首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: In the Hishikari low-sulfidation epithermal gold deposit, Japan, columnar adularia crystals commonly precipitated directly on to the fracture surface of wall rock, and then electrum precipitated on the columnar adularia with fine-grained adularia and quartz. To reveal the characteristics of mineralizing fluids and the elevation of paleo-water tables at the earliest stage of mineralization in the Honko-Sanjin zone of the Hishikari deposit, the fluid inclusions in the columnar adularia in gold-bearing quartz–adularia veins were studied.
Coexistence of vapor-rich and liquid-rich two–phase primary fluid inclusions indicates the deposition of columnar adularia from boiling fluids. The precipitation temperatures range from 175 to 215C, and generally increase with depth. The temperatures of final melting point of ice range from –1.2 to –0.1C with an average of –0.5C, corresponding to salinity ranging from 0.2 to 2.1 wt% NaCl equivalent with an average of 0.9 wt% NaCl (eq.). Concentrations of non-condensable gases such as CO2 were under the detection limit of a laser Raman microprobe spectrometer. From the precipitation temperature of columnar adularia in the Hosen–2 vein and the boiling point – depth curve for a 0.9 wt% NaCl (eq.) fluid, paleo-water table was estimated to be at an elevation of about +170 m. The elevation of the paleo-water tables for other veins was estimated to range from +140 to +215 m.  相似文献   

2.
The Chatree deposit is located in the Loei‐Phetchabun‐Nakhon Nayok volcanic belt that extends from Laos in the north through central and eastern Thailand into Cambodia. Gold‐bearing quartz veins at the Q prospect of the Chatree deposit are hosted within polymictic andesitic breccia and volcanic sedimentary breccia. The orebodies of the Chatree deposit consist of veins, veinlets and stockwork. Gold‐bearing quartz veins are composed mainly of quartz, calcite and illite with small amounts of adularia, chlorite and sulfide minerals. The gold‐bearing quartz veins were divided into five stages based on the cross‐cutting relationship and mineral assemblage. Intense gold mineralization occurred in Stages I and IV. The mineral assemblage of Stages I and IV is characterized by quartz–calcite–illite–laumontite–adularia–chlorite–sulfide minerals and electrum. Quartz textures of Stages I and IV are also characterized by microcrystalline and flamboyant textures, respectively. Coexistence of laumontite, illite and chlorite in the gold‐bearing quartz vein of Stage IV suggests that the gold‐bearing quartz veins were formed at approximately 200°C. The flamboyant and brecciated textures of the gold‐bearing quartz vein of Stage IV suggest that gold precipitated with silica minerals from a hydrothermal solution that was supersaturated by boiling. The δ18O values of quartz in Stages I to V range from +10.4 to +11.6‰ except for the δ18O value of quartz in Stage IV (+15.0‰). The increase in δ18O values of quartz at Stage IV is explained by boiling. PH2O is estimated to be 16 bars at 200°C. The fCO2 value is estimated to be 1 bar based on the presence of calcite in the mineral assemblage of Stage IV. The total pressure of the hydrothermal solution is approximately 20 bars at 200°C, suggesting that the gold‐bearing quartz veins of the Q prospect formed about 200 m below the paleosurface.  相似文献   

3.
Theoretical, experimental and observation data provide strong evidence that boiling is the dominant depositional mechanism in many low to intermediate sulfidation epithermal precious metals deposits. Textural and petrographic features that are evidence for boiling in the epithermal environment include the presence of coexisting liquid-rich and vapor-rich fluid inclusions, assemblages consisting of only vapor-rich fluid inclusions, colloform quartz, adularia and bladed calcite. We have examined 213 samples collected from surface outcrops, underground workings and drill cores from the central part of the La Luz vein system in the Guanajuato mining district, Mexico. In each sample, the various features that are evidence of boiling have been recorded. These observations have been quantified using a Boiling Confidence Factor that provides a means of scoring and rating each sample or area relative to the likelihood that boiling occurred.Homogenization temperatures of liquid-rich fluid inclusions within assemblages of coexisting liquid-rich and vapor-rich fluid inclusions have been measured to estimate the depth of trapping of the inclusions, and these data have been used to estimate the depth to the 300 °C isotherm along the La Luz vein system.Fluid inclusions and mineral textural features show strong evidence of boiling in the deepest levels sampled in the La Luz system. This observation suggests that the bottom of the boiling zone is at some depth beneath the deepest levels explored and opens the potential for additional resources at depth.  相似文献   

4.
