首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Late in 1977, the periapsis altitude of the Viking Orbiters was lowered from 1500 to 300 km. The higher resolution of pictures taken at the lower altitude (8 m/pixel) permitted a more accurate determination of the location of the Viking 1 Lander by correlating topographic features seen in the new pictures with the same features in lander pictures. The position of the lander on Viking Orbiter picture 452B11 (NGF Rectilinear) is line 293, sample 1099. This location of the Viking 1 Lander has been used in a revision of the control net of Mars (M.E. Davies, F.Y. Katayama, and J.A. Roth, R2309 NASA, The Rand Corp., Feb. 1978). The new areographic coordinates of the lander are lat 22.483° N and long 47.968° W. The new location is estimated to be accurate to within 50 m.  相似文献   

2.
P. Thomas  J. Veverka 《Icarus》1977,30(3):595-597
The preliminary conclusion of the Mariner 9 Television Team that the surfaces of Phobos and Deimos are saturated with craters larger than 0.2 km in diameter is reconsidered on the basis of more extensive and uniform crater counts. For Phobos, it is verified that the surface appears saturated with craters larger than 1 km in diameter. For craters smaller than 1 km, the data points fall below the saturation curve, and it is not clear that all the departure can be explained in terms of loss of resolution. For Deimos, because of the paucity of craters visible in the Mariner 9 images, a statistically meaningful crater density curve cannot be constructed. Definitive crater density curves for subkilometer craters can only be established once additional imagery at a resolution of better than 100 m is obtained. Such imagery will be provided by the 1976 Viking Orbiters.  相似文献   

3.
A location of the Viking 1 Lander on the surface of Mars has been determined by correlating topographic features in the lander pictures with similar features in the Viking orbiter pictures. Radio tracking data narrowed the area of search for correlating orbiter and lander features and an area was found on the orbiter pictures in which there is good agreement with topographic features on the lander pictures. This location, when plotted on the 1:250,000 scale photomosaic of the Yorktown Region of Mars (U.S. Geological Survey, 1977) is at 22.487°N latitude and 48.041°W longitude.  相似文献   

4.
The surface of Venus viewed in Arecibo radar images has a small population of bright ring-shaped features. These features are interpreted as the rough or blocky deposits surrounding craters of impact or volcanic origin. Population densities of these bright ring features are small compared with visually identified impact craters on the surface of the Moon and volcanic craters on Io. However, they are comparable to the short-lived radar-bright haloes associated with ejecta deposits of young craters on the Moon. This suggests that bright radar signatures of the deposits around Venusian craters are obliterated by an erosional or sedimentary process. We have evaluated the hypothesis that bright radar crater signatures were obliterated by a global mantle deposited after impacts of very large bolides. The mechanism accounts satisfactorily for the population of features with internal diameters greater than 64 km. The measured population of craters with internal diameters between 32 and 64 km is difficult to account for with the model but it may be underestimated because of poor radar resolution (5 to 20 km). Other possible mechanisms for the removal of radar bright crater signatures include in situ chemical weathering of rocks and mantling by young volcanic deposits. All three alternatives may be consistent with existing radar roughness and cross-section data and Venera 8, 9, and 10 data. However, imaging observations from a lander on the rolling plains or lowlands may verify or disprove the proposed global mantling. New high-resolution ground-based radar data can also contribute new information on the nature and origin of these radar bright ring features.  相似文献   

5.
Characteristics of rock populations on the surfaces of Mars and Venus can be derived from analyses of rock morphology and morphometry data. We present measurements of rock sizes and sphericities made from Viking lander images using an interactive digital image display system. The rocks considered are in the gravel size range (16–256 mm in diameter). Mean sphericities, form ratios, and roundness factors are found to be very similar for both Viking lander sites. Size distributions, however, demonstrate differences between the sites; there are significantly more cobble size fragments at VL-2 than at VL-1. A model calling for aphanitic basalts emplaced as ejecta or lava flows at the Viking sites is supported by the rock shape, size, and roundness data.Morphologic features pertaining to the modification history of a rock are considered for Mars and Venus. A multi-parameter clustering algorithm is utilized to objectively categorize martian and venusian rocks in terms of various criteria. Erosional markings such as flutes are demonstrated to be most important in separating VL-1 rock morphologic groups, while rock form (i.e., shape) represents the primary separator of subpopulations at VL-2 and the Venera landing sites. Fillets are common around VL-1 and Venera 10 fragments. Obstacle scours occur frequently only at VL-1. Cavities in rocks are ubiquitous at all lander sites except Venera 9. Eolian processes, possibly assisted by local solution weathering, are a strong candidate for the origin of cavities and flutes in martian rocks.  相似文献   

