首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We summarize the main conclusions derived from integral field spectroscopy, with optical fibres, of six Seyfert galaxies. More than 95 spectra around the active nucleus have been obtained showing asymmetric emission-line profiles at different positions. Continuum and emission-line intensity maps and ionized gas velocity fields have been derived for these six galaxies. We also present the stellar velocity field for NGC 1068, NGC 3516 and NGC 985. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Using the method of two-dimensional spectroscopy, we have investigated the kinematics and distribution of the gas and stars at the center of the early-type spiral galaxy NGC 7177 with a mediumscale bar as well as the change in the mean age of the stellar population along the radius. A classical picture of radial gas inflow to the galactic center along the shock fronts delineated by dust concentration at the leading edges of the bar has been revealed. The gas inflow is observed down to a radius R = 1″.5−2″, where the gas flows at the inner Lindblad resonance concentrate in an azimuthally highly inhomogeneous nuclear star formation ring. The bar in NGC 7177 is shown to be thick in z coordinate—basically, it has already turned into a pseudo-bulge as a result of secular dynamical evolution. The mean stellar age inside the star formation ring, in the galactic nucleus, is old, ∼10 Gyr.Outside, at a distance R = 6″−8″ from the nucleus, the mean age of the stellar population is ∼2 Gyr. If we agree that the bar in NGC 7177 is old, then, obviously, the star formation ring has migrated radially inward in the last 1–2 Gyr, in accordance with the predictions of some dynamical models.  相似文献   

3.
We present high-resolution (R~20,000) spectra in the blue and the far red of circumnuclear star-forming regions (CNSFRs) in three early-type spirals (NGC3351, NGC2903 and NGC3310), which have allowed the study of the kinematics of the stars and the ionized gas in these structures and, for the first time, the derivation of their dynamical masses for the first two. In some cases, these regions, about 100 to 150 pc in size, are composed of several individual star clusters with sizes between 1.5 and 4.9 pc, estimated from Hubble Space Telescope images. The stellar dispersions have been obtained from the Calcium triplet (CaT) lines at λ λ 8494, 8542, 8662 Å, while the gas velocity dispersions have been measured by means of Gaussian fits to the Hβ and [Oiii]λ 5007 Å lines in the high-dispersion spectra. Values of the stellar velocity dispersions are between 30 and 68 km?s?1. We apply the virial theorem to estimate dynamical masses of the clusters, assuming that systems are gravitationally bounded and spherically symmetric, and using previously measured sizes. The measured values of the stellar velocity dispersions yield dynamical masses of the order of 107 to 108 M for the entire CNSFRs. Stellar and gas velocity dispersions are found to differ by about 20 to 30 km?s?1, with the Hβ emission lines being narrower than both the stellar lines and the [Oiii]λ 5007 Å lines. The douby-ionized oxygen, on the other hand, exhibits velocity dispersions comparable to those of the stars or, in some cases, even larger. We have found indications of the presence of two different kinematical components in the ionized gas of the regions. We have mapped the velocity field in the central kpc of the spiral galaxies NGC3351 and NGC2903. For the first object, the radial velocity curve shows deviations from circular motions for the ionized hydrogen consistent with its infall towards the central regions of the galaxy, at a velocity of about 25 km?s?1. For NGC3310, we present preliminary results for the velocity dispersions for one of the two observed slit position angles, two CNSFRs and the nucleus.  相似文献   

4.
We present V -band surface photometry and major-axis kinematics of stars and ionized gas of three early-type spiral galaxies, namely NGC 772, 3898 and 7782. For each galaxy we present a self-consistent Jeans model for the stellar kinematics, adopting the light distribution of bulge and disc derived by means of a two-dimensional parametric photometric decomposition. This allows us to investigate the presence of non-circular gas motions, and derive the mass distribution of luminous and dark matter in these objects.
NGC 772 and 7782 have apparently normal kinematics with the ionized gas tracing the gravitational equilibrium circular speed. This is not true in the innermost region (| r |≲8 arcsec) of NGC 3898, where the ionized gas is rotating more slowly than the circular velocity predicted by dynamical modelling. This phenomenon is common in the bulge-dominated galaxies for which dynamical modelling enables us to make the direct comparison between the gas velocity and the circular speed, and it poses questions about the reliability of galaxy mass distributions derived by the direct decomposition of the observed ionized-gas rotation curve into the contributions of luminous and dark matter.  相似文献   