Several precious metal-bearing, low sulfidation epithermal veins occur in the rolling topography of the Osilo area, northern Sardinia. The Sa Pala de Sa Fae and the Sa Pedra Bianca veins were subject to intense diamond drilling exploration in the mid 1990 s. The veins extend for 1–3 km, dip steeply, and range from 1 to 10 m in width. High K-calc-alkaline volcanic deposits containing plagioclase phenocrysts (along with lesser pyroxene, amphibole, magnetite, olivine and sanidine) form the main host rocks. Gold grades in drill intersections range from <0.1 to <20 ppm, with silver-gold ratios of around 4 to 7. Mineralogical studies show a systematic distribution of three hydrothermal mineral assemblages. At distances >50 m from the vein, the assemblage albite + Fe-chlorite + illite + pyrite (± montmorillonite ± calcite ± K-feldspar) prevails regionally, and its formation is attributed to minor metasomatism of the country rock involving the addition of water, carbon dioxide and hydrogen sulfide. At distances <10 m from the vein, the assemblage quartz + K-feldspar + pyrite ± illite dominates, forming an alteration envelope that cross cuts regional alteration. Quartz and K-feldspar increase in abundance towards the vein. Quartz is the main vein mineral, and it displays a range of morphologies and textures including crustiform colloform banding, quartz pseudomorphs of platy calcite, breccias and coarse euhedral crystals. Electrum and argentite which are the main gold and silver minerals deposited during the early stages of vein mineralization with rhomb-shaped crystals of K-feldspar (adularia). Pyrite, plus lesser marcasite, arsenopyrite, stibnite and sphalerite, are the other sulfide phases in veins. Kaolinite ± halloysite ± jarosite form a late assemblage overprinting earlier hydrothermal alteration. It is mostly restricted to shallow depths of a few meters, except near veins. Most of this assemblage likely formed from weathering and oxidation of sulfides. Microthermometric measurements were made on quartz-hosted, two-phase (liquid + vapor) inclusions, containing ∼75% liquid; mean homogenization temperatures (∼750 measurements) range from 220 to 250 °C, and ice-melting temperatures (∼550 measurements) range from 0.0 to −2.3 °C. The presence of co-existing vapor-rich and liquid rich inclusions, with quartz pseudomorphs of platy calcite, indicate that boiling conditions existed. Slight vapor-bubble expansion of a few fluid inclusions subjected to crushing experiments indicates inclusion fluids contained variable but low concentrations of dissolved gas. This study shows that gold-silver mineralization formed in subvertical channels from ascending solutions at 250 °C at around 300 to 450 m below the paleo-water table in a typical low-sulfidation epithermal environment. Hydrothermal solutions that produced vein mineralization and related alteration were dilute (<4.1 equivalent wt.% NaCl and <4 wt.% CO2), near neutral pH, reduced and, at times, boiling. Received: 19 May 1998 / Accepted: 8 March 1999  相似文献   

5.
邹平地区与火山岩浆热液作用有关的铜矿床主要可划分为2种类型:一类为斑岩-火山角砾岩型,另一类为浅成低温热液型;代表性矿床分别为王家庄斑岩一火山角砾岩型铜(钼)矿床和南洞子浅成低温热液型铜(金)矿床。流体包裹体研究表明:王家庄铜(钼)矿床成矿流体的均一化温度和盐度偏高,出现了富气相的两相水溶液包裹体、富液相的两相水溶液包裹体和含子晶的三相水溶液包裹体共存现象,加温后,富气相包裹体均一到气相,同期富液相包裹体均一到液相的特征,这表明成矿流体在形成和演化过程中曾发生过沸腾作用。南洞子铜(金)矿床成矿流体均一温度和盐度偏低,以上3种包裹体共存的现象不明显,说明成矿流体在形成和演化过程中沸腾作用不强。上述2类矿床矿化脉石英中的δ^18OH2O-δD投影点飘离岩浆水范围,参照流体包裹体研究结果,证明邹平地区与火山岩浆热8液作用有关的铜矿成矿流体主要来源于岩浆水,后期混人大气降水。相比之下,浅成低温热液铜矿成矿流体中的大气降水混入量多。  相似文献   

6.