6.
After the Beagle-2 lander of the Mars Express mission comes to rest on the surface of Isidis Planitia in late December 2003 to carry out a range of geochemistry and exobiology experiments, there will be considerable interest in determining its exact location. This work considers the feasibility of identifying topographic features seen in the Mars Global Surveyor MOLA dataset in images of the horizon returned by the lander, and the probability of observing lesser features identifiable in orbital imagery. By taking bearings from such features, and attempting to match the configuration back to the available data, it may be possible to determine the spacecraft's position with high precision. Since the MOLA data is fairly coarse compared to the area of the landing ellipse, the range of visibility and likelihood of observation of each of the resolved craters in the area is considered. For the more numerous smaller craters and many small knobs a probabilistic view is taken.  相似文献   

7.
From February to March 1989 the Phobos 2 spacecraft took 37 TV images of Phobos at a distance of 190-1100 km. These images complement Mariner-9 and Viking data by providing higher-resolution coverage of a large region West of the crater Stickney (40-160 degrees W) and by providing disk-resolved measurements of surface brightness at a greater range of wavelengths and additional phase angles. These images have supported updated mapping and characterization of large craters and grooves, and have provided additional observations of craters' and grooves' bright rims. Variations in surface visible/near-infrared color ratio of almost a factor of 2 have been recognized; these variations appear to be associated with the ejecta of specific large impact craters. Updated determinations of satellite mass and volume allow calculation of a more accurate value of bulk density, 1.90 +/- 0.1 g cm-3. This is significantly lower than the density of meteoritic analogs to Phobos' surface, suggesting a porous interior perhaps containing interstitial ice.  相似文献   

8.
A euphotic zone seems to exist at about 1 cm subsurface in the Martian epilith. At this depth visible light is still intense enough to be utilized by conceivable photosynthetic organisms; but the germicidal ultraviolet intensities at the Martian surface have been reduced to values manageable by terrestrial life. Such euphotic zone organisms would experience moderately high Martian temperatures at equatorial latitudes and can be dispersed readily during global dust stroms. During such storms the Martian euphotic zone may reach the surface. The aerosol content of the Martian atmosphere can be monitored by multiband single line scans of the sun at large zenith angles by the Viking lander camera; and the postulated euphotic zone organisms can be searched for with the Viking lander sample arm and biology experiments.  相似文献   

9.
《Icarus》1986,66(1):22-38
The absence of fine-scale surface features in Viking Orbiter images must be interpreted with caution. A reduction in contrast due to the presence of atmospheric haze will preferentially obscure small features. Two sets of images of the same region, taken with similar viewing geometry but under different atmospheric conditions, allow us to demonstrate that a single scattering model quantitatively accounts for the effects of the atmosphere. Craters five to seven times the size of the camera picture element should be resolved in Viking Orbiter images if the atmosphere is clear. When atmospheric haze effects dominate, larger craters are obscured and crater size-frequency distributions appear to be depleted in small-sized craters in a predictable way. Twelve crater size-frequency counts in the northern hemisphere behave in the manner predicted for hazy conditions. Their characteristics also follow the pattern of increasing atmospheric opacity with latitude in spring and summer deduced from other measurements of cloudiness. Loss of surface resolution due to the nearly ubiquitous atmospheric obscuration in the northern mid to high latitudes makes it difficult to assesst, with existing images, the validity of suggestions that fine-scale surface features have been preferentially degraded by surface processes. However, the atmosphere in the southern mid and high latitudes is relatively clear during autumn and winter, and a preliminary review of existing image data suggests that features with sizes down to five to seven picture elements can be detected in this region. No evidence for a recent circumpolar debris mantle can be found in the southern hemisphere data. Because the smallest craters that can be resolved in Viking images are several tens of meters in diameter, we cannot rule out the occurrence of debris deposits less than a few tens of meters thick, regardless of atmospheric clarity.  相似文献   

