首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
P. N. Pathak 《Solar physics》1971,20(2):462-473
Using solar wind velocity data obtained by Mariner-2 and IMP-1 spacecrafts, an attempt has been made to study its correlation with 5303 coronal intensity. It is shown that the long-lasting regions of enhanced 5303 intensity in the solar corona are well correlated with recurrent streams of solar wind having high velocity. The time-lag between the central meridian passage (CMP) of the coronal features and the detection of the solar wind streams at the spacecraft is found to be smaller than that implied by a radial solar wind. Significant positive correlations for Mariner-2 data are obtained for coronal intensity at heliolatitudes 5°S–10°N with a time-lag of + 2 days while for IMP-1 data, high positive correlations are obtained for the southern heliolatitudes (10°–25°S) without any time-lag. It should be noted that the average heliographic latitudes for Mariner-2 and IMP-1 were 4°N and 4°S respectively during the periods covered by the present analysis. The implications of the results are discussed.Presented at IUCSTP Symposium on Solar-Terrestrial Physics, Leningrad, May 1970.  相似文献   

2.
In this paper we give an explanation for a control mechanism for velocityV of solar wind (SW) streams for coronal holes (CHs) based on the idea suggested by Rudenko and Fainshtein (1993). In accordance with that idea, the difference of values ofV in high-speed SW streams from different CHs is due to the spread in magnitude of magnetic fieldB a in the region of acceleration of such streams near the Sun. In this case, with increasing magnitude ofB a, there is an increase in velocity of the high-speed stream.Through calculations of the coronal magnetic field (potential-field approximation) it is shown that on the source surface the magnetic field B s, averaged over the cross-section of the magnetic tube from a CH, can vary for different tubes over a wide range and correlates quite well with the area of this tube's base as well as depending on the radial component of the magnetic field at the base of the tube on the source surface B or.It is found that the value of superradial divergence of the magnetic tube from a CH depends not only on the area of its base (as shown in prior work) but also on B or. A positive correlation at the Earth's orbit between velocityV of the high-speed SW and the radial component of the magnetic field in the region of this stream is detected, which agrees indirectly with theV-control mechanism under discussion.  相似文献   

3.
When solar wind plasma in the trailing (eastern) edge of a high-speed stream is mapped back to its estimated source in the high corona using the constant radial velocity (EQRH) approximation, a large range of velocities appears to come from a restricted range in longitude, often only a few degrees. This actually constitutes a sharp eastern coronal boundary for the solar wind stream source, and demands that the boundary have a three-dimensional structure. Using interplanetary data, we infer a systematic variation in source altitude (identified approximately with the Alfvén point), with faster solar wind attaining its interplanetary characteristics at lower altitudes. This also affects the accuracy of the source longitude estimates, so that we infer a width in the high corona of 4–6° for the source of the trailing edges of streams which appear to originate from a single longitude. We demonstrate that the possible systematic interplanetary effects (in at least some cases) are not large ( 2° in heliocentric longitude). The relatively sharp boundaries imply that high-speed streams are well-defined structures all the way down to their low coronal sources, and that the magnetic field structure controls the propagation of the plasma through the corona out to the vicinity of the Alfvén point ( 20 R ).  相似文献   

4.
X-ray images of the solar corona, taken on November 24, 1970, showed a magnetically open structure in the low corona which extended from N20W20 to the south pole. Analysis of the measured X-ray intensities shows the density scale height within the structure to be typically a factor of two less than that in the surrounding large scale magnetically closed regions. The structure is identified as a coronal hole.Since there have been several predictions that such a region should be the source of a high velocity stream in the solar wind, wind measurements for the appropriate period were traced back to the Sun by the method of instantaneous ideal spirals. A striking agreement was found between the Carrington longitude of the solar source of a recurrent high velocity solar wind stream and the position of the hole.Solar wind bulk velocity and photospheric magnetic field data from the period 1962–1970 indicate the possible extension of the result to the interpretation of long term variations in the wind pattern.  相似文献   

5.
Periods of very low solar wind velocity at 1 AU, during the interval from 1977 to 1983, are identified and mapped back to the coronal source surface at 2.5 R . In total 25 such low-velocity events were found. Inferred source locations were characterized with respect to their position relative to the coronal neutral line. The study showed that in 17 out of 25 cases the slow solar wind originated across a coronal neutral line. In the remaining cases the source was either along the neutral line or insides a warp. A prediction of the IMF polarity to be expected at Earth, from the computed coronal magnetic field, was also done. It failed clearly only in four cases out of 25 events. In three cases the prediction was uncertain because of missing data. Possible explanations of why the potential model sometimes predicts a wrong polarity are discussed.  相似文献   

