首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Laboratory observations have shown that coal permeability under the influence of gas adsorption can change instantaneously from reduction to enhancement. It is commonly believed that this instantaneous switching of permeability is due to the fact that the matrix swelling ultimately ceases at higher pressures and the influence of effective stresses take over. In this study, our previously-developed poroelastic model is used to uncover the true reason why coal permeability switches from reduction to enhancement. This goal is achieved through explicit simulations of the dynamic interactions between coal matrix swelling/shrinking and fracture aperture alteration, and translations of these interactions to perrmeability evolution under unconstrained swellings. Our results of this study have revealed the transition of coal matrix swelling from local swelling to macro-swelling as a novel mechanism for this switching. Our specific findings include: (1) at the initial stage of CO2 injection, matrix swelling is localized within the vicinity of the fracture compartment. As the injection continues, the swelling zone is extending further into the matrix and becomes macro-swelling. Matrix properties control the swelling transition from local swelling to macro swelling; (2) matrix swelling processes control the evolution of coal permeability. When the swelling is localized, coal permeability is controlled by the internal fracture boundary condition and behaves volumetrically; when the swelling becomes macro-swelling, coal permeability is controlled by the external boundary condition and behaves non-volumetrically; and (3) matrix properties control the switch from local swelling to macro swelling and the associated switch in permeability behavior from reduction to recovery. Based on these findings, a permeability switching model has been proposed to represent the evolution of coal permeability under variable stress conditions. This model is verified against our experimental data. It is found that the model predictions are consistent with typical laboratory and in-situ observations available in lietratures.  相似文献   

2.
为了研究深部煤体在开采扰动影响下的渗透率演化规律,以三向应力条件下的煤体渗透率模型为基础,从吸附解吸作用引起裂隙变形和损伤破裂造成煤基质弹性模量劣化的角度进行理论推导,引入内膨胀应变系数的概念,同时基于Drucker-Prager破坏准则的损伤本构关系建立了两种考虑煤体损伤破裂的渗透率演化模型——指数型和立方型,并且对常规三轴加载、开采扰动加卸载和改变气体压力下的瓦斯渗透试验结果进行了拟合分析。结果表明:所构建的两种模型可以较好地反映常规三轴加载和开采扰动加卸载下煤体渗透率的分区段变化特征,也可以描述有效围压恒定条件下煤体渗透率随气体压力升高而降低的规律。在开采扰动加卸载和改变气体压力的试验中,指数型的拟合效果略优于立方型。研究结果可为深部煤炭开采及瓦斯抽采的工作提供指导。  相似文献   

3.
渗透率是表征瓦斯流动的重要参数,为保证煤矿瓦斯安全高效抽采,有必要探究距抽采井筒不同位置处煤层瓦斯渗流演化特征。然而,瓦斯抽采过程中伴随有效应力、煤基质对瓦斯的吸附/解吸能力以及煤储层温度的不断变化,甚至出现抽采损伤,使得煤层瓦斯运移行为异常复杂。为探究抽采过程的煤层瓦斯渗流特性,在圆柱坐标系下,考虑压力场与温度场变化对煤储层渗透率的影响,构建温度影响的孔隙压力时空演化函数,据此建立应力与温度作用下的煤储层渗透率模型。结果表明:建立的模型能合理描述沿抽采井筒孔隙压力的演化规律以及瓦斯的运移特性,即在恒定外应力的条件下,随抽采时间增加,不同位置处孔隙压力先降低后变化平缓,煤储层渗透率先降低后升高;此外,同一煤储层位置处,考虑温度比不考虑温度的渗透率计算值更低;通过讨论发现,随抽采时间增加,根据裂隙压缩与基质收缩对渗透率演化的不同效应,设置合理的负压抽采方式可提高瓦斯抽采量。   相似文献   

