首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The solid and liquid particles which constitute polar stratospheric clouds (PSCs) are of manifold importance to the meteorology of the stratosphere. The heterogeneous reactions which take place on and within these particles release halogens from relatively inert reservoir species into forms which can destroy ozone in the polar spring. In addition, solid PSC particles are instrumental in the physical removal of nitrogen oxides (denitrification) and water (dehydration) of regions of the polar stratosphere. Denitrification, in particular, allows extended ozone destruction by slowing the conversion of chlorine radicals back into reservoir species.We review the historical development of PSC studies, with particular emphasis on results from the last decade, encompassing developments in observations, in laboratory experiments, and in theoretical treatments. The technical challenge of measuring sufficient of the parameters describing any given PSC, to allow its microphysics to be understood, has driven forward balloon-borne, aircraft, and satellite instrumentation. The technical challenge of finding suitable laboratory proxies for PSCs, in order to observe the microphysics under controlled conditions, has resulted in a wide variety of experimental designs, some of which maximise the probability of observing phase change, others which mimic the surface–volume ratios of PSCs more closely. The challenge to theory presented by PSCs has resulted in improvements in the thermodynamics of concentrated inorganic solutions of volatile compounds, and a new general theory of freezing of water ice from concentrated aqueous solutions. Of the major processes involving PSCs, heterogeneous reaction probabilities for ternary HNO3/H2SO4/H2O solutions, and heterogeneous freezing to produce nitric-acid hydrates, are the least well understood.  相似文献   

2.
Volcanic gases such as SO 2, H 2S, HCl and COS emitted during explosive eruptions significantly affect atmospheric chemistry and therefore the Earth's climate. We have evaluated the dependence of volcanic gas emission into the atmosphere on altitude, latitude, and tectonic setting of volcanoes and on the season in which eruptions occurred. These parameters markedly influence final stratospheric gas loading. The latitudes and altitudes of 360 active volcanoes were compared to the height of the tropopause to calculate the potential quantity of volcanic gases injected into the stratosphere. We calculated a possible stratospheric gas loading based on different volcanic plume heights (6, 10, and 15 km) generated by moderate-scale explosive eruptions to show the importance of the actual plume height and volcano location. At a plume height of 15 km for moderate-scale explosive eruptions, a volcano at sea level can cause stratospheric gas loading because the maximum distance to the tropopause is 15–16 km in the equatorial region (0–30°). Eruptions in the tropics have to be more powerful to inject gas into the stratosphere than eruptions at high latitudes because the tropopause rises from ca. 9–11 km at the poles to 15–16 km in the equatorial region (0–30°N and S). The equatorial region is important for stratospheric gas injection because it is the area with the highest frequency of eruptions. Gas injected into the stratosphere in equatorial areas may spread globally into both hemispheres.  相似文献   

3.
The comprehensive chemistry module CHEM has been developed for application in general circulation models (GCMs) describing tropospheric and stratospheric chemistry, including photochemical reactions and heterogeneous reactions on sulphate aerosols and polar stratospheric clouds. It has been coupled to the spectral atmospheric GCM ECHAM3. The model configuration used in the current study has been run in an –off-line mode, i.e. the calculated chemical species do not affect the radiative forcing of the dynamic fields. First results of a 15-year model integration indicate that the model ECHAM3/CHEM runs are numerically efficient and stable, i.e. that no model drift can be detected in dynamic and chemical parameters. The model reproduces the main features regarding ozone, in particular intra- and interannual variability. The ozone columns are somewhat higher than observed (approximately 10%), while the amplitude of the annual cycle is in agreement with observations. A comparison with HALOE data reveals, however, a serious model deficiency regarding lower-stratosphere dynamics at high latitudes. Contrary to what is concluded by observations, the lower stratosphere is characterized by slight upward motions in the polar regions, so that some of the mentioned good agreements must be considered as fortuitous. Nevertheless, ECHAM3/CHEM well describes the chemical processes leading to ozone reduction. It has been shown that the mean fraction of the northern hemisphere, which is covered by polar stratospheric clouds (PSCs) as well as the temporal appearance of PSCs in the model, is in fair agreement with observations. The model results show an activation of chlorine inside the polar vortex which is stronger in the southern than in the northern winter hemisphere, yielding an ozone hole over the Antarctic; this hole, however, is also caused to a substantial degree by the dynamics. Interhemispheric differences concerning reformation of chlorine reservoir species HCl and ClONO2 in spring have also been well reproduced by the model.  相似文献   