Abstract. Mineral assemblage, precipitation sequence and textures of the gold‐bearing veins from the Hishikari epithermal vein‐type deposits, southern Kyushu, Japan, were examined. In addition, fluid inclusion microthermometry and carbon and oxygen isotopic compositions of calcite were determined. Calcite, and that replaced by quartz, were commonly observed throughout the precipitation sequence of the veins. Thus, calcite must be a more common gangue constituent initially than observed presently. Association of calcite and electrum is observed immediately subsequent to columnar adularia in some vein samples. In addition, close association of electrum with pseudo‐acicular quartz, and electrum with truscottite were observed. The initial coprecipitation of electrum and calcite might be a common phenomenon in the gold‐bearing veins at the Hishikari deposits. The Th (homogenization temperature) data from the Honko‐Sanjin deposits are generally higher than those from the Yamada deposit. Samples that show association of calcite and electrum yielded higher Th (206–217°C, average) than the Th data from calcite associated with low‐grade Au ore or barren (180–204°C, average). The measured Tm (temperature of last melting point of ice) range from ‐0.4 to 0.0°C. The result suggests that the salinity of the hydrothermal solution was low during the precipitation both of calcite associated with Au mineralization and of barren calcite. Fluid inclusion evidence suggestive of boiling of hydrothermal solution for the precipitation of calcite was not recognized in the present work. The δ13C and δ18O values of calcite range from ‐10.8 to —4.7 % and from +3.2 to +15.2 %, respectively. The δ13C value of H2CO3 and the δ18O value of H2O in the hydrothermal fluids calculated assuming isotopic equilibrium with calcite using the temperature obtained by fluid inclusion microthermometry, range from ‐14.4 to ‐9.1 %, and from ‐6.2 to +5.5 %, respectively. Thus, the calculated δ18O values of H2O for calcite further confirm the presence of the 18O‐enriched ore fluids during the mineralization at the Hishikari deposits. The hydrothermal solution isotopically equilibrated with the sedimentary basement rocks was responsible for the gold mineralization associated with calcite.  相似文献   

7.
The Asachinskoe epithermal Au‐Ag deposit is a representative low‐sulfidation type of deposit in Kamchatka, Russia. In the Asachinskoe deposit there are approximately 40 mineralized veins mainly hosted by dacite–andesite stock intrusions of Miocene–Pliocene age. The veins are emplaced in tensional cracks with a north orientation. Wall‐rock alteration at the bonanza level (170–200 m a.s.l.) consists of the mineral assemblage of quartz, pyrite, albite, illite and trace amounts of smectite. Mineralized veins are well banded with quartz, adularia and minor illite. Mineralization stages in the main zone are divided into stages I–IV. Stage I is relatively barren quartz–adularia association formed at 4.7 ± 0.2 Ma (K‐Ar age). Stage II consists of abundant illite, Cu‐bearing cryptomelane and other manganese oxides and hydroxides, electrum, argentite, quartz, adularia and minor rhodochrosite and calcite. Stage III, the main stage of gold mineralization (4.5–4.4 ± 0.1–3.1 ± 0.1 Ma, K‐Ar age), consists of a large amount of electrum, naumannite and Se‐bearing polybasite with quartz–adularia association. Stage IV is characterized by hydrothermal breccia, where electrum, tetrahedrite and secondary covellite occur with quartz, adularia and illite. The concentration of Au+Ag in ores has a positive correlation with the content of K2O + Al2O3, which is controlled by the presence of adularia and minor illite, and both Hg and Au also have positive correlations with the light rare‐earth elements. Fluid inclusion studies indicate a salinity of 1.0–2.6 wt% NaCl equivalent for the whole deposit, and ore‐forming temperatures are estimated as approximately 160–190°C in stage III of the present 218 m a.s.l. and 170–180°C in stage IV of 200 m a.s.l. The depth of ore formation is estimated to be 90–400 m from the paleo‐water table for stage IV of 200 m a.s.l., if a hydrostatic condition is assumed. An increase of salinity (>CNaCl≈ 0.2 wt%) and decrease of temperature (>T ≈ 30°C) within a 115‐m vertical interval for the ascending hydrothermal solution is calculated, which is interpreted as due to steam loss during fluid boiling. Ranges of selenium and sulfur fugacities are estimated to be logfSe2 = ?17 to ?14.5 and logfS2 = ?15 to ?12 for the ore‐forming solution that was responsible for Au‐Ag‐Se precipitation in stage III of 200 m a.s.l. Separation of Se from S‐Se complex in the solution and its partition into selenides could be due to a relatively oxidizing condition. The precipitation of Au‐Ag‐Se was caused by boiling in stage III, and the precipitation of Au‐Ag‐Cu was caused by sudden decompression and boiling in stage IV.  相似文献   

8.
