首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
南黄海夏季微微型浮游植物丰度的分布   总被引:1,自引:1,他引:0  
2008年8月中韩合作对南黄海生态系统进行了整体调查,调查站位共计37个。利用流式细胞仪测定了南黄海微微型浮游植物丰度,结合理化环境因子,分析了它们在夏季南黄海的分布特征。所测微微型真核浮游植物丰度平均值为1.9×103个/mL,最大值为2.4×104个/mL;聚球藻丰度平均值为5.3×104个/mL,最大值为5.1×105个/mL;从河口近岸到南黄海中部的宽阔海域,随着环境因子的变化,微微型浮游植物在各海区的分布明显不同,表现为河口近岸区域丰度大,离岸丰度小的特点;各站位丰度垂直分布主要趋势是上大下小,在跃层突出。根据分布趋势,聚球藻可分为两种垂直分布类型,微微型真核浮游植物分为三种。这些分布差异源于长江冲淡水和黄海冷水团的影响。  相似文献   

2.
赵苑  赵丽  张武昌  刘诚刚  魏皓  肖天 《海洋与湖沼》2012,43(6):1030-1038
于2007年3—4月在黄海中部海域采用流式细胞术研究了春季水华过程中聚球藻、微微型真核浮游生物和异养细菌的生物量变化。聚球藻和微微真核型浮游生物的生物量与叶绿素a浓度变化基本呈现相反的趋势,在水华前期较高,水华期迅速下降,直至水华后期又有所升高。异养细菌在整个水华过程中变化较小,生物量在水华期最高,与水柱叶绿素a浓度呈极显著正相关(r=0.319,p<0.01)。水华期这三类微微型浮游生物对浮游植物总碳生物量的贡献很低。纤毛虫和鞭毛虫捕食可能是导致聚球藻和微微型真核浮游生物在水华期生物量降低的主要原因。  相似文献   

3.
北黄海冷水团对獐子岛微微型浮游生物分布的影响   总被引:2,自引:1,他引:2  
Picoplankton distribution around the Zhangzi Island(northern Yellow Sea)was investigated by monthly observation from July 2009 to June 2010.Three picoplankton populations were discriminated by flow cytometry,namely Synechococcus,picoeukaryotes and heterotrophic prokaryotes.In summer(from July to September),the edge of the northern Yellow Sea Cold Water Mass(NYSCWM)resulting from water column stratification was observed.In the NYSCWM,picoplankton(including Synechococcus,picoeukaryotes and heterotrophic prokaryotes)distributed synchronically with extremely high abundance in the thermocline(20 m)in July and August(especially in August),whereas in the bottom zone of the NYSCWM(below 30 m),picoplankton abundance was quite low.Synechococcus,picoeukaryotes and heterotrophic prokaryotes showed similar response to the NYSCWM,indicating they had similar regulating mechanism under the influence of NYSCWM.Whereas in the non-NYSCWM,Synechococcus,picoeukaryotes and heterotrophic prokaryotes exhibited different distribution patterns,suggesting they had different controlling mechanisms.Statistical analysis indicated that temperature,nutrients(NO3–and PO43–)and ciliate were important factors in regulating picoplankton distribution.The results in this study suggested that the physical event NYSCWM,had strong influence on picoplankton distribution around the Zhangzi Island in the northern Yellow Sea.  相似文献   

4.
养殖活动对超微型浮游生物分布影响的研究   总被引:2,自引:1,他引:1  
孙辉  汪岷  汪俭  宋雪  邵红兵  甄毓 《海洋与湖沼》2014,45(6):1272-1279
利用流式细胞仪对河北省扇贝养殖区微微型浮游植物、异养细菌、浮游病毒4季的丰度分布特征进行了研究,分析了三者与环境因子的相关性,并与渤海、北黄海非养殖区的超微型浮游生物丰度的分布特征进行对比。结果显示:在养殖区海域,聚球藻丰度在9.00×102—7.07×105cell/m L之间,峰值出现在秋季,且与其他季节差异显著(P0.01)。微微型真核藻类丰度在5.80×102—3.23×105cell/m L之间,夏季赤潮暴发期间,丰度达到3.23×105cell/m L,显著高于其他季节(P0.01)。异养细菌丰度在3.10×105—3.79×106cell/m L之间,峰值出现在秋季,夏、秋季丰度显著高于春、冬季(P0.01)。浮游病毒丰度在2.50×105—2.17×106cell/m L之间,峰值出现在秋季,但无显著性季节差异(P0.05)。通过主成分分析发现,聚球藻、微微型真核藻类、异养细菌和浮游病毒的丰度在不同季节受到不同环境因子的影响。在春、冬季,温度是主要影响因素;而在夏、秋季,主要受到营养盐的影响。养殖区与非养殖区超微型浮游生物主成分4季均有显著差异,养殖区异养细菌4季均是超微型浮游生物的主成分,而非养殖区超微型浮游生物的主成分4季均是微微型浮游植物,结果表明养殖活动显著影响了养殖区超微型浮游生物的群落结构和功能。  相似文献   

