首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A survey of soft X-ray images from Skylab has revealed a class of large-scale transient X-ray enhancements in the lower corona which are typically associated with the disappearance of H filaments away from active regions. Contemporary with the H filament disappearance, X-ray emitting structures appeared at or near the filament location with shape and size resembling the filament. Eventually these structures faded, but the filament cavity was no longer obvious. Typically the peak of the X-ray event lagged the end of the filament disappearance by tens of minutes. The durations of the coronal X-ray enhancements were considerably longer than the associated H filament disappearances. Major flare effects, such as chromospheric brightenings, typically were not associated with these X-ray events.One event analyzed quantitatively had a peak temperature between 1.8 and 2.7 × 106 K, achieved a peak density of 109 cm–3 and resulted in an enhancement in the plasma pressure over the conditions of the preexisting coronal cavity of at least a factor of 7. The mass of the coronal X-ray emitting material was about 10% that of the preexisting filament and the thermal energy of the coronal event was on the order of 1029 erg, about 10% of the mechanical energy of the H filament eruption. The event appeared to cool by radiative losses and not by thermal conduction. It is likely that the coronal enhancements are caused by heating of an excess of previously cooler material, either from the filament itself, or by compression of coronal material by a changing magnetic field.  相似文献   

2.
Ryutova  M.  Habbal  S.  Woo  R.  Tarbell  T. 《Solar physics》2001,200(1-2):213-234
We propose a mechanism for the formation of a magnetic energy avalanche based on highly dynamic phenomena within the ubiquitous small-scale network magnetic elements in the quiet photosphere. We suggest that this mechanism may provide constant mass and energy supply for the corona and fast wind. Constantly emerging from sub-surface layers, flux tubes collide and reconnect generating magneto-hydrodynamic shocks that experience strong gradient acceleration in the sharply stratified photosphere/chromosphere region. Acoustic and fast magnetosonic branches of these waves lead to heating and/or jet formation due to cumulative effects (Tarbell et al., 1999). The Alfvén waves generated by post-reconnection processes have quite a restricted range of parameters for shock formation, but their frequency, determined by the reconnection rate, may be high enough (0.1–2.5 s–1) to carry the energy into the corona. We also suggest that the primary energy source for the fast wind lies far below the coronal heights, and that the chromosphere and transition region flows and also radiative transient form the base of the fast wind. The continuous supply of emerging magnetic flux tubes provides a permanent energy production process capable of explaining the steady character of the fast wind and its energetics.  相似文献   

3.
The giant post-flare arch of 6 November 1980 revived 11 hr and 25 hr after its formation. Both these revivals were caused by two-ribbon flares with growing systems of loops. The first two brightenings of the arch were homologous events with brightness maxima moving upwards through the corona with rather constant speed; during all three brightenings the arch showed a velocity pattern with two components: a slow one (8–12 km?1), related to the moving maxima of brightness, and a fast one (~ 35 km s?1), the source of which is unknown. During the first revival, at an altitude of 100000 km, temperature in the arch peaked ~ 1 hr, brightness ~ 2 hr, and emission measure ~ 3.5 hr after the onset of the brightening. Thus the arch looks like a magnified flare, with the scales both in size and time increased by an order of magnitude. At ~ 100000 km altitude the maximum temperature was ?14 × 106K, max.n e? 2.5 × 109cm?3, and max. energy density ? 11.2 erg cm?3. The volume of the whole arch can be estimated to 1.1 × 1030 cm3, total energy ?1.2 × 1031 erg, and total mass ?4.4 × 1015g. The density decreased with the increasing altitude and remained below 7 × 109 cm?3 anywhere in the arch. The arch cooled very slowly through radiation whereas conductive cooling was inhibited. Since its onset the revived arch was subject to energy input within the whole extent of the preexisting arch while a thermal disturbance (a new arch?) propagated slowly from below. We suggest that the first heating of the revived arch was due to reconnection of some of the distended flare loops with the magnetic field of the old preexisting arch. The formation of the ‘post’-flare loop system was delayed and started only some 30–40 min later. Since that time a new arch began to be formed above the loops and the velocities we found reflect this formation.  相似文献   