The Makeng iron deposit is located in the Yong’an-Meizhou depression belt in Fujian Province, eastern China. Both skarn alteration and iron mineralization are mainly hosted within middle Carboniferous-lower Permian limestone. Five paragenetic stages of skarn formation and ore deposition have been recognized: Stage 1, early skarn (andradite–grossular assemblage); Stage 2, magnetite mineralization (diopside–magnetite assemblage); Stage 3, late skarn (amphibole–chlorite–epidote–johannsenite–hedenbergite–magnetite assemblage); Stage 4, sulfide mineralization (quartz–calcite–fluorite–chlorite–pyrite–galena–sphalerite assemblage); and Stage 5, carbonate (quartz–calcite assemblage). Fluid inclusion studies were carried out on inclusions in diopside from Stage 2 and in quartz, calcite, and fluorite from Stage 4.Halite-bearing (Type 1) and coexisting two-phase vapor-rich aqueous (Type 3) inclusions in the magnetite stage display homogenization temperatures of 448–564 °C and 501–594 °C, respectively. Salinities range from 26.5 to 48.4 and 2.4 to 6.9 wt% NaCl equivalent, respectively. Two-phase liquid-rich aqueous (Type 2b) inclusions in the sulfide stage yield homogenization temperatures and salinities of 182–343 °C and 1.9–20.1 wt% NaCl equivalent. These fluid inclusion data indicate that fluid boiling occurred during the magnetite stage and that fluid mixing took place during the sulfide stage. The former triggered the precipitation of magnetite, and the latter resulted in the deposition of Pb, Zn, and Fe sulfides. The fluids related to magnetite mineralization have δ18Ofluid-VSMOW of 6.7–9.6‰ and δD of −96 to −128‰, which are interpreted to indicate residual magmatic water from magma degassing. In contrast, the fluids related to the sulfide mineralization show δ18Ofluid-VSMOW of −0.85 to −1.04‰ and δD of −110 to −124‰, indicating that they were generated by the mixing of magmatic water with meteoric water. Magnetite grains from Stage 2 exhibit oscillatory zoning with compositional variations in major elements (e.g., SiO2, Al2O3, CaO, MgO, and MnO) from core to rim, which is interpreted as a self-organizing process rather than a dissolution-reprecipitation process. Magnetite from Stage 3 replaces or crosscuts early magnetite, suggesting that later hydrothermal fluid overprinted and caused dissolution and reprecipitation of Stage 2 magnetite. Trace element data (e.g., Ti, V, Ca, Al, and Mn) of magnetite from Stages 2 and 3 indicate a typical skarn origin.  相似文献   

9.
