.55倍.根据裂纹扩展模型,计算得到其余震的地震波辐射效率多在10%以下,这也说明了余震的地震效率较低.我们认为余震震源的动态破裂过程应与断层内部新生裂纹的扩展有关,而非简单的岩体间的相对滑动.余震震源的动态破裂传播与破裂能占主导地位的小地震有关.这些小震所带来的破裂能也导致了断层的进一步扩展.在对该地震序列的研究中,我们发现主震与余震的震源破裂过程在能量分配上有着本质的区别.因此当地震断层尺度相当小时,破裂能的贡献不能忽略,它的大小将显著地影响地震波辐射能的大小.  相似文献   

12.
地震是断层的自发破裂动力学过程。数值模拟断层的自发破裂动力学过程对于认识地震的力学本质、减轻地震灾害等有着重要的科学意义及应用价值。本文首先对经典的滑移弱化摩擦关系进行了改进,然后对断层的破裂过程进行动态数值模拟。模拟结果表明,利用改进后的摩擦关系能够产生脉冲型(pulse-like)破裂模式。断层自发破裂过程受初始应力场及摩擦关系影响,若初始应力场中的剪应力水平较低或滑移弱化摩擦本构关系中的动摩擦系数较大,则容易产生脉冲型破裂;反之,则容易产生裂纹型(crack-like)破裂。另外,为了研究双材料(bimaterial)断层破裂对强地面运动的影响,我们采用正则化的速率-状态相关摩擦本构关系计算了破裂沿着双材料断层传播的二维有限元模型。模拟结果表明,双材料机制对地震破裂过程以及断层周边区域的强地面运动有显著影响。由断层破裂辐射出的地震波导致的强地面运动在整个空间上的分布是不对称的,其不对称性会随着断层两侧材料差异程度的增加而增加。断层破裂能否跨越断层阶区(stepover)继续传播,从而引发更大震级的地震,地震时断层是否发生超剪切破裂导致地震灾害加剧,都是震源动力学研究的重要内容。本文利用有限单元方法模拟断层阶区对地震破裂传播的控制作用以及对产生超剪切地震破裂的促进作用。研究结果表明:断层面上的摩擦系数减小、断层周边区域内初始剪应力增大以及较小的阶区间距等,都将增加断层破裂跳跃阶区传播的可能性;此外,这些物理因素都会对破裂的传播速度产生影响。在一定条件下,破裂传播速度会由在初始断层上的亚剪切波速度转为在次级断层上的超剪切波速度。结合以上在概念模型中对断层自发破裂过程的模拟研究结果,我们根据汶川地震和玉树地震发震断层的实际几何情况分别构建有限单元数值模型,研究了汶川地震单侧破裂过程的动力学机制以及玉树地震产生超剪切破裂过程的动力学机制。2008年汶川大地震的破裂过程极其复杂,向东北方向的破裂距离长达300 km,而向西南方向的破裂长度很小,呈现出单侧破裂的主要特征。文中模拟并分析了汶川地震的破裂过程,结果表明:龙门山断裂带两侧的物性差异是造成汶川大地震单侧传播的决定性因素。由于2010年玉树地震(Ms=7.1)产生了超剪切地震破裂,所以地震灾害特别严重。文中在模拟并分析玉树地震的破裂过程后认为:玉树地震发震断层走向与初始主应力方向之间的关系断层破裂是亚剪切转化为超剪切破裂的可能原因。  相似文献   

13.
根据地震破裂动力学, 研究了1995年7月20日河北沙城ML4.1地震序列破裂过程中, 视应力和静态应力降与动态应力降之差的变化. 结果表明, 主震的视应力约为5 MPa, 而余震的视应力平均约为0.047 MPa. 在破裂过程中, 主震的动态应力降大约为静态应力降的1.6倍,其差值约为2.7 MPa; 余震的动态应力降一致小于静态应力降,其差值平均约为-0.75 MPa. 因此,主震发生时,最终应力大于动摩擦应力,与断层突然锁住的模式相符; 余震发生时,最终应力小于动摩擦应力,与地震断层错动过头的模式相符. 因此, 主震和余震的发生过程是有差别的.   相似文献   