4.
Skylab EUV observations of an active region near the solar limb were analyzed. Both cool (T < 106 K) and hot (T > 106 K) loops were observed in this region. For the hot loops the observed intensity variations were small, typically a few percent over a period of 30 min. The cool loops exhibited stronger variations, sometimes appearing and disappearing in 5 to 10 min. Most of the cool material observed in the loops appeared to be caused by the downward flow of coronal rain and by the upward ejection of chromospheric material in surges. The frequent EUV brightenings observed near the loop footpoints appear to have been produced by both in situ transient energy releases (e.g. subflares) and the infall/impact of coronal rain. The physical conditions in the loops (temperatures, densities, radiative and conducting cooling rates, cooling times) were determined. The mean energy required to balance the radiative and conductive cooling of the hot loops is approximately 3 × 10–3 erg cm–3 s–1. One coronal heating mechanism that can account for the observed behavior of the EUV emission from McMath region 12634 is heating by the dissipation of fast mode MHD waves.  相似文献   

5.
We have studied the early stages of development of two adjacent active regions observed at the center and the wings of H for six days. From the growth of spots and arch structures we found that periods of slow flux emergence were followed by periods of vigorous flux emergence. We observed arch filaments covering an appreciable range of sizes (from a length of about 27 000 km and a height of 2000–3000 km to a length of 45 000 km and a height of about 15 000 km). Individual arch filaments within the same arcade sometimes have different inclinations of their planes with respect to the vertical. We observed isolated cases of arches crossing each other at an angle of 45°. During their early stages arch filament systems are short and they expand at a rate of about 0.8 km s–1. The rate of growth of arch filament systems is faster when the orientation of the flux tubes is nearly parallel to the equator. Our observations suggest that the early part of the evolution of individual arch filaments in a grown system is not visible; however, in a few cases we observed arch filaments appearing as dark features near one footpoint and expanding towards the other, with a mean velocity of about 30 km s–1.  相似文献   

6.
The phenomenon of post-flare coronal arches, initially discovered with the Hard X-Ray Imaging Spectrometer (HXIS), was investigated using observations made with the SMM Flat Crystal Spectrometer (FCS) on 20 through 23 January, 1985. Since these observations were made with a different type of instrument from HXIS, they provide independent information on the physical characteristics of the arch phenomenon and extend our knowledge to lower coronal temperatures.Conspicuous arch activity was observed after three flares and after a disturbance which could not be identified. (1) A dynamic flare starting on 20 January at 20: 39 UT was responsible for the formation of the primary arch structure. (2) An arch revival, showing characteristics very similar to those of the arch revivals observed with HXIS, took place after the dynamic flare starting on 21 January at 23: 50 UT. The most conspicious difference relates to the moving thermal disturbance observed very shortly after the onset of the parent flare, in particular to its propagation velocity. This difference in the arch revival is probably related to the different range of plasma temperatures covered by the FCS observations (3 × 106 K through 6 × 106 K) and the HXIS observations (>107 K) and the consequently more important effects of radiative cooling in the FCS arch revival. (3) More arch activity was observed after a (possibly dynamic) flare starting at 03: 40 UT on 21 January and (4) after an unidentified event with estimated time of occurrence near 23: 00 UT on 22 January. Similar to the arch revival, this activity was primarily characterized by the energization of (i.e., input of energy to) a pre-existing arch structure. The activity after the unidentified event suggests the existence of a mode of arch activation which is different from the typical flare-associated revival and is characterized by the absence of significant activity at chromospheric levels.  相似文献   