5.
微微型浮游植物是水环境生态碳汇的重要基石之一,也是初级生产的重要执行者。选取了一个典型的陆海交界关键带环境——海南东寨港入海口水域,采集了东寨港红树林保护区开阔水域、入港河流和新埠海海端的微微型浮游植物的样品,通过流式细胞仪分析技术对样品进行分析,以探究它们在东寨港水域中的丰度、分布及环境指示意义。结果表明,冬季水域微微型浮游植物以真核浮游植物(Eukaryote,Euk)和聚球藻(Synechococcus,Syn)两大类群为主,其中聚球藻有两个亚群,分别为富含藻蓝蛋白聚球藻(Phycocyanin-rich,PC)和富含藻红蛋白聚球藻(Phycoerythrin-rich,PE)。Syn-PC、Syn-PE和Euk在东寨港水域表层水体的平均丰度分别为(2.61×104±1.09×104)、(3.06×104±7.05×103)、(1.56×105±8.03×104) cells/m L,底层水体的平均丰度分别为(2.64×104±...  相似文献   

6.
本文以2022年南黄海(119 °E~122.5 °E, 34.5°N~37°N)表层海水浮游生物为对象, 利用高通量测序技术分析绿潮期间浮游生物群落结构特征,同时对环境要素进行调查,综合分析环境与浮游生物分布之间的潜在关联, 为掌握南黄海绿潮的生态效应提供依据。结果表明, 2022年7月上旬调查期间南黄海绿潮浒苔生物量湿重估计值为7.24×104吨, 分布特征为以山东近岸以及海州湾附近为主要堆积处, 浒苔生物量、浮游植物以及浮游动物与溶解性无机磷酸盐均有着显著的正相关性。浒苔覆盖区域中, 浮游植物和浮游动物都有着较高的丰富度, 甲藻和桡足类为主要优势种, 属水平下包括: 新角藻、未分类到属的共甲藻、薮枝螅水母、尖头溞等。与无浒苔覆盖的区域相比, 该区域优势种相对单一, 导致次生灾害发生的可能性大。浮游细菌群落调查中发现脱硫单胞菌纲和优势种γ-变形菌纲都与浒苔生物量有着紧密的联系, 其中脱硫单胞菌与浒苔生物量呈显著性正相关, γ-变形菌纲与浒苔生物量呈显著性负相关。相关性分析表明, 浮游细菌多样性与环境中总溶解性氮、磷以及溶解性有机氮呈显著性相关, 结合浒苔与环境因子相关性分析, 浒苔绿潮的发生可以为某些浮游细菌提供生长所需的营养物质。共线性网络分析表明, 在绿潮发生的浒苔覆盖区域, 浮游生物丰富度高且关系紧密复杂, 因此浒苔绿潮对浮游生物的群落结构以及丰富度有潜在的影响。  相似文献   

7.
2006年10月在长江口及邻近海域采用流式细胞技术测定了微微型浮游生物:聚球藻Synechococcus、微微型光合真核生物(picoeukaryotes)和异养浮游细菌(heterotrophic bacteria)的丰度和碳生物量,研究了其生态分布特点,并分析了其与环境因子之间的关系.结果表明,聚球藻、微微型光合真...  相似文献   

8.
王艳  汪岷  杨琳  卢龙飞  王健  孙辉 《海洋与湖沼》2013,44(1):198-204
利用流式细胞仪对南黄海秋季浮游病毒丰度在水平分布和垂直分布上的特征进行了研究,并分析了浮游病毒丰度与异养细菌、微微型浮游植物等宿主丰度以及环境因子的相关性.结果表明,该海区秋季浮游病毒丰度在(2.22×106)-(1.60× 107)ind/ml之间,平均值8.32×106ind/ml.病毒丰度在调查海域的东北和中南部海域出现高值区,在西南部出现低值区,且浮游病毒丰度与异养细菌丰度的平面分布趋势较一致.在表层、中层和底层水体,浮游病毒丰度平均值分别为8.63×106、7.83×106、8.49×106ind/ml,表层和底层丰度无显著差异,但均高于中层(P<0.05).相关性分析表明,浮游病毒丰度与异养细菌丰度、VBR呈显著正相关(P<0.01),与微微型真核浮游植物丰度呈显著负相关(P<0.05),与聚球藻、水深、水温、盐度、溶氧、叶绿素a浓度无明显相关性(P>0.05).  相似文献   