10.
High-resolution images of Chryse Planitia and eastern Lunae Planum from the early revolutions of Viking Orbiter I permit detailed analyses of crater-associated streaks and interpretation of related eolian processes. A total of 614 light and dark streaks were studied and treated statistically in relation to: (1) morphology, morphometry, and orientation, (2) “parent” crater size and morphology, (3) terrain type in which they occured, (4) topographic elevation, and (5) meteorological data currently being acquired by Viking Lander I. Three factors are apparent: (1) light streaks predominate, (2) most streaks form in association with fresh bowl-shaped craters, and (3) most light streaks are of the “parallel” type, whereas dark streaks are approximately evenly divided between convergent and parallel forms; moreover, very few light or dark streaks are divergent or fan-shaped. Light streaks have an average azimuth of 218° (corresponding to winds from the northeast), which approximates the orientation of 197 ± 14° for eolian “drifts” observed by the Viking Lander imaging team (Binder et al., 1977). This lends support to the hypothesis that light streaks are deposits of windblown sediments. Dark streaks are oriented at an azimuth of 42° (approximately opposite that of light streaks) and are nearly in line with the dominant wind direction currently recorded by the Viking meteorology instruments (Hess et al., 1977). Although the size of the sample area is not uniform among the various terrain types, the highest frequency of streaks per unit area occurs in the knobby terrain. This is partly explained by the probable production of fine-grained material (weathered from the knobs) to form streaks and other eolian features, and the higher wind turbulence generated around the knobs. The lowest frequency of streaks occurs on the elevated plateaus. The light streaks in Chryse Planitia appear to be relatively stable and to result from deposition of windblown material during times of relatively high velocity northeasterly winds. Dark streaks are more variable and probably result from erosion by southwesterly winds. Both types will be monitored during the extended Viking mission and the results compared with lander data.  相似文献   

11.
J.G. Williams 《Icarus》1984,57(1):1-13
The orbit of Mars is perturbed more than 5 m, a value compatible with the accuracy of the Viking lander ranging data, by about three dozen asteroids. In addition to larger asteroids throughout the belt, significant perturbations of long period are generated by smaller objects near commensurabilities with Mars. The largest periodic terms induced by 1 Ceres and 2 Pallas have amplitudes of 0.8 and 0.2 km, respectively, both with 10-year periods. Due to a near commensurability, 4 Vesta causes a 5-km, 52-year term. While the Viking ranges will yield significant mass determinations for the largest three asteroids, and some of the smaller bodies should be detectable, it will be difficult to seperate the smaller bodies with useful accuracies. Accurate discrimination must await range data from future missions to Mars or other bodies in the neighborhood of the asteroid belt. The Viking ranges can also yield improved masses for the outer planets (except Pluto), an application which is being exploited by groups analyzing these data. Uncertainties in the asteroid masses limit the ultimate accuracy of the Viking determinations of both the long time scale motion of the system the inner four planets with respect to an inertial frame and the rate of change of the gravitational constant.  相似文献   

12.
A 1953 telescopic photograph of a flash on the Moon is the only unequivocal record of the rare crash of an asteroid-sized body onto the lunar surface. We estimate that this event would create an impact feature up to several km in size and that the diameter of the impacting body would be about 20 m. Such an event would cause regional devastation if it occurred on Earth. Although not detectable with ground- based telescopes, the lunar crater should be visible in space-based images of the Moon. A search of images from the Clementine mission reveals an ∼1.5-km high-albedo, blue, fresh-appearing crater with an associated ejecta blanket at the location of the flash. The identification of this crater offers an opportunity to investigate subsurface unaltered lunar soils.  相似文献   

13.
The high-resolution Voyager images of Ganymede show a class of fresh craters 6–89 km in diameter which is distinguished by an ejecta blanket similar to those seen for some types of Martian craters. One hundred and eighty-five were identified and studied for trends with respect to latitude, longitude, and terrain type. No correlation of the ratio of ejecta diameter to crater diameter was found as a function of latitude or longitude, and there is only a suggestion of a trend in this ratio with respect to major terrain types. Central peak frequency is greatest for the smaller crater diameters. Central pit occurrence dominates central peak occurrence at crater diameters ?35 km. We conclude that the ejecta morphology probably results from impact into an icy target. The question of whether atmospheric ejecta-particle drag contributes to ejecta blanket morphologies on planets with an atmospheric cannot be resolved entirely from the Voyager images. The image resolution is insufficient to show diagnostic flow features on the ejecta, if they exist, or to detect evidence of any other ejecta deposits which would lie beyond the pedestal, predicted by some researchers to exist only on bodies with an atmosphere.  相似文献   