4.
A new two-dimensional zonal model of the stratosphere, based on a formulation in an isentropic framework, with complete chemistry has been coupled with a high resolution detailed microphysical model for polar stratospheric clouds (PSCs). The 2D model chemistry includes all presently known heterogeneous processes on sulfate aerosols and PSCs. The coupling of these two models, with inherently different time scales, is discussed. It is demonstrated that in order to obtain a realistic interrelationship between NOy and N2O an accurate simulation of the sedimentation by PSC particles is necessary. A good agreement of model PSC presence and observations is found for the Antarctic polar winter without the need to impose additional artificial temperature variations in the model. The calculated occurrence of polar stratospheric clouds and resulting heterogeneous chemistry during the Antarctic winter are discussed. Sensitivity of the polar stratospheric chemical composition and cloud formation for different perturbations is investigated by studying the effects of transport across the polar vortex boundary and heterogeneous processing by an enhanced sulfate aerosol load. The importance of including sedimentation for all cases is also discussed.  相似文献   

5.
The global structures of annual oscillation (AO) and semiannual oscillation (SAO) of stratospheric ozone are examined by applying spherical harmonic analysis to the ozone data obtained from the Nimbus-7 solar backscattered UV-radiation (SBUV) measurements for the period November 1978 to October 1980. Significant features of the results are: (1) while the stratospheric ozone AO is prevalent only in the polar regions, the ozone SAO prevails both in the equatorial and polar stratospheres; (2) the vertical distribution of the equatorial ozone SAO has a broad maximum of the order of 0.5 (mixing ratio in g/g) and the maximum appears earlier at high altitude (shifting from May [and November] at 0.3 mb [60 km] to November [and May] at 40 mb); (3) above the 40 km level, the maximum of the polar ozone SAO shifts upward towards later phase with altitude with a rate of approximately 10 km/month in both hemispheres; (4) vertical distributions of the polar ozone AOs and SAOs show two peaks in amplitude with a minimum (nodal layer) in between and a rapid phase change with altitude takes place in the respective nodal layers; and (5) the heights of the ozone AO- and SAO-peaks decrease with latitude. The main part of AOs and SAOs of stratospheric ozone including hemispheric asymmetries is ascribable to: (i) temperature dependent ozone photochemistry in the upper stratosphere and mesosphere, (ii) variations of radiation field in the lower stratosphere affected by the annual cycle of solar illumination and temperature in the upper stratosphere and (iii) meridional ozone transport by dynamical processes in the lower stratosphere.  相似文献   

6.
During the past decades, concurrent with global warming, most of global oceans, particularly the tropical Indian Ocean, have become warmer. Meanwhile, the Southern Hemispheric stratospheric polar vortex (SPV) exhibits a deepening trend. Although previous modeling studies reveal that radiative cooling effect of ozone depletion plays a dominant role in causing the deepening of SPV, the simulated ozone-depletion-induced SPV deepening is stronger than the observed. This suggests that there must be other factors canceling a fraction of the influence of the ozone depletion. Whether the tropical Indian Ocean warming (IOW) is such a factor is unclear. This issue is addressed by conducting ensemble atmospheric general circulation model (AGCM) experiments. And one idealized IOW with the amplitude as the observed is prescribed to force four AGCMs. The results show that the IOW tends to warm the southern polar stratosphere, and thus weakens SPV in austral spring to summer. Hence, it offsets a fraction of the effect of the ozone depletion. This implies that global warming will favor ozone recovery, since a warmer southern polar stratosphere is un-beneficial for the formation of polar stratospheric clouds (PSCs), which is a key factor to ozone depletion chemical reactions. Supported by National Natural Science Foundation of China (Grant Nos. 40775053 and 90711004), National Basic Research Program of China (Grant No. 2009CB421401), and Innovation Key Program of Chinese Academy of Sciences (Grant Nos. KZCXZ-YW-Q11-03, KZCZ2-YW-Q03-08)  相似文献   