4.
This paper presents the development of a discrete fracture model of fully coupled compressible fluid flow, adsorption and geomechanics to investigate the dynamic behaviour of fractures in coal. The model is applied in the study of geological carbon dioxide sequestration and differs from the dual porosity model developed in our previous work, with fractures now represented explicitly using lower-dimensional interface elements. The model consists of the fracture-matrix fluid transport model, the matrix deformation model and the stress-strain model for fracture deformation. A sequential implicit numerical method based on Galerkin finite element is employed to numerically solve the coupled governing equations, and verification is completed using published solutions as benchmarks. To explore the dynamic behaviour of fractures for understanding the process of carbon sequestration in coal, the model is used to investigate the effects of gas injection pressure and composition, adsorption and matrix permeability on the dynamic behaviour of fractures. The numerical results indicate that injecting nonadsorbing gas causes a monotonic increase in fracture aperture; however, the evolution of fracture aperture due to gas adsorption is complex due to the swelling-induced transition from local swelling to macro swelling. The change of fracture aperture is mainly controlled by the normal stress acting on the fracture surface. The fracture aperture initially increases for smaller matrix permeability and then declines after reaching a maximum value. When the local swelling becomes global, fracture aperture starts to rebound. However, when the matrix permeability is larger, the fracture aperture decreases before recovering to a higher value and remaining constant. Gas mixtures containing more carbon dioxide lead to larger closure of fracture aperture compared with those containing more nitrogen.  相似文献   

5.
以沁水盆地成庄矿煤样为研究对象,利用实验室自主研发的CO2注入与煤层气强化开采实验模拟装置进行不同有效应力和CO2吸附压力下的煤岩渗透率测试。实验结果表明,煤岩的裂隙压缩系数受到CO2吸附的影响,初始状态下、亚临界CO2吸附和超临界CO2吸附煤样裂隙压缩系数分别为0.066、0.086和0.089。引起裂隙压缩系数改变的原因主要有两方面:CO2和煤中矿物反应提高了煤基质的不连续性;CO2软化了煤基质同时降低了煤岩的力学性质。利用考虑吸附应变以及内部膨胀系数的渗透率模型对实测渗透率进行拟合,发现有效应力和内部膨胀系数成正比。CO2吸附压力和有效应力的增大均提高了煤岩的内部膨胀系数,这影响了煤岩孔裂隙的开度,降低了煤储层的渗透率,并最终降低CO2在煤储层中的可注性。   相似文献   

6.
王伟  方志明  李小春 《岩土力学》2018,39(Z1):251-257
为研究沁水盆地煤样渗透率演化规律,构建了煤样渗透率测定的瞬态压力脉冲法实验装置,使用N2和CO2在实验室开展了3种试验条件的渗透率测定,应用Connell模型对实验结果进行分析,并讨论了模型预测值和实验值之间差别的原因。结果表明,(1)在恒定孔压变围压条件下渗透率随有效应力增大而减小;在等有效应力条件下,渗透率随孔压增大而减少;在恒定围压变孔压条件下,随孔压增大,渗透率呈先减小后变大的趋势。(2)运用Connell模型预测的恒定围压变孔压条件的渗透率值大于实验值,原因可能是由于裂隙压缩性系数和吸附应变系数存在估计误差。通过开展实验室渗透率实验和模型分析,对指导实验室内二氧化碳封存和气体驱替实验及其模拟研究具有借鉴意义。  相似文献   

7.
煤层瓦斯渗透率是影响瓦斯抽采和动力灾害防治的重要参数。为了研究煤体损伤和剪胀变形对渗透率的影响,首先引入损伤变量反映煤体损伤破坏状态,建立了基于体应变增量的煤体损伤本构模型。并采用Hurst指数表征裂隙表面粗糙度,基于裂隙表面的分形特征,建立了裂隙渗透率在压缩和剪切作用下的演化模型。通过对TOUGH2和FLAC3D软件进行二次开发,建立了基于双重孔隙模型的TOUGH2(CH4)-FLAC气-固耦合数值分析工具。采用本软件对煤样单轴压缩过程进行模拟分析,结果表明:煤体的破坏是损伤单元累积和贯通的结果,最终形成贯通煤体的损伤带是造成煤体失稳破坏的主因;围岩内的渗透率增加区域与损伤区位置基本一致,其中裂隙系统的渗透率增加幅度最大可达2个数量级;剪切破坏区的裂隙发生剪胀变形,引起裂隙渗透率大幅增加。建立的理论模型与数值计算工具为制定瓦斯治理措施提供了理论指导。  相似文献   