9.
菌藻相互作用是海洋生态学领域研究的重要方向之一.海洋微微型蓝藻(Marine picocyanobacteria)是遍布全球海洋的重要初级生产者,在全球碳循环和微食物网中发挥重要作用.原绿球藻属(Prochlorococcus)和聚球藻属(Synechococcus)是海洋微微型蓝藻最重要的两个类群.原位调查和培养实验...  相似文献   

10.
2015年4月28日和7月12日在养虾密集区九龙江南溪下游河段设置的12个站点进行了水样采集,利用荧光显微方法,对12个站点的微微型浮游植物,异养细菌以及该河段的COD进行了研究和比较.结果表明在九龙江南溪下游,4月微微型浮游植物丰度、异养细菌丰度以及该河段的COD含量显著高于7月;九龙江南溪下游微微型浮游植物丰度、异养细菌丰度与该河段的COD含量呈现显著正相关,微微型浮游植物丰度与异养细菌丰度呈现显著正相关.表明随着养虾污水排放的增加,水中COD含量增加,导致异养细菌丰度增加.  相似文献   

11.
2014年夏季南海北部超微型浮游植物分布及环境因子影响   总被引:2,自引:1,他引:2  
魏玉秋  孙军  丁昌玲 《海洋学报》2015,37(12):56-65
利用流式细胞仪BD Accuri C6对2014年夏季南海北部超微型浮游植物进行了现场的观测研究,发现了3类超微型光合自养浮游植物,聚球藻(Synechococcus,Syn)、原绿球藻(Prochlorococcus,Pro)和超微型真核藻类(pico-eukaryotes,Euk),并对其丰度与分布以及环境因子影响进行了研究。结果表明,Syn、Pro和Euk丰度总平均值分别为5.13×103个/mL,3.27×104个/mL和1.85×103个/mL,碳生物量均值分别为1.19μg/L,1.86μg/L和4.51μg/L。Syn、Pro和Euk的丰度表现出不同的分布特征。Syn、Pro和Euk丰度分布趋势呈现近海低而外海高,Syn和Euk丰度高值区分别出现在沿岸带与陆架和上升流影响海域,Pro丰度高值区出现在沿岸带与陆架,低值区出现在上升流影响海域。Syn、Euk丰度高值区主要分布在次表层,Pro丰度高值区主要分布在真光层底部,Euk丰度垂直变化差异相对Syn和Pro较小。超微型浮游植物与环境因子的相关性分析结果表明,Syn、Pro和Euk的碳生物量均与硝酸盐、硅酸盐浓度和深度呈现负相关关系,Pro的碳生物量与磷酸盐浓度呈现正相关关系。  相似文献   

12.
2006年6月12日至22日“东方红2号”考察船夏季航次期间,在长江口3个连续观测站位进行了水样采集,应用流式细胞仪分析了水样中的极微型浮游生物(Femtoplankton)和微微型浮游生物(Picoplankton)。结果显示,原绿球藻(Prochlorococcus)在所有样品中均未检测到;检测到的聚球藻(Synechococcus)和微微型真核浮游植物(Picoeukaryotes)平均丰度达数量级10^5~10^6个/L,异养细菌(Heterotrophic bacteria)和病毒(Viruses)平均丰度达数量级10^8~10^9个/L。在浑浊的长江口水域,极微型和微微型浮游生物的垂向分布特征不同,主要与各站位特有的水动力条件密切相关:浊度是调控微微型真核浮游植物、异养细菌和病毒周日变化的关键因子之一;微微型真核浮游植物成为微微型浮游植物中最重要的组成部分,与异养细菌具有显著的正相关关系。  相似文献   