5.
From 2-D spectroscopy of the [O III] λλ 4959,5007 and [S III] λ 9069 lines we have studied the ionized gas-velocity field in the central regions of NGC 1068. The existence of a strong bipolar outflow of ionized gas is confirmed. The origin of this outflow, which is probably related to the active nucleus, is about 1.4″ NE of the optical nucleus; therefore, this region is a candidate to host the hidden nucleus of NGC 1068.  相似文献   

6.
We analyze new observational data obtained at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences with the multimode SCORPIO instrument and the Multi-Pupil Fiber Spectrograph for the group of galaxies NGC 7465/64/63. For one of the group members (NGC 7465), the presence of a polar ring has been suspected. We have constructed the large-scale brightness distributions, the ionized-gas velocity and velocity dispersion fields for all three galaxies as well as the line-of-sight velocity curves based on emission and absorption lines and the stellar velocity field in the central region for NGC 7465. As a result of our analysis of the data obtained, we have discovered an inner stellar disk (r ?? 0.5 kpc) and a warped gaseous disk in NGC 7465, in addition to the main stellar disk. Based on a joint study of our photometric and spectroscopic data, we have established that NGC 7464 is an irregular IrrI-type galaxy whose structural and kinematic peculiarities most likely resulted from its gravitational interaction with NGC 7465. The velocity field of the ionized gas in NGC 7463 turns out to be typical of barred spiral galaxies, and the warp of the outer parts of its disk could arise from a close encounter with one of the galaxies of the environment.  相似文献   

7.
We have obtained HST FOC f/48 long-slit spectroscopy of the central 2 arcseconds of the Narrow Line Region of NGC 1068 between 3500-5400\OA with a spectral resolution of 1.78\OA/pixel. At a spatial scale of 0″.0287 per pixel these data provide an order of magnitude improvement in resolution over previous ground based spectra and allow us to trace the interaction between the radio jet and the gas in the NLR. Our results show that, within ±0″.5 of the radio-jet the emission lines are split into two components whose velocity separation is 1500 km s-1. The emission line structure is reminiscent of that seen previously around the jet of 3C120. Furthermore, this material enveloping the radio-jet is in a much higher ionization state than that of the surrounding NLR gas. The highest excitation is coincident with the jet axis where emission in the coronal line of [FeVII] λ3769\OA is detected but where [OII] λ3727 \OA is depressed. These results imply that we are witnessing a cocoon of hot gas in expansion around the radio-jet created by its interaction with the gas, and that these shocks are sufficiently fast, at least ± km s-1, that they are creating localized ionization effects. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Based on archival Hubble Space Telescope ACS/WFC images, we have performed stellar photometry for more than 0.6 million stars in the interacting galaxies NGC 5194 and NGC 5195 of the M51 system. Stars of various ages have been identified on the constructed Hertzsprung-Russell diagram: blue and red supergiants, AGB stars, and red giants. The distance to M51 has been measured from the position of the tip of the red giant branch, D = 9.9 ± 0.7 Mpc. We have determined the change in the metallicity of red supergiants along the galactic radius in NGC 5194. Despite the gravitational interaction, the distribution of stars in NGC 5194 does not differ from that in isolated galaxies. The asymmetric stellar structures of NGC5195 (the so-called “feathers”) formed through the interaction of two galaxies have been found to consist mostly of AGB stars.  相似文献   

9.
This article is devoted to the analysis of new observational data obtained on the 6-m telescope using multimode instrument SCORPIO for two peculiar galaxies NGC 2748 and UGC 4385. Using scanning Fabry-Perot interferometer (FPI) large-scale velocity fields of ionized gas in lines Hα and [N II] λ6584 Å for NGC 2748 and in line Hα for UGC 4385 and the maps of brightness distribution in continuum and in corresponding lines for both galaxies were constructed. Observational data obtained in the long-slit mode of spectroscopy gave information about the kinematics of stellar component. The analysis of the received materials for NGC 2748 have shown that this object is a disky galaxy with stellar shell which rotates around the major axis of main body. The origin of such shell is most likely connected with the capture and disruption of dwarf companion. The structure of ionized gas velocity field of UGC 4385 appeared to be very complex. The most regular part of the field which concerns the supposed ring is best represented by the model of circular rotation with expansion. In addition long-slit observations showed that the optical spectra of two bright in the infrared region condensations resemble the spectra of galaxies’ nuclei. A supposition was made that UGC 4385 is two galaxies in the stage of head-on collision.  相似文献   