8.
The pertinence and effectiveness of gas extraction for underground coal mining is an important issue for simultaneous exploitation of coal and gas. The key issue is the definition and analysis of mining-enhanced permeability of mining-induced fracture network. In order to describe the permeability evolution process during coal mining, the elasto-plastic damage constitutive model of coal was established. Based on the mining-enhanced permeability model, the effect of damage on permeability was considered, and the expression of mining-enhanced permeability considering damage was obtained. Using rock mechanics testing system and the permeability test system, the permeability test was conducted, and the permeability change law with damage was obtained. Based on the elasto-plastic damage constitutive model and the mining-enhanced permeability of damaged coal, the 3D-finite element program was developed according to the elasto-plastic damage theory, by which the analysis of mining process of one coal seam was made. Then we analyzed the distribution of permeability and mining-enhanced permeability. The result shows that: (1) considering the damage can reflect the influence of mining on fracture network and permeability of coal seam. (2) With the advance of the working face, coal units continue to break and the permeability of the coal seam increases continually. (3) The numerical simulation shows the dynamic evolution process of permeability and mining-enhanced permeability of the coal seam during the mining process. These results can provide quantitative and scientific methods for quantitative evaluation of permeability change of coal seam in mining engineering.  相似文献   

9.
为了研究煤体渗透率与压力梯度之间的关系,在考虑煤体吸附变形的基础上建立了煤体渗透率与瓦斯压力梯度的数学模型,并在恒温条件下进行同一压力梯度不同吸附平衡压力的条件下和同一吸附平衡压力不同压力梯度条件下的渗流实验。研究结果表明:在较低的孔隙压力条件下,煤体渗透率随着吸附平衡压力和压力梯度的增加而减小;建立的渗透率动态演化模型能够较好地描述煤层瓦斯抽采过程中瓦斯的流动规律。研究结果可以为我国煤矿瓦斯治理和抽采工作提供一定的理论支撑,具有一定的指导和实践意义。   相似文献   

10.
近距离上保护层开采瓦斯运移规律数值分析   总被引:10,自引:1,他引:9  
采动裂隙是瓦斯运移的通道,搞清瓦斯运移规律是瓦斯治理的前提。在考虑岩石动态破坏过程和含瓦斯煤岩渗流-应力-损伤耦合的基础上,结合平煤五矿实际地质条件和开采工艺,建立了数值计算模型,应用RFPA-Gas程序模拟了近距离上保护层采动顶底板岩层变形破坏、裂隙演化规律与瓦斯运移规律。模拟结果较好地再现了保护层开采过程中煤岩层应力变化、顶底板损伤及裂隙演化过程,得到了上覆岩层移动的“上三带”(冒落带、裂隙带和弯曲下沉带)和底板变形的“下两带”(底板变形破坏带和弹塑性变形带)。得到了被保护层瓦斯流量分布、瓦斯压力分布和透气系数的变化规律,卸压煤层瓦斯透气性增大了2 500倍,得到了煤壁下方压缩区和膨胀区之间的张剪瓦斯渗流通道,并将保护层底板压缩区和膨胀区的瓦斯渗流特征提炼出来:压缩区对应的是渗流减速减量区、膨胀区由卸压膨胀陡变区和卸压膨胀平稳区组成,分别对应着渗流急剧增速增量区和渗流平稳增量区。指出卸压膨胀陡变区是瓦斯突出危险区,为近距离保护层开采瓦斯治理指明了方向。实践表明,瓦斯治理效果显著。  相似文献   