7.
A scheme of a system of physical and chemical processes controlling the production, transport and destruction of ozone and its gaseous catalysts, as well as other related gases in the low and high stratosphere is presented. An account is made of temperature variations of the stratospheric layer resulting from changes in ozone content; also included is the effect of temperature variations on photochemical reaction rates and ozone and other gases transport between atmospheric layers. Parameters describing major relations of the system are inferred from the analysis of ozone and trace gas data and from the results of model calculations of interdependence between variations in temperature and ozone content of the layer.An analysis of minor fluctuations of the linearized system shows that photochemical processes are responsible for its aperiodic stability and that gas transport between atmospheric layers destabilizes the system.  相似文献   

8.
This paper reports the study data on variations in the ozone content in the middle stratosphere over Moscow based on millimeter wavelength observations during a range of midwinter sudden stratospheric warmings that occurred in the past two decades. The relation of ozone with planetary waves and the intensity of the polar stratospheric vortex has been established. The ozone vertical distribution has been monitored with a highly sensitive spectrometer with a two-millimeter wave band. The discovered phenomena of a relatively long-term lower ozone content in December in the considered cold half-year periods are related to the higher amplitude of the planetary wave with n = 1. Such phenomena preceded the development of strong midwinter stratospheric warmings, which, in turn, were accompanied by a significant increase in the ozone content in January. This ozone enrichment was related to the lower amplitude of the wave with n = 1 and higher amplitude of the wave with n = 2 and was accompanied by geopotential H c.v. growth in the polar vortex center. Specific features of variations in the ozone content under the influence of the major atmospheric processes are observed not only in certain cold half-year periods but are also well seen in the general averaged pattern for winters with strong stratospheric warmings.  相似文献   

9.
The Stratospheric Regular Sounding project was planned to measure regularly the vertical profiles of several tracers like ozone, water vapor, NOx, ClOx and BrOx radicals, aerosol, pressure and temperature, at three latitudes, to discriminate between the transport and photochemical terms which control their distribution. As part of this project, the “Istituto di Fisica dell’Atmosfera” launched nine laser backscattersondes (LABS) on board stratospheric balloons to make observations of background aerosol and PSCs. LABS was launched with an optical particle counter operated by the University of Wyoming. Observations have been performed in the arctic, mid-latitudes and tropical regions in different seasons. Polar stratospheric clouds have been observed in areas inside and outside the polar vortex edge. A background aerosol was observed both in mid-latitudes and in arctic regions with a backscattering ratio of 1.2 at 692 nm. Very stratified aerosol layers, possibly transported into the lower stratosphere by deep convective systems, have been observed in the lower stratosphere between 20 and 29 km in the tropics in the Southern Hemisphere.  相似文献   

10.
Based on radiative transfer calculations, it is studied whether polar stratospheric clouds (PSCs) can be detected by the new Global Ozone Monitoring Experiment (GOME) on board the second European Research Satellite (ERS-2) planned to be launched in 1995. It is proposed to identify PSC-covered areas by use of an indicator, the Normalized Radiance Difference (NRD), which relates the difference of two spectral radiances at 0.515 µm and 0.67 µm to one radiance measured in the centre of the oxygen A-band at 0.76 µm. Simulations are carried out for two solar zenith angles, =78.5° and =86.2°. They indicate that, in presence of PSCs and with increasing solar zenith angles above =80°, the NRD decrease to values clearly below those derived under conditions of a cloud-free stratosphere. Results for =86.2° show that the method is successful independent of existing tropospheric clouds, of different tropospheric aerosol loadings, and of surface albedos. Results for =78.5° illustrate that PSC detection under conditions of smaller solar zenith angles <80° needs additional information about tropospheric clouds.  相似文献   