10.
We present new near-infrared integral field spectroscopy and adaptive optics imaging of the nucleus of NGC 1068. Using the stellar CO absorption features in the H and K bands, we have identified a moderately extincted stellar core centered on the nuclear position and of intrinsic size ~50 pc. We show that this nuclear stellar core is probably 5-16 × 108 years in age and contributes at least 7% of the total nuclear luminosity of ~1 × 1011 L⊙. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
12.
This is a study of the population of B and Be stars in the young, relatively poor, diffuse stellar clusters NGC 6871 and NGC 6913. High resolution spectra are used to study the Hα line of eleven stars in order to detect emission. Emission profiles were found for three stars in the cluster NGC 6871; one of these is a known WR-star and the Be-star BD +35°3956 demonstrates the transition from the B to the Be phase. Spectra of seven of the B stars revealed no traces of emission in the Hα line. During the time of our observations, the Be star V1322 Cyg in the cluster NGC 6913 had a strong emission Hα line profile with substantial variability in intensity and equivalent width. Moderate resolution spectra of seven stars in the cluster NGC 6871 over wavelengths of 4420-4960 ? and ten stars in the cluster NGC 6913 over wavelengths of 4050-5100 ? are used to classify the series of B and Be stars spectrally and to estimate their T eff and log g. It was found that three of the stars are not members of the clusters NGC 6871 or NGC 6913. Translated from Astrofizika, Vol. 52, No. 2, pp. 257–274 (May 2009).  相似文献   

13.
A series of daytime observations of the Sun and major planets are obtained at the mountain astronomical station of the Pulkovo Observatory using the Ertel-Struve meridian instruments. A series of declinations of Solar System bodies and major planets includes 4057 positions and that of right ascensions of Solar System bodies comprising 2057 positions. Based on the joint processing of observations of the Sun, Mercury, Venus, and Mars obtained with the Ertel-Struve vertical circle and large transit instrument, the orientation elements of the DE200/LE200 dynamic coordinate system, namely, a correction for the right ascensions of FK5 stars ΔA = +0.127″ ± 0.033″, a correction for declinations of FK5 stars ΔD = +0.056″ ± 0.011″, a correction for the ecliptic inclination Δɛ = −0.044″ ± 0.012″, and a correction for the average longitude of the Sun ΔL = −0.083″±0.035″, are determined with respect to the stellar coordinate system.  相似文献   

14.
The parameters of the ionized gas in NGC 6946 (in the [NII] λλ6548, 6583, H α and [SII] λλ6717, 6731 lines) are investigated with the SAO RAS BTA telescope along three positions of the long slit of the SCORPIO focal reducer, passing through a number of large and small cavities of the gaseous disc of the galaxy. These cavities correspond exactly to the cavities in warm dust, visible at 5 − 8μm. We found that everywhere in the direction of NGC 6946 the lines of ionized gas are decomposed into two Gaussians, one of which shows almost constant [SII]/H α and [NII]/H α ratios, as well as an almost constant radial velocity within the measurement errors (about −35… − 50 km/s). This component is in fact the foreground radiation from the diffuse ionized gas of our Galaxy, which is not surprising, given the low (12°) latitude of NGC 6946; a similar component is also present in the emission of neutral hydrogen. The analysis of the component of ionized gas, occurring inNGC 6946, has revealed that it shows signs of shock excitation in the cavities of the gaseous disc of the galaxy. This shock excitation is as well typical for the extraplanar diffuse ionized gas (EDIG), observed in a number of spiral galaxies at their high Z-coordinates. This can most likely be explained by low density of the gas in the NGC 6946 disc (with the usual photoionization) inside the cavities, due to what we see the spectral features of the EDIG gas of NGC 6946, projected onto them, and located outside the plane of the galaxy. In the absence of separation of ionized gas into two components by radial velocities, there is an increasing contribution to the integral line parameters by the EDIG of our Galaxy when the gas density in NGC 6946 decreases, which explains some strange results, obtained in the previous studies. Themorphology of warmdust, visible in the infrared range and HI is almost the same (except for the peripheral parts of the galaxy, where there are no sources of dust heating).Moreover, the shock excitation of the ionized gas is detected in the smallest holes, distinguishable only in the IR images.  相似文献   

15.
Based on our H α interferometry and 21-cm and CO observations, we analyze the structure and kinematics of the interstellar medium around the stars WR 134 and WR 135. We conclude that the HI bubble found here previously is associated with WR 135, not with WR 134. High-velocity motions of ionized gas that can be interpreted as expansion of the gas swept up by the stellar wind with a velocity up to 50–80 km s?1 are observed around both stars. The line-of-sight velocity field of the ionized hydrogen in the Cygnus arm is shown to agree with the large-scale line-of-sight velocity distribution of the CO emission.  相似文献   