7.
We study the dynamics of a self-gravitating cooling filamentary cloud using a simplified model. We concentrate on the radial distribution and restrict ourselves to quasi-hydrostatic, cylindrically symmetric cooling flows. For a power-law dependence of cooling function on the temperature, self-similar solutions which describe quasi-hydrostatic cooling flows are derived. We consider obtically thin filaments with a constant mass per unit length and the solutions are parameterized by their line masses. There is no polytropic relation between the density and the pressure. The filament experiences radiative condensation, irrespective of the γ,the gas specific heat ratio. So, the filament becomes denser due to the quasi-hydrostatic flows and the density at the center (ρc) increases in proportion to (t 0-t)-1, where t denotes the time. The term,t 0, denotes an epoch at which the central density increases infinitely. We also found that the radius of the filament (r c) decreases in proportion to (t 0-t)1/2. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
We have studied mass motions associated with active region arch structures from observations of a developing active region near the center of the solar disk. We present a method for the computation of the line-of-sight velocity from photographs at H ± 0.5 under the assumption of Beckers' cloud model and reasonable assumptions about the Doppler width and optical depth of the arches. Some arches show motions typical to arch filaments (the material moves towards the observer near the apex of the arch and away from the observer near the footpoints), while in others the velocity field is more complex. Assuming a symmetric loop, we reconstructed the velocity vector along an arch filament. The results are consistent with the picture where material is draining out of the filament while the whole structure is ascending with a velocity near that of the apex, which does not exceed 10 km s–1. The motion is systematically slower than expected from a free-fall model.  相似文献   

9.
Hildner  E. 《Solar physics》1974,35(1):123-136
We model the formation of solar quiescent prominences by solving numerically the non-linear, time-dependent, magnetohydrodynamic equations governing the condensation of the corona. A two-dimensional geometry is used. Gravitational and magnetic fields are included, but thermal conduction is neglected. The coronal fluid is assumed to cool by radiation and to be heated by the dissipation of mechanical energy carried by shock waves. A small, isobaric perturbation of the initial thermal and mechanical equilibrium is introduced and the fluid is allowed to relax. Because the corona with the given energy sources is thermally unstable, cooling and condensation result.When magnetic and gravitational fields are absent, condensation occurs isotropically with a strongly time-dependent growth rate, and achieves a density 18 times the initial density in 3.5 × 104 s. The rapidity of condensation is limited by hydrodynamical considerations, in contrast to the treatment of Raju (1968). When both magnetic and gravitational fields are included, the rate of condensation is inhibited and denser material falls.We conclude that: (1) condensation of coronal material due to thermal instability is possible if thermal conduction is inhibited; (2) hydrodynamical processes determine, in large part, the rate of condensation; (3) condensation can occur on a time scale compatible with the observed times of formation of quiescent prominences.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

10.
The plasma from solar filament eruptions sometimes falls down to the lower solar atmosphere. These interesting events can help us to understand the properties of downflows, such as the temperature and the conversion between kinetic energy and thermal energy. We analyze the case of a filament eruption in active region NOAA 11283 and brightening caused by the return of filament material on September 7 and 8, 2011, observed by the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO). Magnetic flux cancellation was observed as a result of the eruption after the eruptive filament started to ascend. Another filament near the eruptive filament was disturbed by an extreme ultraviolet (EUV) wave that was triggered by the eruptive filament, causing it to oscillate. Based on coronal seismology, the mean magnetic field strength in the oscillatory filament was estimated to be approximately 18 ± 2 G. Some plasma separated from the filament and fell down to the solar northwest surface after the filament eruption. The velocities of the downflows increased at accelerations lower than the gravitational acceleration. The main characteristic temperature of the downflows was about 5 × 104 K. When the plasma blobs fell down to lower atmospheric heights, the high-speed downward-travelling plasma collided with plasma at lower atmospheric heights, causing the plasma to brighten. The brightening was observed in all 8 AIA channels, demonstrating that the temperature of the plasma in the brightening covered a wide range of values, from 105 K to 107 K. This brightening indicates the conversion between kinetic energy and thermal energy.  相似文献   

11.
Under suitable conditions on laser intensity, focal spot radius and atomic number a radiative jet was launched from a planar target. This jet was produced using a relatively low energy laser pulse, below 500 J and it presents similarities with astrophysical protostellar jets. It lasts more than 10 ns, extends over several millimeters, has velocity more than 500 km/s, the Mach number more than 10 and the density above 1018 cm−3. The mechanism of jet formation was inferred from the dimensional analysis and hydrodynamic two-dimensional simulations. It is related to the radiative cooling while the magnetic fields play a minor role. PACS numbers: 98.38.Fs, 52.50.Jm, 95.30.Qd  相似文献   