11.
We report laboratory experiments that investigate the permeability evolution of an anthracite coal as a function of applied stress and pore pressure at room temperature as an analog to other coal types. Experiments are conducted on 2.5 cm diameter, 2.5-5 cm long cylindrical samples at confining stresses of 6 to 12 MPa. Permeability and sorption characteristics are measured by pulse transient methods, together with axial and volumetric strains for both inert (helium (He)) and strongly adsorbing (methane (CH4) and carbon dioxide (CO2)) gases. To explore the interaction of swelling and fracture geometry we measure the evolution of mechanical and transport characteristics for three separate geometries — sample A containing multiple small embedded fractures, sample B containing a single longitudinal through-going fracture and sample C containing a single radial through-going fracture. Experiments are conducted at constant total stress and with varied pore pressure — increases in pore pressure represent concomitant (but not necessarily equivalent) decreases in effective stress. For the samples with embedded fractures (A and C) the permeability first decreases with an increase in pressure (due to swelling and fracture constraint) and then increases near-linearly (due to the over-riding influence of effective stresses). Conversely, this turnaround in permeability from decreasing to increasing with increasing pore pressure is absent in the discretely fractured sample (B) — the influence of the constraint of the connecting fracture bridges in limiting fracture deformation is importantly absent as supported by theoretical considerations. Under water saturated conditions, the initial permeabilities to all gases are nearly two orders of magnitude lower than for dry coal and permeabilities increase with increasing pore pressure for all samples and at all gas pressures. We also find that the sorption capacities and swelling strains are significantly reduced for water saturated samples — maybe identifying the lack of swelling as the primary reason for the lack of permeability decrease. Finally, we report the weakening effects of gas sorption on the strength of coal samples by loading the cores to failure. Results surprisingly show that the strength of the intact coal (sample A) is smaller than that of the axially fractured coal (sample B) due to the extended duration of exposure to CH4 and CO2. Average post-failure particle size for the weakest intact sample (A) is found to be three times larger than that of the sample B, based on the sieve analyses from the samples after failure. We observe that fracture network geometry and saturation state exert important influences on the permeability evolution and strength of coal under in situ conditions.  相似文献   

12.
Coal swelling/shrinkage during gas adsorption/desorption is a well-known phenomenon. For some coals the swelling/shrinkage shows strong anisotropy, with more swelling in the direction perpendicular to the bedding than that parallel to the bedding. Experimental measurements performed in this work on an Australian coal found strong anisotropic swelling behaviour in gases including nitrogen, methane and carbon dioxide, with swelling in the direction perpendicular to the bedding almost double that parallel to the bedding. It is proposed here that this anisotropy is caused by anisotropy in the coal's mechanical properties and matrix structure. The Pan and Connell coal swelling model, which applies an energy balance approach where the surface energy change caused by adsorption is equal to the elastic energy change of the coal solid, is further developed to describe the anisotropic swelling behaviour incorporating coal property and structure anisotropy. The developed anisotropic swelling model is able to accurately describe the experimental data mentioned above, with one set of parameters to describe the coal's properties and matrix structure and three gas adsorption isotherms. This developed model is also applied to describe anisotropic swelling measurements from the literature where the model was found to provide excellent agreement with the measurement. The anisotropic coal swelling model is also applied to an anisotropic permeability model to describe permeability behaviour for primary and enhanced coalbed methane recovery. It was found that the permeability calculation applying anisotropic coal swelling differs significantly to the permeability calculated using isotropic volumetric coal swelling strain. This demonstrates that for coals with strong anisotropic swelling, anisotropic swelling and permeability models should be applied to more accurately describe coal permeability behaviour for both primary and enhanced coalbed methane recovery processes.  相似文献   

13.
开采扰动诱发的煤与瓦斯突出是煤矿生产过程中的主要瓦斯动力灾害之一。为系统探索开采扰动下煤体损伤演化特征和瓦斯渗流规律,拟开展不同瓦斯压力下全应力应变–渗流实验。通过考虑气体吸附和热膨胀效应修正广义胡克定律,建立基于塑性变形的煤体损伤本构关系,进一步构建考虑损伤的分段渗透率模型。结果表明:以渗透率突变点为界,可将煤体渗透率分为峰前和峰后2个变化阶段。其中,峰前呈指数型降低,而峰后急剧增加,峰值抗压强度和弹性模量均随着瓦斯压力升高而降低;煤体轴向塑性应变和损伤演化规律具有良好的一致性,二者均呈现出峰前变化不大,峰后激增的变化趋势;利用不同瓦斯压力和50℃实验数据对所建的损伤模型及渗透率模型进行验证,得到理论曲线和实验数据具有较好的吻合度,表明新建模型可较好地反映不同条件下煤体破坏失稳过程中的损伤演化规律和瓦斯渗流特征。   相似文献   