14.
Pangboche crater (17.2°N, 226.7°E; 10.4 km dia.) lies close to the summit of Olympus Mons volcano, Mars, at an elevation of ~20.9 km above the datum. Given a scale height of 11.1 km for the atmosphere, this relatively large fresh crater most likely formed at an atmospheric pressure <1 mbar in essentially volatile‐free young lava flows. Detailed analysis of Pangboche crater from High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) images reveals that volatile‐related features (e.g., fluidized ejecta layers and pitted floor material) are absent. In contrast, abundant impact melt occurs on the floor, inner walls, and rim of the crater, and there is an extensive field of secondary craters that extend up to approximately 45 km from the rim crest. All of these attributes argue that it was the absence of volatiles in the target rocks at the time of crater formation, rather than the thin atmosphere, which had a controlling influence on crater morphology. Digital elevation data derived from the CTX images reveal that Pangboche crater has a depth of about 954 m (depth/diameter = approximately 0.092) and that uplifted target rocks comprise about 58% of the relief of the 180 m‐high north rim. As the target material comprised a sequence of layered lava flows, Pangboche crater may well represent the best crater on Mars for direct comparison with craters formed on the Moon (permitting variations in gravitational effects to be investigated) or on Mercury (allowing the role of the atmosphere to be studied).  相似文献   

15.
The 174 km diameter Terby impact crater (28.0°S-74.1°E) located on the northern rim of the Hellas basin displays anomalous inner morphology, including a flat floor and light-toned layered deposits. An analysis of these deposits was performed using multiple datasets from Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter missions, with visible images for interpretation, near-infrared data for mineralogical mapping, and topography for geometry. The geometry of layered deposits was consistent with that of sediments that settled mainly in a sub-aqueous environment, during the Noachian period as determined by crater counts. To the north, the thickest sediments displayed sequences for fan deltas, as identified by 100 m to 1 km long clinoforms, as defined by horizontal beds passing to foreset beds dipping by 6-10° toward the center of the Terby crater. The identification of distinct sub-aqueous fan sequences, separated by unconformities and local wedges, showed the accumulation of sediments from prograding/onlapping depositional sequences, due to lake level and sediment supply variations. The mineralogy of several layers with hydrated minerals, including Fe/Mg phyllosilicates, supports this type of sedimentary environment. The volume of fan sediments was estimated as >5000 km3 (a large amount considering classical martian fan deltas such as Eberswalde (6 km3)) and requires sustained liquid water activity. Such a large sedimentary deposition in Terby crater is characteristic of the Noachian/Phyllosian period during which the environment favored the formation of phyllosilicates. The latter were detected by spectral data in the layered deposits of Terby crater in three distinct layer sequences. During the Hesperian period, the sediments experienced strong erosion, possibly enhanced by more acidic conditions, forming the current morphology with three mesas and closed depressions. Small fluvial valleys and alluvial fans formed subsequently, attesting to late fluvial processes dated as late Early to early Late Hesperian. After this late fluvial episode, the Terby impact crater was submitted to aeolian processes and permanent cold conditions with viscous flow features. Therefore, the Terby crater displays, in a single location, geologic features that characterize the three main periods of time on Mars, with the presence of one of the thickest sub-aqueous fan deposits reported on Mars. The filling of Terby impact crater is thus one potential “reference geologic cross-section” for Mars stratigraphy.  相似文献   

16.
《Icarus》1986,66(1):125-133
Global remote-sensing observations of Mars are compared with remote-sensing observations of the two Viking Lander site regions and with orbiter and lander imaging of the sites. The lander sites do not fit most of the global trends of remote-sensing data. The presence of a duricrust in the top meter of the surface is inferred for most regions of high thermal inertia, although the duricrust is thinner at the lander sites than elsewhere. Regions of low thermal inertia are covered by greater than several centimeters of unconsolidated dust. A thin, microns-thick layer of bright dust appears at the surface at the lander sites, and these locations may be regions of incipient formation of low thermal inertia. The lander sites are intermediate in structure between classical bright and dark regions, and are distinctive from most of the rest of the planet.  相似文献   