The Mallery Lake area contains pristine examples of ancient precious metal-bearing low-sulfidation epithermal deposits. The deposits are hosted by rhyolitic flows of the Early Proterozoic Pitz Formation, but are themselves apparently of Middle Proterozoic age. Gold mineralization occurs in stockwork quartz veins that cut the rhyolites, and highest gold grades (up to 24 g/t over 30 cm) occur in the Chalcedonic Stockwork Zone. Quartz veining occurs in two main types: barren A veins, characterized by fine- to coarse-grained comb quartz, with fluorite, calcite, and/or adularia; and mineralized B veins, characterized by banded chalcedonic silica and fine-grained quartz, locally intergrown with fine-grained gold or electrum. A third type of quartz vein (C), which crosscuts B veins at one locality, is characterized by microcrystalline quartz intergrown with fine-grained hematite and rare electrum. Fluid inclusions in the veins occur in two distinct assemblages. Assemblage 1 inclusions represent a moderate temperature (Th=150 to 220 °C), low salinity (~1 eq. wt% NaCl, with trace CO2), locally boiling fluid; this fluid type is found in both A and B veins and is thought to have been responsible for Au-Ag transport and deposition. Assemblage 2 inclusions represent a lower temperature (Th=90 to 150 °C), high salinity calcic brine (23 to 31 wt% CaCl2-NaCl), which occurs as primary inclusions only in the barren A veins. Assemblage 1 and 2 inclusions occur in alternating quartz growth bands in the A-type veins, where they appear to represent alternating fluxes of dilute fluid and local saline groundwater. No workable primary fluid inclusions were observed in the C veins. The A-vein quartz yields '18O values from 8.3 to 14.5‰ (average=10.9ǃ.7‰ [1C], n=30), whereas '18O values for B-vein quartz range from 11.2 to 14.0‰ (average=13.0ǂ.9‰, n=12). Calculated '18OH2O values for the dilute mineralizing fluid from B veins range from -2.6 to 0.2‰ (average=-0.8ǂ.9‰, n=12) and are consistent with a dominantly meteoric origin. No values could be calculated for the brine, however, because all A-vein quartz samples contain mixed fluid inclusion populations. However, the fact that A-vein quartz samples extend to lower '18O values than the B veins suggests that the brine had a lighter isotopic signature relative to the dilute fluid. Hydrogen isotopic ratios of fluid inclusion waters extracted from eleven quartz samples of both vein types range from 'DFI=-56 to -134‰, but show no particular correlation with vein type. In most respects, the mineralogical and fluid characteristics of the Mallery Lake system are comparable to those of Phanerozoic low-sulfidation deposits, and although the presence of high salinity brines is unusual in such deposits, it is not unknown (e.g., Creede, Colorado). In addition, one of the few other examples of well-preserved, Precambrian, low-sulfidation epithermal deposits, from the Central Pilbara tectonic zone, Australia, contains a similarly bimodal fluid assemblage. The significance of these saline brines is not clear, but from this study we infer that they were not directly involved with Au-Ag transport or deposition.  相似文献   

10.
A large number of Variscan mesothermal gold deposits are located in the central part of the Bohemian Massif, close to the Central Bohemian Plutonic Complex. The Petrá)kova hora deposit has many features that distinguish it from other deposits in the region and suggest its mineralization is closely related to the late magmatic processes associated with the Petrá)kova hora granodiorite. The gold ores occur as sheeted arrays of quartz veins and veinlets hosted by the small Petrá)kova hora granodiorite stock. Gold is found mainly as free grains of >900 fineness, and is accompanied by abundant pyrrhotite and chalcopyrite, and accessory pyrite, arsenopyrite, loellingite, and molybdenite. Molybdenite from the Petrá)kova hora deposit has been dated by the Re-Os method at 344.4DŽ.8 Ma. Hydrothermal alteration in the Petrá)kova hora deposit exhibits a distinct temporal paragenesis. Selectively pervasive, early K-alteration and silicification are the oldest hydrothermal phases. These were followed by early quartz veins (Q1 to Q4) that contain most of the gold mineralization. Late quartz veins (Q5) and fracture-controlled silicification are gold-poor or barren. Barren calcite veins are the youngest hydrothermal