14.
本文根据2009年10月以来,江苏省及附近海域ML≥2.8级地震的地震波形观测数据,运用快速傅里叶变换方法对地震S波数据进行地震波位移谱和震源参数计算,并将江苏区域测震台网内部分地面测震观测得到的震源参数与井下观测得到的震源参数进行归纳对比,发现地面观测的地震震源参数中的拐角频率、地震矩和断层错动距离、应力降和矩震级要大于井下观测的震源参数结果,拐角频率f0差值为0.397 Hz、地震矩M0差值为8.642×1014 N·m、断层错距的差值为2.268 cm、应力降差值为2.033 MPa,矩震级差值为0.32级。而地面观测计算出的断层错动尺度参数和断层破裂面积参数要小于井下观测数据计算的结果,两者的差值分别是-0.126 km和-0.221 km2。  相似文献   

15.
史保平  杨勇 《地震学报》2008,30(3):217-229
利用2001年昆仑山口西MS8.1地震现场观测所提供的地表破裂同震位移数据,使用简单滑移弱化破裂模型,估算了发震主断层上的破裂传播速度. 该模型中考虑了断层破裂时动摩擦过程中应力上调和下调机制对地震波辐射能量分配的影响. 对比Bouchon和Valleacute;e有关昆仑山口西地震主断层破裂传播速度超过剪切波速度,甚至达到P波速度的结果, 采用动摩擦应力下调时的滑移弱化模型 (分数应力降模型),结果表明,伴随较高的地震波辐射效率,主断层的平均破裂传播速度等于或小于瑞利波速度,这与许力生和陈运泰的体波反演结果,以及陈学忠震源应力场估算的结果是一致的. 最后,联系到由地表破裂现象所反映出的断层力学特征,如与视应力相关的分数应力降 (动摩擦应力下调), 基于滑移弱化模型, 讨论了可能的震源破裂机制.   相似文献   

16.
利用二维有限元数值模型,结合断层滑移弱化摩擦准则对断层滑动规律以及应力扰动对其影响进行了研究.数值计算结果表明,在均匀应力分布情况下, 平面断层滑动显示出典型的特征地震规律,断层面上的应力扰动对断层滑动规律产生影响,压应力增加明显延迟地震的发生时间,并增加地震释放的能量.应力扰动发生在地震破裂临界区时的影响比在震前滑移区时的影响显著.当发生在地震滑移区时,若应力扰动足够大,则压应力增大会造成地震发生时部分动力断层被暂时锁住,使得地震释放的能量变小,但可增加后续地震的能量; 而压应力减小则可导致地震规律产生更加复杂的变化,会即时触发地震.如果应力扰动发生在一个地震周期的早期,则触发的地震较小,但可导致随后的地震提前发生; 如果应力扰动发生在一个地震周期的后期,则会触发大地震.当应力扰动位于震前滑移区或破裂临界区时,小的扰动也可能产生类似的效果.应力扰动产生越晚,这种影响也越明显.应力扰动发生在破裂临界区的影响最明显.应力扰动的影响一般主要集中在应力发生扰动后的1—2个地震周期内.后续地震基本恢复无应力扰动时的特征地震规律.   相似文献   

17.
滑动弱化模型下的库仑应力变化与远程触发问题   总被引:2,自引:0,他引:2       下载免费PDF全文
地震断层破裂在周围固体介质中能产生静态附加应力场.当依据库仑破裂准则和破裂模型推测构造应力变化,用以判断能否触发某处断层破裂时,这种应力变化称作"库仑破裂应力变化".一次地震产生的"库仑应力变化"被认为能影响下一次地震的发生.讨论了计算"库仑应力变化"所采用的不同模型,指出伏尔泰拉错动模型不能真实反映震源参数,因而所给...  相似文献   