17.
Peter Thomas 《Icarus》1979,40(2):223-243
Viking Orbiter images have provided nearly complete coverage of the two satellites of Mars and have been used to construct maps of the surface features of Phobos and Deimos. The satellites have radically different appearances although nearly all features on both objects were formed directly or indirectly by impact cratering. Phobos has an extensive network of linear depressions (grooves) that probably were formed indirectly by the largest impact recorded on Phobos. Deimos lacks grooves as well as the large number of ridges that occur on Phobos. Craters on Deimos have substantial sediment fill; those on Phobos have none. Evidence of downslope movement of debris is prominent on Deimos but is rare on Phobos. Many of the differences between Phobos and Deimos may be caused by modest differences in mechanical properties. However, the lack of a very large crater on Deimos may be responsible for its lack of grooves.  相似文献   

18.
Mirages on Mars     
The possibility of observing mirages on Mars from the Viking lander cameras is examined. A simple model for the production of both inferior and superior mirages is developed. Assuming the atmospheric index of refraction to be a linear function of density (i.e., temperature), ray curvatures are calculated through layers of large, expected thermal gradient.Assuming the Martian morning inversions of Gierasch and Goody (1968), calculations of ray curvature show the superior mirage to be an unlikely occurrence on Mars since the downward curvature of the ray through the inversion layer is less than the downward curvature of the planet. In order to examine the nature of inferior mirages we select a reasonable expression for temperature profile in the surface layer fitted to the midafternoon, midlatitude summer results of Gierasch and Goody. Integration of the expression for ray curvature yields a relation for the minimum distance between the lander cameras and an inferior mirage as a function of the surface superadiabatic lapse rate. Such calculations indicate that the Viking lander cameras will record inferior mirages at horizontal distances of a kilometer or so from the lander. Given the appearance of an inferior mirage at a measured minimum distance from the observer it should be a simple matter to calculate the corresponding mean temperature lapse rate at the surface.  相似文献   

19.
Candidate examples of impact melt flows and debris flows have been identified at Tooting crater, an extremely young (<2 Myr), 29 km diameter impact crater in Amazonis Planitia, Mars. Using HiRISE and CTX images, and stereo-derived digital elevation models derived from these images, we have studied the rim and interior wall of Tooting crater to document the morphology and topography of several flow features in order to constrain the potential flow formation mechanisms. Four flow types have been identified; including possible impact melt sheets and three types of debris flows. The flow features are all located within 2 km of the rim crest on the southern rim or lie on the southern interior wall of the crater ∼1500 m below the rim crest. Extensive structural failure has modified the northern half of the crater inner wall and we interpret this to have resulted in the destruction of any impact melt emplaced, as well as volatile-rich wall rock. The impact melt flows are fractured on the meter to decameter scale, have ridged, leveed lobes and flow fronts, and cover an area >6 km × 5 km on the southern rim. The debris flows are found on both the inner wall and rim of the crater, are ∼1-2 km in length, and vary from a few tens of meters to >300 m in width. These flows exhibit varying morphologies, from a channelized, leveed flow with arcuate ridges in the channel, to a rubbly flow with a central channel but no obvious levees. The flows indicate that water existed within the target rocks at the time of crater formation, and that both melt and fluidized sediment was generated during this event.  相似文献   

20.
Abstract— The Vredefort structure in South Africa was created by a meteorite impact about two billion years ago. Since that time, the crater has been deeply eroded; so to estimate its original size, researchers have had to rely heavily upon comparison to other terrestrial impact structures. Recent estimates of the original crater diameter range from 160 km to as much as 400 km. In this study, we combined the capabilities of both hydrocode and finite-element modeling, using the former to predict where the pressure of an impact-generated shock wave would have been high enough to form planar deformation features (PDFs) and shatter cones and the latter to follow the subsequent displacement of these shock isobars during the collapse of the crater. We established constraints on the sizes of the projectile and the transient crater (and, thus, on the size of the final crater) by comparing the observed locations of PDFs around Vredefort to the results of our simulations of impacts by projectiles of various sizes. These simulations indicate that a rocky projectile with a diameter of ~10 km, impacting vertically at a velocity of 20 km/s generates shock pressures that are consistent with the distribution of PDFs around Vredefort. These projectile parameters correspond to a transient crater ~80 km in diameter or a final crater ~120–160 km in diameter. Allowing for uncertainties in our modeling procedures, we consider final craters 120 to 200 km in diameter to be consistent with the observed locations of PDFs at Vredefort. The shock pressure contour corresponding to the formation of shatter cones is almost horizontal near the surface, making the locations of these features less useful constraints on the crater size. However, they may provide a constraint on the amount of erosion that has occurred since the impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号