12.
The properties of coronal arches located on the peripheries of active regions, observed during a sounding rocket flight on March 8, 1973, are discussed. The arches are found to overlie filament channels and their footpoints are traced to locations on the perimeters of supergranulation cells. The arches have a wide range of lengths although their widths are well approximated by the value 2.2 × 109 cm. Comparison of the size of the chromospheric footprint with the arch width indicates that arches do not always expand as they ascend into the corona. The electron temperatures and densities of the plasma contained in the arches were measured and the pressure calculated; typical values are 2 × 106 K, 1 × 109 cm–3, and 2 × 10–1 dyne cm–2, respectively. The variation of these parameters with position along the length of the arch indicates that the arches are not in hydrostatic equilibrium.  相似文献   

13.
Spectral observations have detected methane within the martian atmosphere (Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., Giuranna, M. [2004]. Science 306, 1758–1761; Mumma, M.J. et al. [2009]. Science 323, 1041–1045), however, the origin of the methane has not been determined. Methane clathrate (also referred to as methane hydrate) has been suggested as a potential subsurface reservoir, storing and releasing biologic and/or abiogenic methane. In this study, rates of methane hydrate formation and dissociation were measured experimentally at 234–264 K and 1.4–4.7 MPa to test the clathrate reservoir hypothesis. Initial formation rates range from 4.3 × 10?6 to 8.1 × 10?5 mol m?2 s?1. Results show decreasing rates of formation over time in individual experiments, indicating initial rapid clathration, followed by diffusion-limited transport of methane into the ice through the previously formed hydrate. These experiments indicate increased pressure results in increased formation rates, likely the result of higher concentration gradients, enhancing the methane diffusion flux into the solid phase. Experiments conducted at elevated temperatures produced faster initial rates of formation, resulting from increased kinetic energy of methane molecules and/or thickening of the Quasi-Liquid Layer. Based on this temperature dependence, the activation energy for methane hydrate formation from ice was determined to be 35.9 kJ/mol. Hydrate dissociation experiments initiated by depressurization or warming at conditions between 222 K and 265 K and 0.1–2.0 MPa were conducted following each formation experiment, yielding methane hydrate dissociation rates from 3.01 × 10?6 to 9.92 × 10?5 mol m?2 s?1. While both hydrate dissociation and formation showed decreasing instantaneous rates over the course of each experiment, the transition between the initial rate of dissociation and the interpreted diffusion-limited period of continued dissociation was more abrupt than that observed in formation experiments, supporting an ice shielding effect. The initial concentration of methane in the solid phase had a significant effect on hydrate dissociation rates. Higher methane concentrations in the solid phase produce faster initial rates, likely due to increased concentration gradients, thus increasing the diffusion component of dissociation. Increased temperatures also produced faster dissociation rates, yielding an activation energy for dissociation of 32.7 kJ/mol. The rates determined within this study suggest that small near-surface methane hydrate reservoirs are a feasible source for recent methane plumes detected on Mars. Rates of methane release from gas hydrates also indicate that gas hydrate dissociation may have played a role in forming ancient chaos terrain and associated outflow channels.  相似文献   

14.
We present observations of the formation process of a small-scale filament on the quiet Sun during 5?–?6 February 2016 and investigate its formation cause. Initially, a small dipole emerged, and its associated arch filament system was found to reconnect with overlying coronal fields accompanied by numerous extreme ultraviolet bright points. When the bright points faded, many elongated dark threads formed and bridged the positive magnetic element of the dipole and the external negative network fields. Interestingly, an anticlockwise photospheric rotational motion (PRM) set in within the positive endpoint region of the newborn dark threads following the flux emergence and lasted for more than 10 hours. Under the drive of the PRM, these dispersive dark threads gradually aligned along the north-south direction and finally coalesced into an inverse S-shaped filament. Consistent with the dextral chirality of the filament, magnetic helicity calculations show that an amount of negative helicity was persistently injected from the rotational positive magnetic element and accumulated during the formation of the filament. These observations suggest that twisted emerging fields may lead to the formation of the filament via reconnection with pre-existing fields and release of its inner magnetic twist. The persistent PRM might trace a covert twist relaxation from below the photosphere to the low corona.  相似文献   