6.
Plasma data from Pioneers 6–7 and from a variety of satellites operating near the Earth are used to investigate the heliographic latitude dependence of the solar wind bulk speed near the sunspot maximum. No evidence is found for a latitude effect: the latitudinal gradient, if any, turns out to be 2 km (sec degree)–1, to be compared with the gradient of 10 km (sec degree)–1 observed in periods of low or moderate solar activity.  相似文献   

7.
The expansion of the solar wind in divergent flux tubes is calculated by taking into account a magnetic acceleration of the particles, analogous to the magnetic mirror effect.The resulting force term included in the magnetohydrodynamical equations describes a conversion of thermal into kinetic energy. This causes an additional acceleration of the solar wind plasma which has never been taken into account before. The force is directed opposite to the magnetic field gradient. Consequently, in this case the solar wind velocity increases faster to its asymptotic value than it does for corresponding nonmagnetic solutions. Therefore inside and close to the solar corona markedly higher velocities are found. Compared to strictly hydrodynamical models, the critical point is shifted towards the Sun, and the radial decrease of the ratio of thermal to kinetic energy is faster.The necessary prerequisites for these calculations are (a) that the gyroperoid g of the plasma particles is much shorter than the Coulomb collision time c , and (b) that the collision time c is shorter than the characteristic time d in which an appreciable amount of thermal anisotropy is built up. Thus it is (a) insured that the particles have established magnetic moments and follow the guiding center approximation, and (b) an almost isotropic velocity distribution function is maintained which, in this first approximation of a purely radial expansion, justifies the use of isotropic pressures and temperatures.Both (a) and (b) are shown to be fulfilled in a region around the Sun out to about 20R , and thermal anisotropies developing outside of this region could explain the observed magnetically aligned anisotropies at 1 AU.  相似文献   

8.
The relationship between two classes of coronal holes and high-speed quasi-stationary streams of solar wind at the Earth’s orbit is investigated. “Open” coronal holes, whose area is invariable or increases with the height over the solar surface, are rated in the first class, and “closed” coronal holes with areas decreasing with the height are referred to as second-class holes. The parameters of the coronal holes are determined from IR and EUV images and spectroheliograms. It is shown that most open coronal holes can be associated with high-speed solar-wind streams, while most closed coronal holes exhibit a much lower correlation with such streams.  相似文献   

9.
In the course of 3000 hours observation of the interplanetary plasma, the plasma and magnetic-field experiments on Explorer 34 have detected 11 discontinuous solar-wind speed changes, not associated with shocks, of more than 60 km/sec in less than 3 min. These events, called uD's, may show a velocity change of either sign, but the plasma density and temperature are not found to change appreciably across them. Each speed discontinuity occurs simultaneously with a directional discontinuity in the magnetic field. High-resolution magnetic-field data show that sometimes the directional changes occur as rotational fans, and at other times they are erratic or occur within the time resolution of the magnetic-field experiment, 2.6 sec. The flow direction of the solar wind changed at 2 of the 11 uD's. The quiet nature of the field and plasma on each side of these events gives the impression that they are stable. The existence of these uD's is shown to be consistent with the theory of the Helmholtz instability. In particular, the additional observation that the magnetic-field direction change, , at a uD tends to be near 90° is consistent with the theory, for uD's with small may become unstable as they move from the sun.  相似文献   

10.
The calculations made by Fahret al. (1976) have been subjected to a re-examination, the results of which are described in this letter.  相似文献   

11.
We investigate the possibility of an additional acceleration of the high speed solar wind by whistler waves propagating outward from a coronal hole. We consider a stationary, spherically symmetric model and assume a radial wind flow as well as a radial magnetic field. The energy equation consists of (a) energy transfer of the electron beam which excites the whistler waves, and (b) energy transfer of the whistler waves described by conservation of wave action density. The momentum conservation equation includes the momentum transfer of two gases (a thermal gas and an electron beam). The variation of the temperature is described by a polytropic law. The variation of solar wind velocity with the radial distance is calculated for different values of energy density of the whistler waves. It is shown that the acceleration of high speed solar wind in the coronal hole due to the whistler waves is very important. We have calculated that the solar wind velocity at the earth's orbit is about equal to 670 km/sec (for wave energy density about 10?4 erg cm?3 at 1.1R⊙). It is in approximate agreement with the observed values.  相似文献   