11.
The research on climate change in polar regions, especially on the role of polar in the global climate system, has gain unprecedented level of interest. It has been the key scientific issue of the International Polar Year program (IPY, 2007―2008). In this paper, we dealt with the debate upon the breakup time of the stratospheric polar vortex in boreal spring. An observational study of the relation between strato- spheric polar vortex breakup and the extra-tropical circulation was performed. The mean breakup date―when the winter westerly at the core of polar jet turns to summer easterly―is about April 10. The breakup time has large interannual variation with a time span of about 2 months. It also has a long-term trend with the 1990s and 2000s witnessing more and more late breakups of polar vortex. Composite of wind speed at the core of polar jet for the extremely early and late breakup years shows that late years have two periods of westerly weakening while early breakup years have only one. The first weakening in the late years happens in middle January with wind speed dropping sharply from more than 40 m s?1 to about 15 m s?1. This is accompanied with anomalous activities of planetary waves in both strato- sphere and troposphere; while the second weakening in the late breaking years is mainly the results of diabatic heating with very weak wave activities. In early breakup years, the transition from westerly to easterly is rapid with wind speed dropping from more than 30 m s?1 to less than ?10 m s?1 within a month. This evolution is associated with a strong bidirectional dynamical coupling of the stratosphere and troposphere. The circulation anomalies at low troposphere are also analyzed in the extremely early and late breakup years. It shows that there are significant differences between the two kinds of extreme years in the geopotential height and temperature composite analysis, indicating the dynamical cou- pling of stratosphere and troposphere with the evolution of stratospheric polar vortex.  相似文献   

12.
The NASA/Goddard Space Flight Center two-dimensional (GSFC 2D) photochemical transport model has been used to study the influence of thermospheric NO on the chemical balance of the middle atmosphere. Lower thermospheric NO sources are included in the GSFC 2D model in addition to the sources that are relevant to the stratosphere. A time series of hemispheric auroral electron power has been used to modulate the auroral NO production in the auroral zone. A time series of the Ottawa 10.7-cm solar flux index has been used as a proxy to modulate NO production at middle and low latitudes by solar EUV and soft X-rays. An interhemispheric asymmetry is calculated for the amounts of odd nitrogen in the polar stratosphere. We compute a <∼3% enhancement in the odd nitrogen (NOy=N, NO, NO2, NO3, N2O5, BrONO2, ClONO2, HO2NO2, and HNO3) budget in the north polar stratosphere (latitude > 50°) due to thermospheric sources, whereas we compute a <∼8% enhancement in the NOy budget in the south polar stratosphere (latitude > 50°).  相似文献   

13.
Presently available data on the reaction of SO2 with OH radicals (OH + SO2 + \(M\xrightarrow[{k_1 }]{}\) HSO3 +M) are critically reviewed in light of recent stratospheric sulfur budget calculations. These calculations impose that the net oxidation ratek of SO2 within the stratosphere should fall within the range 10?7k≤10?9, if the SO2 oxidation model for the stratospheric sulfate layer is assumed to be correct. The effective reaction rate constantk 1 * =k 1[M] at the stratospheric temperature is estimated as $$k_1^* = \frac{{(8.2 \pm 2.2) \times 10^{ - 13} \times [M]}}{{(0.79 \mp 0.34) \times 10^{ - 13} + [M]}}cm^3 /molecules sec$$ where [M] refers to the total number density (molecules/cm3). Using the above limiting values ofk 1 * , and the estimated OH density concentrations, the net oxidation rate is calculated as 3.6×10?7k≤1.3×10?8 at 17 km altitude. This indicates that the upper limit of thesek values exceeds the tolerable range imposed by the model by a factor of about four. Obviously the uncertainty of thek 1 * values and of the OH concentrations in the stratosphere is still too large to make definite conclusions on the validity of the SO2 model.  相似文献   