13.
During spring and autumn of 2006,the investigations on abundance,carbon biomass and distribution of picoplankton were carried out in the southern Huanghai Sea(Yellow Sea,sHS) . Three groups of picoplankton-Synechococcus(Syn) ,Picoeukaryotes(PEuk) and heterotrophic bacteria(BAC) were identified,but Prochlorococcus(Pro) was undetected. The average abundance of Syn and PEuk was lower in spring(5.0 and 1.3 × 10 3 cells/cm 3,respectively) than in autumn(92.4 and 2.7 × 10 3 cells/cm 3,respectively) ,but it was opposite for BAC(1.3 and 0.7 × 10 6 cells/cm 3 in spring and autumn,respectively) . And the total carbon biomass of picoplankton was higher in spring(37.23 ± 11.67) mg/m 3 than in autumn(21.29 ± 13.75) mg/m 3 . The ratios of the three cell abundance were 5:1:1 341 and 30:1:124 in spring and autumn,respectively. And the ratios of carbon biomass of them were 5:7:362 and 9:4:4 in spring and autumn,respectively. Seasonal distribution characteristics of Syn,PEuk,BAC were quite different from each other. In spring,Syn abundance decreased in turn in the central waters(where phytoplankton bloom in spring occurred) ,the southern waters and inshore waters of the Shandong Peninsula(where even Syn was undetected) ;the high values of PEuk abundance appeared in the central and southern waters and the inshore of the Shandong Peninsula;the abundance of BAC was nearly three order of magnitude higher than that of photosynthetic picoplankton,and high values appeared in the central waters. In autumn,Syn abundance in central waters was higher than that in surrounding waters,while for PEuk abundance,it decreased in turn in the inshore waters of the Shandong Peninsula,the southern waters and the central waters;BAC presented a complicated blocky type distribution. Sub-surface maximum of each group of picopalnkton appeared in both spring and autumn. Compared with the available literatures concerning the studied area,the range of Syn abundance was larger,and the abundance of BAC was higher. In addition,the conversion factors for calculating picoplanktonic carbon biomass were discussed,with the conversion factors which are different from previous studies in the same surveyed waters. The result of regression analysis showed that there was distinct positive correlation between BAC and photosynthetic picoplankton in spring(r=0.61,P 0.001) ,but no correlation was found in autumn.  相似文献   

14.
The seasonal size structure and spatial abundance distributions of Euphausia pacifica populations were investigated in the central part of southern Yellow Sea from August 2009 to May 2010.The abundance and biomass of E.pacifica were higher in spring and summer,and lower in autumn and winter.The mean abundance and biomass(calculated by carbon)were 74.94 ind./m~3 and 8.23 mg/m~3,respectively.Females with total length(TL)ranging between 10 and 19 mm in summer had a substantial contribution to the population biomass,whereas larvae of TL of 3–7 mm in spring were the main contributor to the population abundance.The sex ratio(female:male)showed a female bias in four seasons.Its value peaked in summer,and then decreased in autumn,spring,and winter successively.Cohort analysis revealed that the length-frequency distribution of E.pacifica could be characterized as one group with large animals(mean TL12 mm)accompanied by one or two subgroups of small individuals(mean TL7 mm).Regarding the spatial distribution,juveniles and adults of E.pacifica tend to concentrate in relatively deep water with low temperature(~11℃)and high salinity(32),whereas its larvae showed more abundance in inshore water with rich chlorophyll a,low salinity(32),and warm temperature(11℃),especially in summer and autumn.Associations changed seasonally between stage-specific abundance and environmental factors.  相似文献   

15.
2009年2月(冬季)和8月(夏季)在南海北部海域(nSCS)采用流式细胞术对聚球藻、原绿球藻、超微型光合真核生物3类超微型光合浮游生物和异养浮游细菌的丰度和碳生物量的时空分布特征进行了研究,并分析了其与环境因子之间的关系。结果表明,夏季聚球藻和原绿球藻的平均丰度高于冬季,超微型光合真核生物和异养浮游细菌的丰度反之,为冬季高于夏季。聚球藻、超微型光合真核生物和异养浮游细菌在富营养的近岸陆架海域丰度较高,而原绿球藻高丰度则出现在陆坡开阔海域。在垂直分布上,聚球藻主要分布在跃层以上,跃层以下丰度迅速降低;原绿球藻高丰度主要出现在真光层底部;超微型光合真核生物在水层中的高值同样出现在真光层底部,且与Pico级份叶绿素a浓度分布一致;异养浮游细菌在水体中的分布与聚球藻类似。这些分布格局的差异,取决于环境条件的变化和4类超微型浮游生物生态生理适应性的差异。在超微型光合浮游生物群落中,各类群碳生物量的贡献因季节和海域类型的不同而发生变化:聚球藻在夏季近岸陆架区占超微型光合浮游生物总碳生物量的41%,原绿球藻在陆坡开阔海成为主要贡献者(50%),超微型光合真核生物碳生物量以冬季为高(在近岸陆架区占比68%)。冬、夏季异养浮游细菌碳生物量均高于超微型光合浮游生物碳生物量。  相似文献   