14.
考虑基质收缩效应的煤层气应力场-渗流场耦合作用分析   总被引:2,自引:0,他引:2  
在煤层气的初级生产过程中,为了获取较高的生产率,需要降低储层压力,储层压力下降对于煤层气的渗透率具有两个相反的效应:(1)储层压力下降,有效应力增加,煤层裂隙压缩闭合,渗透率降低;(2)煤层气解吸,煤基质收缩,煤层气流动路径张开,渗透率升高。Shi和Durucan、Palmer-Mansoori以及Gray等都建立了包含了基质收缩效应以及有效应力的影响的渗透率模型,其模型都基于以下两个关键假设:煤岩体处于单轴应变状态以及竖向应力恒定。为了检验上述两个假设的合理性,建立了一个考虑基质收缩效应以及渗流场-应力场耦合作用下的煤层气流动模型,对煤层气初级生产过程中渗透率的变化进行了耦合分析。分析结果表明:单轴应变的假设具有合理性,而竖向应力是随指向生产井的应变梯度的变化而变化的,其对于渗透率的变化具有重要影响,因此,竖向应力恒定的假设可能导致渗透率预测出现误差;上述渗透率模型都可能低估煤层气初级生产过程中渗透率的变化。  相似文献   

15.
谭强  高明忠  谢晶  李圣伟  邱治强 《岩土力学》2016,37(12):3553-3560
低透煤层增透效果的定量描述和评价一直处于盲目状态,使得煤矿瓦斯治理中致裂措施、瓦斯抽采不能因地制宜。增透率可反映采动或人工增透措施对煤岩体渗透特性的改变,并可定量评价煤层增透效果,其分布和演化规律可精准圈定瓦斯富集区域,指导瓦斯抽采钻孔的合理布置。在简化钻孔和裂隙模型基础上,求解了采动条件下钻孔的体积应变,提出了针对单孔的增透率计算方法;依托同煤矿塔山矿8212采面,开展现场裂隙探测试验,研究了工作面前方采动裂隙网络发育演化及卸压增透变化规律,并分析了单孔增透率随回采面推进的演化特征。结果表明:裂隙网络呈现“从无到有、从短变长、从窄变宽、不断贯通”的趋势,煤岩体单孔增透率随回采面推进呈现先逐渐上升后保持平稳的趋势,该成果有望直接优化煤矿现场瓦斯抽采孔的布置设计。  相似文献   

16.
Bedding structure has affected gas flow in coal seam greatly, which also controls gas permeation direction and gas extraction results, and finally it has tremendous influence on prevention and control of gas disaster accidents. Combined with engineering practice of gas disaster prevention and control in China, in this paper, permeability evolution of nature coal in different bedding directions in the condition of loading is studied, and the results showed that in three directions of bedding fractures, permeability of coal which is parallel to bedding planes is the highest; it would be much easier for gas percolation along the bedding planes than other directions. In the unloading process, tension–shear destruction appears in coal sample which is oblique to bedding along the bedding planes, with a sudden increase in permeability. It is difficult for the crack damage from loading process to recover in unloading process, that is, permeability of unloading isn’t just a simple reverse process of loading. Combined with the permeability evolution of the three coal samples in the whole process, three permeability evolution models which include elasticity, plasticity and fracture are proposed. Based on the experimental results, gas extraction using boreholes along coal seam and through coal seam is compared during depressurized mining. Due to the bedding structure of coal seam, a large area of fracture network of “boreholes–bedding fractures” is formed among boreholes through coal seam and bedding structure, which makes the good effect of gas extraction using boreholes through coal seam. Research results will be of important guiding significance for choosing the best gas extraction scheme, layout of setting parameters of drilling boreholes and gas disaster prevention in the underground coal mine.  相似文献   

17.
深部煤储层处于高地应力环境中,其渗透率变化特征与浅部存在较大差异,为研究有效应力对深部煤储层渗透率的差异性影响,以及应力敏感性各向异性特征,以沁水盆地横岭区块15号煤层为研究对象,采样深度1 200~1 700 m,采用覆压孔渗实验,开展平行层理和垂直层理样品在不同有效应力下的渗透率变化规律研究,探究其应力敏感性特征及其对煤层气产能的影响。结果表明:渗透率随有效应力的增加呈幂指函数降低,平行层理面渗透率总体高于垂直层理面,且在2个方向上渗透率变化规律呈正相关性。选取储层孔裂隙压缩系数、渗透率损害率和渗透率曲率3个参数作为煤储层应力敏感性评价指标,其中,孔裂隙压缩系数随有效应力增加,以5 MPa为界限先后呈现正相关性和负相关性,渗透率损害率和渗透率曲率分别与有效应力呈指数上升和下降的规律。基于应力敏感性参数,推导出煤层气井产能模型,模型显示,不考虑应力敏感性的气井产量高于考虑应力敏感性,揭示了应力敏感性对煤层气产量的影响程度,即在5 MPa生产压差下,气井的产量降低幅度随应力敏感性系数的增大整体呈增高趋势。针对应力敏感性的阶段划分,研究区目标煤层在煤层气排采过程中应采用小–中–大的排采方案来控制生产流量。   相似文献   