14.
A discussion is given of atmospheric reactions in the H2O–CH4–O2–O3–NO x system. In the lower troposphere such reactions may lead to significant production of ozone. Their role in the odd hydrogen balance, especially of the troposphere and lower stratosphere, is discussed. CH3OH may be an intermediate in the oxidation cycle of methane, especially in the cold stratosphere. Its photodissociation into H2 and CH2O may consequently provide an important source for stratospheric H2. Catalytic photochemical chains of reactions involving NO x and HO x may also lead to tropospheric destruction of ozone. Due to lack of knowledge it is not possible at present to evaluate the importance of the before-mentioned reactions.With the aid of model calculations it is indicated that stratospheric ozone is most sensitive to changes in the adopted lower boundary values of N2O and that an increase in water vapour concentrations in the lower stratosphere will indeed cause some increase in ozone as predicted.Fluctuations in the flux of solar radiation near 190 nm may cause significant variations in stratospheric ozone concentrations.  相似文献   

15.
Although stratosphere penetrating volcanic eruptions have been infrequent during the last half century, periods have existed in the last several hundred years when such eruptions were significantly more frequent. Several mechanisms exist for these injections to affect stratospheric minor constitutent chemistry, both on the long-term average and for short-term perturbations. These mechanisms are reviewed and, because of the sensitivity of current models of stratospheric ozone to chlorine perturbations, quantitative estimates are made of chlorine injection rates. It is found that, if chlorine makes up as much as 0.5 to 1% of the gases released and if the total gases released are about the same magnitude as the fine ash, then a major stratosphere penetrating eruption could deplete the ozone column by several percent. The estimate for the Agung eruption of 1963 is just under 1% an amount not excluded by the ozone record but complicated by the peak in atmospheric nuclear explosions at about the same time. The long-term contribution to stratospheric CIX by volcanic eruptions is estimated as 0.1 ppbv for the period 1900–60 and 1 ppbv for the much more volcanically active period 1780–1840. All of the estimates are subject to large uncertainties, perhaps a factor of 2 or 3 on the high side and a factor of 10 or more on the low side.Paper presented at the IAGA/IAMAP Joint Assembly, Seattle, WA, U.S.A., August 1977.  相似文献   

16.
毕云 《地球物理学报》2011,54(10):2468-2476
北极地区(60°N~90°N)平流层纬向风和气压场有明显的季节变化,不同高度层季节变化的时间有差异.北极平流层从冬至夏,季节转换从上向下推进,从夏至冬,季节转换从下向上推进.以20 hPa为例,平均而言,4月上旬以前,北极被极涡控制;4月中旬北极地区高压的势力开始超过低压,5月上旬,北极高压正式建立;7月份达到最强,8...  相似文献   

17.
A stratospheric balloon was launched on 12 October 1986 from the “CNES” base at Aire sur l’Adour (France) to record twilight radiance in the stratosphere. The near-UV and visible radiances were continuously monitored by a photometer during sunrise. Some observations are presented for different viewing azimuthal planes and viewing elevation angles. They show the influence of aerosols layers and clouds which can be also seen on related photographies. The results as a whole may be used for testing some radiative models, especially for twilight conditions.  相似文献   