product. Extensive low-temperature, meteoric-water dominated alteration, as is typical of classic porphyry deposits, is absent. However, the lower '18O whole rock values for Petrá)kova hora granodiorite and aplite (+2.4 to +5.1‰ SMOW) compared to other intrusions in the region reflect either interaction with isotopically light external fluids or magma assimilation of small volumes of hydrothermally altered country rock. The '18O isotopic compositions for quartz, scheelite and hornblende (7.7 to 13.4‰ SMOW) and the '34S compositions for sulfide minerals (-1 to +3.5‰ CDT) from early, gold-rich quartz veins indicate formation at high temperatures (590 to 400 °C) from fluids with a magmatic isotopic signature ('18OFLUID of 5.7 to 7.2‰). Fluids related to late quartz veins (Q5) suggest the presence of a significant component of non-magmatic water ('18OFLUID: +2.5 to +4.0‰). The '34S values of post-Q5 sulfide minerals (-4.5 to -3.5‰) reflect at least partial derivation of late-stage sulfur from a source external to the intrusions. Aqueous, aqueous-carbonic and nitrogen-bearing fluid inclusions were identified in hydrothermal and igneous quartz, with the aqueous inclusions being the most common. In hydrothermal vein quartz, the salinity of primary aqueous inclusions falls into ranges 6 to 23 and 33 to 41 equiv. wt% NaCl; in igneous quartz, populations in salinity were observed between 5 to 16, 35 to 40 and 62 to 70 equiv. wt% NaCl. The salt component of these fluids is best, and minimally, approximated by the NaCl-KCl-CaCl2 system. Low- and high-salinity aqueous-carbonic inclusions are accessory in many of the analyzed samples. Three large successive pulses of fluids are recognized. Each pulse begins with a high-salinity (>30 equiv. wt% NaCl) magmatic fluid and evolves toward a lower salinity (~5 equiv. wt% NaCl) fluid. Data suggest that external (meteoric?) water(s) were significant for only the third fluid pulse, which formed the late Q5 quartz veins and the calcite veins. Polyphase fluid inclusions hosted by igneous quartz of the Petrá)kova hora granodiorite indicate minimum trapping conditions of about 3 kbar and 550 °C. The gold-rich Q1 to Q4 veins may have formed along a quasi-isobaric cooling path at 2.5 to 1.5 kbar and 590 to 400 °C. This was followed by uplift, and formation of late Q5 quartz veins (0.5 to 1.5 kbar; ~300 °C) and post-ore calcite veins (<0.5 kbar; 100 to 140 °C). The characteristics of the Petrá)kova hora deposit suggest that it may represent a position intermediate between intrusion-related gold systems (e.g., Fort Knox deposit, Alaska) and gold-rich, copper-poor porphyry deposits (e.g., Maricunga Belt in Chile). As such, the Petrá)kova hora deposit might be an example of the reduced gold sub-type of porphyry deposit.  相似文献   

11.
《Ore Geology Reviews》2010,37(4):265-281
Axi is a low-sulfidation type epithermal gold deposit hosted in Paleozoic subaerial volcanic rocks in the western Tianshan orogenic belt, Xinjiang, China. The resource is more than 50 t gold at an average grade of > 4.4 ppm. The deposit occurs in the Tulasu volcanic fault-basin in the Paleozoic active continental margin on the northern side of the Yili-Central Tianshan plate. The host rocks are andesitic volcaniclastic rocks of the Paleozoic Dahalajunshan Formation, and the orebodies occur as veins in annular faults of a paleocaldera. Mineralization at Axi can be subdivided into five stages: quartz and/or chalcedony vein, quartz vein, quartz-carbonate vein, sulfide vein and carbonate vein. There are two types of ore host: quartz vein and altered rocks. Ore minerals are native gold, electrum, pyrite, marcasite, arsenopyrite, hematite, limonite, and trace amounts of pyrargyrite, polybasite, naumannite, cerargyrite, sphalerite, chalcopyrite, tetrahedrite, galena, pyrrhotite and clausthalite; gangue minerals are mainly quartz, chalcedony, illite, calcite, siderite, dolomite, adularia and laumontite. The main wall-rock alteration is silicification and phyllic alteration, carbonatization and propylitization. The deposit is characterized by an enrichment, relative to crustal abundance, of Au, Ag, As, Sb, Bi, Hg, Se, Te and Mo, depletion in base metals (Cu, Pb, and Zn), and a low Ag/Au ratio (0.5–3.7).Three types of fluid inclusions were recognized in quartz from the major mineralization stages: liquid aqueous inclusions, liquid-rich two-phase inclusions and small amounts of vapor-rich two-phase inclusions. Microthermometric measurements indicate that the final ice melting temperatures are − 0.3 to − 4.4 °C, corresponding to salinities of 0.5–6.9 wt.