首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We study the radiation-driven warping of accretion discs in the context of X-ray binaries. The latest evolutionary equations are adopted, which extend the classical alpha theory to time-dependent thin discs with non-linear warps. We also develop accurate, analytical expressions for the tidal torque and the radiation torque, including self-shadowing.
We investigate the possible non-linear dynamics of the system within the framework of bifurcation theory. First, we re-examine the stability of an initially flat disc to the Pringle instability. Then we compute directly the branches of non-linear solutions representing steadily precessing discs. Finally, we determine the stability of the non-linear solutions. Each problem involves only ordinary differential equations, allowing a rapid, accurate and well-resolved solution.
We find that radiation-driven warping is probably not a common occurrence in low-mass X-ray binaries. We also find that stable, steadily precessing discs exist for a narrow range of parameters close to the stability limit. This could explain why so few systems show clear, repeatable 'superorbital' variations. The best examples of such systems, Her X-1, SS 433 and LMC X-4, all lie close to the stability limit for a reasonable choice of parameters. Systems far from the stability limit, including Cyg X-2, Cen X-3 and SMC X-1, probably experience quasi-periodic or chaotic variability as first noticed recently by Wijers and Pringle. We show that radiation-driven warping provides a coherent and persuasive framework but that it does not provide a generic explanation for the long-term variabilities in all X-ray binaries.  相似文献   

3.
4.
5.
Discoseismic c modes in accretion discs have been invoked to explain low-frequency variabilities observed in black hole X-ray binaries. These modes are trapped in the innermost region of the disc and have frequencies much lower than the rotation frequency at the disc inner radius. We show that because the trapped waves can tunnel through the evanescent barrier to the corotational wave zone, the c modes are damped due to wave absorption at the corotation resonance. We calculate the corotational damping rates of various c modes using the Wentzel-Kramers-Brillouin (WKB) approximation. The damping rate varies widely depending on the mode frequency, the black hole spin parameter and the disc sound speed, and is generally much less than 10 per cent of the mode frequency. A sufficiently strong excitation mechanism is needed to overcome this corotational damping and make the mode observable.  相似文献   

6.
We show that the light curves of soft X-ray transients (SXTs) follow naturally from the disc instability picture, adapted to take account of irradiation by the central X-ray source during the outburst. Irradiation prevents the disc from returning to the cool state until central accretion is greatly reduced. This happens only after most of the disc mass has been accreted by the central object, on a viscous time-scale, accounting naturally for the exponential decay of the outburst on a far longer time-scale (τ20–40 d) than seen in dwarf novae, without any need to manipulate the viscosity parameter α. The accretion of most of the disc mass in outburst explains the much longer recurrence time of SXTs compared with dwarf novae. This picture also suggests an explanation of the secondary maximum seen in SXT light curves about 50–75 d after the start of each outburst, since central irradiation triggers the thermal instability of the outer disc, adding to the central accretion rate one viscous time later. The X-ray outburst decay constant τ should on average increase with orbital period, but saturate at a roughly constant value ∼40 d for orbital periods longer than about a day. The bolometric light curve should show a linear rather than an exponential decay at late times (a few times τ). Outbursts of long-period systems should be entirely in the linear decay regime, as is observed in GRO J1744−28. UV and optical light curves should resemble the X-rays but have decay time-scales up to 2–4 times longer.  相似文献   

7.
8.
Gas falling quasi-spherically on to a black hole forms an inner accretion disc if its specific angular momentum l exceeds l ∗∼ r g c , where r g is the Schwarzschild radius. The standard disc model assumes l ≫ l ∗. We argue that, in many black hole sources, accretion flows have angular momenta just above the threshold for disc formation, l ≳ l ∗, and assess the accretion mechanism in this regime. In a range l ∗< l < l cr, a small-scale disc forms in which gas spirals fast into the black hole without any help from horizontal viscous stresses. Such an 'inviscid' disc, however, interacts inelastically with the feeding infall. The disc–infall interaction determines the dynamics and luminosity of the accretion flow. The inviscid disc radius can be as large as 14 r g, and the energy release peaks at 2 r g. The disc emits a Comptonized X-ray spectrum with a break at ∼100 keV. This accretion regime is likely to take place in wind-fed X-ray binaries and is also possible in active galactic nuclei.  相似文献   

9.
We build a simple model of the optical/ultraviolet (UV) emission from irradiation of the outer disc by the inner disc and coronal emission in black hole binaries. We apply this to the broad-band Swift data from the outburst of the black hole binary XTE J1817−330 to confirm previous results that the optical/UV emission in the soft state is consistent with a reprocessing a constant fraction of the bolometric X-ray luminosity. However, this is very surprising as the disc temperature drops by more than a factor of 3 in the soft state, which should produce a marked change in the reprocessing efficiency. The easiest way to match the observed constant reprocessed fraction is for the disc skin to be highly ionized (as suggested 30 yr ago by van Paradijs), so that the bulk of the disc flux is reflected and only the hardest X-rays heat the disc. The constant reprocessed fraction also favours direct illumination of the disc over a scattering origin as the optical depth/solid angle of any scattering material (wind/corona) over the disc should decrease as the source luminosity declines. By contrast, the reprocessed fraction increases very significantly (by a factor of ∼6) as the source enters the hard state. This dramatic change is not evident from X-ray/UV flux correlations as it is masked by bandpass effects. However, it does not necessarily signal a change in emission, for example, the emergence of the jet dominating the optical/UV flux as the reflection albedo must change with the dramatic change in spectral shape.  相似文献   