18.
Based on the daily NCEP/DOE reanalysis II data,dates of the boreal spring Stratospheric Final Warming(SFW) events during 1979–2010 are defined as the time when the zonal-mean zonal wind at the central latitudes(65°–75°N) of the westerly polar jet drops below zero and never recovers until the subsequent autumn.It is found that the SFW events occur successively from the mid to the lower stratosphere and averagely from the mid to late April with a temporal lag of about 13 days from 10 to 50 hPa.Over the past 32 years,the earliest SFW occurs in mid March whereas the latest SFW happens in late May,showing a clear interannual variability of the time of SFW.Accompanying the SFW onset,the stratospheric circulation transits from a winter dynamical regime to a summertime state,and the maximum negative tendency of zonal wind and the strongest convergence of planetary-wave are observed.Composite results show that the early/late SFW events in boreal spring correspond to a quicker/slower transition of the stratospheric circulation,with the zonal-mean zonal wind reducing about 20/5 m s-1 at 30 hPa within 10 days around the onset date.Meanwhile,the planetary wave activities are relatively strong/weak associating with an out-of-/in-phase circumpolar circulation anomaly before and after the SFW events in the stratosphere.All these results indicate that,the earlier breakdown of the stratospheric polar vortex(SPV),as for the winter stratospheric sudden warming(SSW) events is driven mainly by wave forcing;and in contrast,the later breakdown of the SPV exhibits more characteristics of its seasonal evolution.Nevertheless,after the breakdown of SPV,the polar temperature anomalies always exhibit an out-of-phase relationship between the stratosphere and the troposphere for both the early and late SFW events,which implies an intimate stratosphere–troposphere dynamical coupling in spring.In addition,there exists a remarkable interdecadal change of the onset time of SFW in the mid 1990s.On average,the SFW onset time before the mid 1990s is 11 days earlier than that afterwards,corresponding to the increased/decreased planetary wave activities in late winter-early spring before/after the 1990s.  相似文献   

19.
选用每天12∶00UTC时次的逐日ERA-Interim再分析资料,根据transformed Eulerian-mean(TEM)方程通过积分剩余速度珔v*,研究了1979—2011年间Brewer-Dobson(BD)环流的时空演变规律.并将其与downward control(DC)原理研究的结果进行比较,同时还探讨了平流层温度与BD环流之间的相互联系.结果表明,由TEM方程通过积分剩余速度珔v*估算的BD环流与利用DC原理估算的环流相比较,在热带地区的形势更加明显.环流在热带对流层中上层上升至平流层中下层,最高可达1hPa等压面附近.然后在热带外向极向下运动,最后在中高纬度下沉回到对流层.BD环流的上升中心及质量通量均随季节的变化产生变动,环流在冬半球的形势显著地强于夏半球.在春季和秋季期间,环流呈现出南北两半球的对称形势.从全球尺度物质输送的角度来看,在过去的33a间平流层BD环流的长期变化趋势是减弱的,且在平流层中下层减弱是明显的.环流的减弱趋势与纬向平均温度的长期变化趋势相匹配.  相似文献   

20.
我国上空平流层中微量气体的垂直分布和变化趋势   总被引:7,自引:0,他引:7       下载免费PDF全文
利用1992~2005年卤素掩星试验(HALOE)的观测资料分析了中国上空平流层的几种微量气体(NO, NO2, HF, HCl, CH4, H2O 和O3)混合比的垂直分布和变化趋势,以期为研究平流层的辐射和化学过程提供一些有用的数据. 文中除给出我国上空平流层各高度上平均的各种微量气体的含量外,还给出青藏高原上空这些微量气体的含量. 分析结果表明,平流层各种微量气体混合比的垂直分布有其不同的特征,在对流层上层到平流层底部各种微量气体的混合比分布和季节变化与平流层相比有明显的差异;分析结果还表明,这些微量气体的季节变化、准两年周期振荡和长期变化趋势都很明显,并且在平流层的不同高度上它们的变化趋势是不相同的. 在平流层中层,NO, NO2, HCl 和H2O 混合比在1998年以前都是增加而后则是明显下降的,但O3相反,在1998年以前明显减少,1998年后其减少的趋势不明显. 这表明,近年来平流层中层这些微量气体的减少使得它们对臭氧的破坏有所缓解. 但在平流层下层,臭氧的耗损仍然很明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号