15.
A. Poland  U. Anzer 《Solar physics》1971,19(2):401-413
The energy balance for cool quiescent prominences is examined using a 6000 km, 6000 K isothermal slab model prominence with a density gradient dictated by a modified Kippenhahn-Schlüter model. The model is irradiated from both sides by the coronal, chromospheric, and photospheric radiation fields. The radiative transfer problem is solved in detail for the Lyman continuum and H to determine the net radiative energy loss for hydrogen. An estimate of the energy loss for Ca ii H and K indicates that this source of energy loss is unimportant when compared with the hydrogen radiation. The radiative energy loss is easily balanced by the conductive energy gain from the corona.The only difficulty with our model is that the total hydrogen density must be of the order of 3 × 1012/ cm3 to match the n = 2 population density of 5 × 104/cm3 obtained from observation. To support a prominence of this density and a thickness of 6000 km against gravity requires magnetic fields of the order of 20 G which is much higher than the average magnetic field in quiescent prominences deduced from limb observations. Two possible explanations for this discrepancy are given.Currently at the Max-Planck-Institut für Physik und Astrophysik, München, Germany.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

16.
We investigate the influence of the finite Alfvén velocity on the evolution of an active region filament. In general, variations of a current result in variations of the magnetic fields which spread around with the Alfvén velocity. As a consequence of the fact that a magnetic field can only change with the Alfvén velocity, a filament will experience the photospheric boundary conditions as these were at an Alfvén travel time back in time. The inclusion of this retardation effect in the momentum equation of a filament leads effectively to an extra force term. This force contribution acts in the direction in which the filament moves and has therefore a destabilizing effect on the filament. Because a moving filament acts as an antenna of Alfvén waves, the filament loses energy by the emission process. This leads to a radiative damping term in the equation of motion of the filament. In general, the radiative damping will be sufficiently strong to counteract the retardation instability. Numerical simulations show that during the energy build-up phase a filament follows the van Tend-Kuperus equilibrium curve. After the van Tend-Kuperus equilibrium has disappeared the filament goes through a transient phase moving with a sub-Alfvénic velocity upward. At greater heights the repulsive Lorentz force of the photospheric surface current magnetic field is balanced by the radiative damping, resulting in a decreasing filament velocity.Parts of this paper were presented at the 4th CESRA Workshop in Ouranopolis (Greece) in 1991.  相似文献   

17.
A model of protostar formation under two current carrying gas filaments collision is presented. The model implies MHD approach involving self-gravity and radiative cooling effects. We suppose that through the current carrying gas filament collision a magnetic field reconnection takes place. Using an appropriate self-consistent presentation for time and special dependences of physical quantities in MHD equations, we derive the full set of equations that describes time evolution of the physical quantities just after an occurrence of magnetic field reconnection. Numerical simulations reveal that the process consists of three main phases of evolution. The first is an appearance of preceding peaks in time profiles of density and temperature following by the next phase of depression of both temperature and density and the final fast condensation phase with either cooling or heating of matter depending on initial parameters of problem. Effects of initial conditions like as magnetic field strength, current strength, initial gravity energy, cooling time and a geometry of collision are investigated. Main conclusion is that protostar formation takes place within the time interval less than one free fall time and it is preceded by the appearance of dense and hot matter with lifetime much less than free fall time. The final temperature of the protostar depends on the physical conditions and mainly on the ratio between free fall time and cooling time in the colliding current carrying gas filaments.  相似文献   