18.
为了探究有效应力对高煤级煤储层渗透率的控制作用及其应力敏感性的各向异性,对5块高煤级煤样进行了覆压孔渗实验,揭示了有效应力对煤储层渗透率的控制机理。以3.5 MPa模拟原始地层压力发现,煤岩在平行主裂隙和层理面方向具有最高的初始渗透率,垂直层理面方向初始渗透率最低;有效应力从3.5 MPa增加到15.5 MPa的过程中,渗透率呈现出良好的幂函数降低趋势;渗透率伤害/损失的各向异性表明平行主裂隙方向渗透率伤害率和损失率最大,且不同方向应力敏感性受裂隙的宽度及其展布方向的控制;裂隙压缩系数随应力的增加呈现降低趋势,但由于高煤级煤岩压缩难度大,裂隙压缩系数的各向异性不明显。有效应力对渗透率控制的实质为通过减小煤储层孔裂隙体积降低渗透率,从而对各个方向上的渗透率均造成较大的不可逆伤害。   相似文献   

19.
It is generally accepted that typical coalbed gases (methane and carbon dioxide) are sorbed (both adsorbed and absorbed) in the coal matrix causing it to swell and resulting in local stress and strain variations in a coalbed confined under overburden pressure. The swelling, interactions of gases within the coal matrix and the resultant changes in the permeability, sorption, gas flow mechanics in the reservoir, and stress state of the coal can impact a number of reservoir-related factors. These include effective production of coalbed methane, degasification of future mining areas by drilling horizontal and vertical degasification wells, injection of CO2 as an enhanced coalbed methane recovery technique, and concurrent CO2 sequestration. Such information can also provide an understanding of the mechanisms behind gas outbursts in underground coal mines.The spatio-temporal volumetric strains in a consolidated Pittsburgh seam coal sample were evaluated while both confining pressure and carbon dioxide (CO2) pore pressure were increased to keep a constant positive effective stress on the sample. The changes internal to the sample were evaluated by maps of density and atomic number determined by dual-energy X-ray computed tomography (X-ray CT). Early-time images, as soon as CO2 was introduced, were also used to calculate the macroporosity in the coal sample. Scanning electron microscopy (SEM) and photographic images of the polished section of the coal sample at X-ray CT image location were used to identify the microlithotypes and microstructures.The CO2 sorption-associated swelling and volumetric strains in consolidated coal under constant effective stress are heterogeneous processes depending on the lithotypes present. In the time scale of the experiment, vitrite showed the highest degree of swelling due to dissolution of CO2, while the clay (kaolinite) and inertite region was compressed in response. The volumetric strains associated with swelling and compression were between ± 15% depending on the location. Although the effective stress on the sample was constant, it varied within the sample as a result of the internal stresses created by gas sorption-related structural changes. SEM images and porosity calculations revealed that the kaolinite and inertite bearing layer was highly porous, which enabled the fastest CO2 uptake and the highest degree of compression.  相似文献   

20.
山西沁水盆地中-南部煤储层渗透率物理模拟与数值模拟   总被引:14,自引:2,他引:14  
通过对山西沁水盆地中南部上主煤层宏观裂隙观测,力学参数测量和应力渗透率实验,分别建立了裂隙面密度、裂隙产状、裂隙宽度与煤储层渗透率之间的预测数学模型;利用FLAC—3D软件,模拟了该区上主煤层内现代地应力状态,结合煤层气试井渗透率资料,构建了应力与渗透率之间关系预测的数学模型,并对该区上主煤层渗透率进行了全面预测。通过吸附膨胀实验,揭示了各煤类煤基质的收缩特征,构建了有效应力、煤基质收缩与渗透率之间的耦合数学模型,并对煤层气开发过程中渗透率动态变化进行了数值模拟。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号