16.
Concentrations of biogenic silica(BSi) in the southern Yellow Sea were determined during four cruises(spring:April–May 2014; autumn: November 2014; summer: August–September 2015; winter: January 2016). Samples of BSi were measured using the double extraction method. Seasonal and spatial variations of BSi and the potential correlation between chlorophyll a(Chl a) content and BSi in four seasons were measured in this study. Significant spatial variability was observed in seawater BSi concentrations. The average concentration of BSi was highest in winter and lowest in spring. Furthermore, the relationships between concentrations of BSi and hydrological parameters were also discussed. There was a significant positive correlation between Chl a and BSi. The concentrations of BSi showed significant relationships with temperature and the concentrations of silicates, total inorganic nitrogen and total inorganic phosphorus, indicating that distribution of BSi was affected by temperature and nutrient level.  相似文献   

17.
为研究南黄海小型底栖动物的空间分布格局及其环境影响因素,于2020年8月(夏季)和11月(秋季)对南黄海进行了两个航次的野外观测和采样,对小型底栖动物的类群组成、丰度、生物量、垂直分布、群落结构及其与环境因子的关系进行了研究。结果显示,共鉴定出小型底栖动物类群15个,其中自由生活海洋线虫为最优势类群,在两个航次中分别占小型底栖动物总丰度的75.6%和84.6%。其他较重要的类群还包括底栖桡足类、轮虫类和枝角类等。夏季和秋季小型底栖动物的平均丰度分别为(514.9±32.1)ind./(10 cm2) 和(350.8±30.7)ind./(10 cm2),平均生物量(干质量)分别为(651.7±98.0)μg/(10 cm2)和(589.2±37.1)μg/(10 cm2)。小型底栖动物在时空分布上存在差异。在季节分布上,小型底栖动物丰度和类群组成存在极显著差异。结合环境因子分析结果可知,沉积物中值粒径是引起差异的主要环境因子。在空间分布上,夏季小型底栖动物丰度和类群组成在不同水深间存在极显著差异,秋季小型底栖动物丰度和类群组成在不同水深间差异不显著。推测黄海冷水团是影响夏季小型底栖动物空间分布差异的主要因素。本研究中小型底栖动物的数量和类群多样性相较于国内其他对南黄海小型底栖动物的研究较低,其中沉积物叶绿素a含量及有机质含量是引起南黄海小型底栖动物丰度变化的重要因素。海洋线虫与桡足类的丰度比值(N/C比值)评估显示秋季该区域存在有机污染,这一结果与应用大型底栖动物对同一区域进行环境评价的结果不一致,对于应用N/C比值评价环境质量还需要进一步的研究。  相似文献   

18.
Temporal distributions of dimethylsulfide(DMS) and dimethylsulfoniopropionate(DMSP) were studied in the southern Yellow Sea(SYS) during April and September 2010. The mean concentrations(range) of DMS, dissolved and particulate DMSP(DMSPd and DMSPp) in the surface waters in spring are 1.69(0.48–4.92), 3.18(0.68–6.75)and 15.81(2.82–52.33) nmol/L, respectively, and those in autumn are 2.80(1.33–5.10), 5.45(2.19–11.30) and 30.63(6.24–137.87) nmol/L. On the whole, the distributions of DMS and DMSP in spring are completely different from those in autumn. In the central part of the SYS, the concentrations of DMS and DMSP in spring are obviously higher than those in autumn, but the opposite situation is found on the south of 34°N, which can be attributed to the differences in nutrients and phytoplankton biomass and composition between spring and autumn. Besides,the seasonal variations of water column stability and the Changjiang diluted water also have significant impact on the distributions of DMS and DMSP in spring and autumn on the south of 34°N. DMS and DMSPp concentrations coincide well with chlorophyll a(Chl a) levels in the spring cruise, suggesting that phytoplankton biomass may play an important role in controlling the distributions of DMS and DMSPp in the study area. Annual DMS emission rates range from 0.015 to 0.033 Tg/a(calculated by S), respectively, using the equations of Liss and Merlivat(1986) and Wanninkhof(1992). This result implies a significant relative contribution of the SYS to the global oceanic DMS fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号