12.
Numerous mass ejections from the Sun have been detected with orbiting coronagraphs. Here for the first time we document and discuss the direct association of a coronagraph observed mass ejection, which followed a 2B flare, with a large interplanetary shock wave disturbance observed at 1 AU. Estimates of the mass (2.4 × 1016 g) and energy content (1.1 × 1032 erg) of the coronal disturbance are in reasonably good agreement with estimates of the mass and energy content of the solar wind disturbance at 1 AU. The energy estimates as well as the transit time of the disturbance are also in good agreement with numerical models of shock wave propagation in the solar wind.  相似文献   

13.
The results of the spectrophotometrical measurements of the polarization in the coronal lines Fe xiv 5303 Å and Fe × 6374 Å are given. Polarization spectrograms were obtained by two spectrographs (prism and echelle types) during the solar eclipse in Mexico on 7 March, 1970 near the region of the second contact at the heights 0.06 to 0.12 R above the limb. The polarization in the green line is about 30% (for averaged height 1.08 R ). The polarization in the red line is close to the errors of the measurement and does not exceed 6%. A brief discussion of the results is also given.  相似文献   

14.
Current spacecraft missions such as Wind and ACE can be used to determine magnetic correlation functions in the solar wind. Data sets from these missions can, in principle, also be used to compute so-called Eulerian correlation functions. These temporal correlations are essential for understanding the dynamics of solar wind turbulence. In the current article we calculate these dynamical correlations by using well-established methods. These results are very useful for a comparison with Eulerian correlations obtained from space craft missions.  相似文献   

15.
Cometary tail rays are traces of the magnetic fields caught in the cometary magnetosphere. Time variations of these rays give us a way to measure the local solar wind velocity at the location of a comet. We introduce a simple method for determining the radial velocity of the solar wind by observing the ray folding motion, and show an example of its application to comet P/Brorsen-Metcalf 1989o, which resulted in 340 ± 35 km s–1.  相似文献   

16.
The dependence of the position of the solar wind sonic point on the magnetic field in the solar corona during cycle 23 is studied. This dependence is shown to be rather strong in the rising phase and at the cycle maximum. As the coronal magnetic field grows, the distance to the sonic point decreases. Since the distance to the sonic point has been shown previously to anticorrelate with the solar wind speed, the result obtained suggests a strong positive correlation between the later and the coronal magnetic field. The situation changed dramatically two years after the calendar date of the cycle maximum. Beginning in 2004 the solar wind speed ceased to depend on the magnetic field up until the cycle minimum in December 2008. In 2009 a strong dependence of the wind speed on the coronal magnetic field was restored. It is hypothesized that this effect is associated with two different coronal heating mechanisms whose relative efficiency, in turn, depends on the contribution from magnetic fields of different scales.  相似文献   

17.
18.
The stability of the solar wind is studied in the case of spherical symmetry and constant temperature. It is shown that the stability problem must be formulated as a mixed initial and boundary-value problem in which are prescribed the perturbation values of velocity and density at an initial time and additionally the velocity perturbation at the base of the corona for all times. The solution is constructed by linear superposition of normal solutions, which contain the time only in an exponential factor. The stability problem becomes a singular eigenvalue problem for the amplitudes of the velocity and pressure perturbations, since additionally to the boundary condition at the base of the corona one must add the condition that the amplitudes behave regularly at the critical point. It is proved that only stable eigenvalues exist.  相似文献   

19.
Interplanetary Scintillation (IPS) Observations were made during the period 1984–1990 using a single radio telescope at 103 MHz situated at Thaltej (Ahmedabad), India. Solar wind speeds were estimated using a recently developed method based on matching the observed IPS spectra with model solar wind spectra for Kolmogorov turbulence. The best-fit speeds derived are traced back to a source surface, and average velocity maps are made for each year, averaging over a number of Carrington rotations. It is found that the resulting single-site, large-scale IPS speed structure agrees well with that derived from 3-site observations from earlier workers. The IPS speed structure during this period was compared with other coronal features. Nearly 85% of the observed high-speed regions were associated with coronal holes. At solar minimum, in 1986, a quasi-sinusoidal, narrow belt of slow solar wind was observed which matched well with the neutral line structure of the solar magnetic field and the belt of active centers. Near solar maximum, in 1990, the speed structure was chaotic, similar to that of the neutral line, with low speed regions appearing all over the source surface.  相似文献   

20.
A new method of search and analysis of the fine structure in the velocity of interplanetary plasma irregularities is developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号