18.
Abstract— Through freeze‐thaw disaggregation of the Murchison (CM) carbonaceous chondrite, we have recovered a ?90 times 75 μm refractory inclusion that consists of corundum and hibonite with minor perovskite. Corundum occurs as small (?10 μm), rounded grains enclosed in hibonite laths (?10 μm wide and 30–40 μm long) throughout the inclusion. Perovskite predominantly occurs near the edge of the inclusion. The crystallization sequence inferred petrographically‐corundum followed by hibonite followed by perovskite‐is that predicted for the first phases to form by equilibrium condensation from a solar gas for Ptot ≤5 times 10?3 atm. In addition, the texture of the inclusion, with angular voids between subhedral hibonite laths and plates, is also consistent with formation of the inclusion by condensation. Hibonite has heavy rare earth element (REE) abundances of ?40 × CI chondrites, light REE abundances ?20 × CI chondrites, and negative Eu anomalies. The chondrite‐normalized abundance patterns, especially one for a hibonite‐perovskite spot, are quite similar to the patterns of calculated solid/gas partition coefficients for hibonite and perovskite at 10?3 atm and are not consistent with formation of the inclusion by closed‐system fractional crystallization. In contrast with the features that are consistent with a condensation origin, there are problems with any model for the formation of this inclusion that includes a molten stage, relic grains, or volatilization. If thermodynamic models of equilibrium condensation are correct, then this inclusion formed at pressures <5 times 10?3 atm, possibly with enrichments (<1000x) in CI dust relative to gas at low pressures (below 10?4 atm). Both hibonite and corundum have δ17O ? δ18O ? ?50%, indicating formation from an 16O‐rich source. The inclusion does not contain radiogenic 26Mg and apparently did not contain live 26Al when it formed. If the short‐lived radionuclides were formed in a supernova and injected into the early solar nebula, models of this process suggest that 26Al‐free refractory inclusions such as this one formed within the first ?6 times 105 years of nebular collapse.  相似文献   

19.
Chae  Jongchul  Denker  Carsten  Spirock  Tom J.  Wang  Haimin  Goode  Philip R. 《Solar physics》2000,195(2):333-346
There have been two different kinds of explanations for the source of cool material in prominences or filaments: coronal condensations from above and cool plasma injections from below. In this paper, we present observational results which support filament mass injection by chromospheric reconnection. The observations of an active filament in the active region NOAA 8668 were performed on 17 August 1999 at a wavelength of H–0.6 Å using the 65 cm vacuum reflector, a Zeiss H birefringent filter, and a 12-bit SMD digital camera of Big Bear Solar Observatory. The best image was selected every 12 s for an hour based on a frame selection algorithm. All the images were then co-aligned and corrected for local distortion due to the seeing. The time-lapse movie of the data shows that the filament was undergoing ceaseless motion. The H flow field has been determined as a function of time using local correlation tracking. Time-averaged flow patterns usually trace local magnetic field lines, as inferred from H fibrils and line-of-sight magnetograms. An interesting finding is a transient flow field in a system of small H loops, some of which merge into the filament. The flow is associated with a cancelling magnetic feature which is located at one end of the loop system. Initially a diverging flow with speeds below 10 km s–1 is visible at the flux cancellation site. The flow is soon directed along the loops and accelerated up to 40 km s–1 in a few minutes. Some part of the plasma flow then merges into and moves along the filament. This kind of transient flow takes place several times during the observations. Our results clearly demonstrate that reconnection in the photosphere and chromosphere is a likely way to supply cool material to a filament, as well as re-organizing the magnetic field configuration, and, hence, is important in the formation of filaments.  相似文献   

20.
The total radiative output in the EUV continuum (1400–1960 Å) from the 5 September 1973 flare has been obtained from the EUV spectra of the flare observed with the NRL slit spectrograph (SO82B) on Skylab. The radiative energy in the EUV continuum is of the order of 1029 ergs, which is more than a factor of 2 greater than those radiated in soft X-rays (8–20 Å) and in H for the flare. Thus, the EUV continuum emission is an important radiative energy loss, and should be included in the consideration of the energy balance of the flare.Ball Corporation.Now at the Institute of Theoretical Astrophysics, University of Oslo, Oslo, Norway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号