10.
11.
We report the results of a systematic timing analysis of RXTE observations of GRS 1915+105 when the source was in its variability class θ, characterized by alternating soft and hard states on a time-scale of a few hundred seconds. The aim was to examine the high-frequency part of the power spectrum in order to confirm the hectohertz quasi-periodic oscillations (QPO) previously reported from observations from mixed variability behaviours. During the hard intervals (corresponding to state C in the classification of Belloni et al.), we find a significant QPO at a frequency of ∼170 Hz, although much broader (Q∼2) than previously reported. No other significant peak is observed at frequencies >30 Hz. A time-resolved spectral analysis of selected observations shows that the hard intervals from class θ show a stronger and steeper  (Γ= 2.8–3.0)  power-law component than hard intervals from other classes. We discuss these results in the framework of hectohertz QPOs reported from GRS 1915+105 and other black hole binaries.  相似文献   

12.
13.
14.
15.
Ultraluminous X-ray sources (ULXs) with   L x > 1039 erg s−1  have been discovered in great numbers in external galaxies with ROSAT , Chandra and XMM-Newton . The central question regarding this important class of sources is whether they represent an extension in the luminosity function of binary X-ray sources containing neutron stars and stellar-mass black holes (BHs), or a new class of objects, e.g. systems containing intermediate-mass BHs  (100–1000 M)  . We have carried out a theoretical study to test whether a large fraction of the ULXs, especially those in galaxies with recent star formation activity, can be explained with binary systems containing stellar-mass BHs. To this end, we have applied a unique set of binary evolution models for BH X-ray binaries, coupled to a binary population synthesis code, to model the ULXs observed in external galaxies. We find that for donor stars with initial masses  ≳10 M  the mass transfer driven by the normal nuclear evolution of the donor star is sufficient to potentially power most ULXs. This is the case during core hydrogen burning and, to an even more pronounced degree, while the donor star ascends the giant branch, although the latter phases last only ∼5 per cent of the main-sequence phase. We show that with only a modest violation of the Eddington limit, e.g. a factor of ∼10, both the numbers and properties of the majority of the ULXs can be reproduced. One of our conclusions is that if stellar-mass BH binaries account for a significant fraction of ULXs in star-forming galaxies, then the rate of formation of such systems is  ∼3 × 10−7 yr−1  normalized to a core-collapse supernova rate of 0.01 yr−1.  相似文献   

16.
We investigate the properties of fluorescent iron lines that arise as a result of the illumination of a black hole accretion disc by an X-ray source located above the disc's surface. We study in detail the light-bending model of the variability of the lines, extending previous work on the subject. We indicate that the bending of photon trajectories to the equatorial plane (a distinct property of the Kerr metric) is the most feasible effect underlying the reduced variability of the lines observed in several objects. A model involving an X-ray source with a varying radial distance, located within a few central gravitational radii around a rapidly rotating black hole, close to the disc's surface, may explain both the elongated red wing of the line profile and the complex variability pattern observed in MCG–6-30-15 by XMM–Newton . We also point out that illumination by radiation that returns to the disc (following the previous reflection) contributes significantly to the formation of the line profile in some cases. As a result of this effect, the line profile always has a pronounced blue peak (which is not observed in the deep minimum state in MCG–6-30-15), unless the reflecting material is absent within the innermost 2–3 gravitational radii.  相似文献   

17.
18.
19.
I solve analytically the viscous evolution of an irradiated accretion disc, as seen during outbursts of soft X-ray transients. The solutions predict steep power-law X-ray decays L X ∼ (1 + t/tvisc)−4, changing to L X ∼ (1 − t/t'visc)4 at late times, where t visc, t 'visc are viscous time-scales. These forms closely resemble the approximate exponential and linear decays inferred by King and Ritter in these two regimes. The decays are much steeper than for unirradiated discs because the viscosity is a function of the central accretion rate rather than of local conditions in the disc.  相似文献   

20.
We consider the shape of an accretion disc whose outer regions are misaligned with the spin axis of a central black hole and calculate the steady state form of the warped disc in the case where the viscosity and surface densities are power laws in the distance from the central black hole. We discuss the shape of the resulting disc in both the frame of the black hole and that of the outer disc. We note that some parts of the disc and also any companion star maybe shadowed from the central regions by the warp. We compute the torque on the black hole caused by the Lense–Thirring precession, and hence compute the alignment and precession time-scales. We generalize the case with viscosity and hence surface density independent of radius to more realistic density distributions for which the surface density is a decreasing function of radius. We find that the alignment time-scale does not change greatly but the precession time-scale is more sensitive. We also determine the effect on this time-scale if we truncate the disc. For a given truncation radius, the time-scales are less affected for more sharply falling density distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号