18.
前人研究1985年8月23日乌恰M_S7.4地震在卡兹克阿尔特断层上破裂了15 km,本次研究确定该地震在乌恰盆地南缘断层上也破裂了24 km,最终确定本次地震总破裂长度为39 km。实测乌恰盆地南缘断层地表破裂带最大垂直位移量为1.2 m,最小垂直位移量仅0.2 m,平均垂直位移量0.55~0.64 m,这些断层陡坎只是在地表呈现轻微的隆起,肉眼通常难以识别,因此也是震后未能及时发现的重要原因。探槽开挖揭露该逆冲断层倾向南,倾角仅为20°,计算平均水平缩短位移量为1.51~1.76 m,平均倾滑位移量为1.61~1.87 m,与卡兹克阿尔特断层地表破裂带运动性质相同、断错位移量相当。在最大主压应力南北方向投影显示,两条破裂带基本不重合,即本次大地震的极震区西部的应变能量是由乌恰盆地南缘断层破裂释放,东部的应变能量则由卡兹克阿尔特断层破裂释放,隐含着乌恰盆地南缘断层和卡兹克阿尔特断层之间构造关系密切。这两条断层深部很可能归并为同一条软弱的膏盐滑脱面,均属于帕米尔俯冲带的薄皮构造。  相似文献   

19.
在地震滑动过程中,断层动态摩擦是地壳内控制地震破裂的决定性因素。天然地震的脆性裂纹理论[1-3]使得以下观点被普遍接受:在地震断层快速滑动的过程中,断层摩擦力减弱,即所谓的滑动弱化[1]。高速断层泥实验[4-5],以及最近关于热增压[6-7]和摩擦熔化[8]的试验都支持该理论。但是,这些研究均仅针对固定的断层滑动速率。在本文中,我们的实验展示了不同滑动速率下断层物质的摩擦行为——这一模型的设置更接近天然地震的特征。实验结果表明,在断层滑动加速和减速的过程中,断层摩擦经历了增长、弱化和再增长。这种摩擦变化可能可以由低滑动速率下和更现实的滑动速率之下的速率-状态摩擦行为[9-10]来解释,但包含了不同的物理机制和不同的规模。最初的摩擦增强可能会阻碍小破裂向大地震的发展。断层滑动减速过程中的摩擦增强可能导致地震破裂呈脉冲状[11-14],并使得静态应力下降到与动态应力变化相比较低的水平[15]。  相似文献   

20.
分析地震波估算地壳内的应力值   总被引:12,自引:4,他引:12       下载免费PDF全文
陈培善 《地震学报》1981,3(3):251-263
本文讨论了利用破裂力学理论说明地震破裂的过程, 认为地震本质上是岩石在应力作用下的低应力破裂现象.它是岩石中的裂纹不断稳态扩展、最后进入失稳扩展的结果.分析了在扩展过程中应力和位移的变化, 发现任何将要破裂的那一点的应力都要由初始应力0升高到屈服应力y 以后才破裂, 破裂后裂纹面上的点的应力降到0.在破裂前和破裂后的位移, 都可由弹性力学方程给出.在破裂的一瞬间破裂的端点产生的非弹性位移, 则不能由弹性力学方程给出.它可以由断裂力学中的裂纹滑开位移公式近似给出.根据位错模式由于计算弹性波辐射场的位错量 D(, t), 正是破裂瞬间产生的非弹性位移, 所以用弹性位移公式来计算地震位错量是错误的.我们采用了裂纹滑开位移公式来计算地震位错量, 从而导出了较合理的计算地震释放总能量的公式 ET=yDS(y 为屈服强度;D为平均位错;S 为断层面积)以及估算初始应力值0的公式:0 =[Dmax/L4y/(1-) ]1/2(L 为断层长度).用它们计算了一些地震的 Er 和0, 分别列于表1和表2.这些结果比以往的结果要更合理一些。 结果表明:(1)地震多数是在低应力作用下(即低初始应力)发生的(约100——200巴);(2)地震释放的总能量约比地震波能量大一个数量级.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号