16.
We present high-resolution (∼5″) BIMA CO observations of the ringed galaxy NGC 4736, along with previously published VLA HI data (Braun, 1995). Strong CO emission is detected from the star-forming ring at r=45″ and in the central region, where a molecular bar is apparent. The azimuthally averaged gas surface density is still much less than the Toomre critical density within r=60″, despite the starburst conditions in the ring (gas depletion time ≲1Gyr). Both CO and HI velocity fields show strong departures from a circular rotating disc model. The velocity residuals are consistent with inflowing gas near the ends of the central bar, outflowing gas between the bar and the ring, and inflowing gas outside the ring. We propose that the high star formation efficiency in the ring results from gas being driven out towards the OLR of the bar and in towards the ILR of the larger oval distortion. However, the strong signature of inflow outside the ring is probably due in part to gas motion in elliptical orbits. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
We have studied the kinematics of the ionized gas in the nearly face-on galaxy NGC 3938 by means of observations made with theFabry–Perot interferometer TAURUS II at the William Herschel Telescope, using the Hα line. We have been able to produce high-resolution velocity and velocity-dispersion maps which allow us to make a detailed study of the kinematics of the ionized gas. In particular we have found that the vertical velocity dispersion is constant with galactocentric radius, as has already been found for the atomic and molecular gas in this galaxy. This suggests the existence of several heating mechanisms in the disc acting simultaneously to produce the observed behaviour. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The spiral galaxy NGC 3521 exhibits apparently normal kinematic properties of gas and stars along its major axis. However, the analysis of the LOSVD reveals strong asymmetries. A decomposition of the LOSVD data with a two-Gaussian component model shows two counter-rotating stellar components. The observed kinematic decoupling is interpreted as a projection effect induced by the presence of a bar component seen almost end on. The bar produces locally a greater concentration of retrograde stellar orbits but this does not relate to a specific counter-rotating population. The signatures of the bar are identified in the velocity field derived from long-slit spectra obtained along the major, minor and 45° intermediate axes and from R-band surface photometry. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
We describe the results of our spectroscopy for a sample of barred galaxies whose inner regions exhibit an isophotal twist commonly interpreted as a secondary bar. The line-of-sight velocity fields of the ionized gas and stars and the light-of-sight velocity dispersion fields of the stars were constructed from two-dimensional spectroscopy with the 6-m Special Astrophysical Observatory telescope. We detected various types of noncircular motions of ionized gas: radial flows within large-scale bars, counterrotation of the gas and stars at the center of NGC 3945, a polar gaseous disk in NGC 5850, etc. Our analysis of the optical and near-infrared galaxy images (both ground-based and those from the Hubble Space Telescope) revealed circumnuclear minispirals in five objects. The presence of an inner (secondary) bar in the galaxy images is shown to have no effect on the circumnuclear kinematics of the gas and stars. Thus, contrary to popular belief, the secondary bar is not a dynamically decoupled galactic structure. We conclude that the so-called double-barred galaxies are not a separate type of galaxy but are a combination of objects with distinctly different morphologies of their circumnuclear regions.  相似文献   

20.
Formation paradigms for massive galaxies have long centered around two antipodal hypotheses – the monolithic-collapse and the accretion/merger scenarios. Empirical data on the stellar contents of galaxy halos is crucial in order to develop galaxy formation and assembly scenarios which have their root in observations, rather than in numerical simulations. The Hubble Space Telescope (HST) has enabled us to study directly individual stars in the nearby E/S0 galaxies Cen A, NGC 3115, NGC 5102, and NGC 404. We here present and discuss HST single-star photometry in V and I bands. Using color-magnitude diagrams and stellar luminosity functions, we gauge the galaxies' stellar contents. This can be done at more than one position in the halo, but data with deeper limiting magnitudes are desired to quantify the variation of metallicity with galactocentric radius. We here compare the color distributions of red giant stars with stellar isochrones, and we intercompare the galaxies' halo populations, noting that their total absolute V magnitudes cover the range from about –21.5 to –17.5. In the future, we plan to model the stellar metallicity distributions with the aim to constrain chemical enrichment scenarios, a step towards unravelling the evolutionary history of elliptical and lenticular galaxies. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号