% NaCl equiv. (2.2 wt.% NaCl equiv. in average). The peak temperatures of ice melting varies from − 0.4 to − 1.9 °C, corresponding to salinities of 0.7–3.1 wt.% NaCl equiv. Homogenization temperatures range mainly between 120 and 240 °C, with an average of 190 °C and a maximum of 335 °C. The fluid density is 0.73 to 0.95 g/cm3 and thus the estimated maximum mineralization depth is about 700 m.Hydrogen and oxygen isotopic compositions of the ore fluids lie within a narrow range: δDH2O is − 98 to − 116‰ and δ18OH2O 1.8 to 0.4‰. 3He/4He ranges from 0.0218 to 0.138 Ra, with an average of 0.044 Ra, indicating that He derived predominantly from crust with negligible mantle He in the ore fluids. By contrast, the 40Ar/36Ar ranges from 317.7 to 866.0, suggesting that crust-derived radioactive 40Ar⁎ accounts for 7.0 to 66%, and atmospheric 40Ar about 43 to 93% in the ore fluids. Hydrogen, oxygen, carbon, sulfur and noble gas isotopes indicate that the ore-forming fluids of the Axi gold deposit consisted predominantly of circulating meteoric water. Ore-forming metals may have derived mainly from the host volcaniclastic rocks of the Dahalajunshan Formation and basement rocks. The occurrence of adularia, platy calcite, and quartz or sulfide aggregates as pseudomorphs after bladed calcite in ore veins, and occurrence of aqueous liquid, and liquid-rich and vapor-rich two-phase inclusions, indicates that boiling of the ore-forming fluid have occurred, leading to supersaturation of the hydrothermal solution and deposition of ore metals. This is the main mineralization mechanism for quartz-vein type ores in Axi. The ore-forming fluid was buffered to a near-neutral pH in a reduced environment during mineralization. The preservation of this Paleozoic Axi deposit and its discovery required a rapid accumulation of sediments in the basin after formation of the deposit, and minimal amount of erosion after Late Cenozoic uplift.  相似文献   

12.
The Iwami epithermal silver deposit consists of Ag-Cu veins in a dacitic intrusive body at the deep portion of the Eikyu area, and veinlets with disseminated Ag mineralization in dacitic tuff breccia at a shallow portion of the Fukuishi area. Hydrothermal alteration associated with the silver mineralization is characterized by intense potassium metasomatism with oxidizing conditions. An illite zone occurs around the pathways of uprising fluids in both the Eikyu and Fukuishi areas. It grades laterally into the illite/smectite zone, which is surrounded by a broad smectite zone. Because of boiling, abundant adularia associated with silver mineralization overlaps on the altered tuff breccia in the Fukuishi area. The alteration zoning suggests that the western Eikyu area and the eastern Fukuishi area belong to a single hydrothermal system. The data of fluid inclusion microthermometry indicate that the temperatures range 220–270°C, and salinities range 5–7 wt percent NaCl equivalent for the silver mineralization at the upper portion in the Eikyu area and the lower portion in the Fukuishi area. Radiometric ages for volcanic rocks in the area range from 2.19 to 1.64 Ma, and the dacitic intrusion formed at approximately 1.6 Ma. The silver-dominant mineralizing hydrothermal fluids system was active around 1.44 to 1.07 Ma, which formed the Eikyu Ag-Cu veins at depth, and the Fukuishi Ag ores at the shallower portion.  相似文献   

13.
The epithermal Shila-Paula Au–Ag district is characterized by numerous veins hosted in Tertiary volcanic rocks of the Western Cordillera (southern Peru). Field studies of the ore bodies reveal a systematic association of a main E–W vein with secondary N55–60°W veins—two directions that are also reflected by the orientation of fluid-inclusion planes in quartz crystals of the host rock. In areas where this pattern is not recognized, such as the Apacheta sector, vein emplacement seems to have been guided by regional N40°E and N40°W fractures. Two main vein-filling stages are identified. stage 1 is a quartz–adularia–pyrite–galena–sphalerite–chalcopyrite–electrum–Mn silicate–carbonate assemblage that fills the main E–W veins. stage 2, which contains most of the precious-metal mineralization, is divided into pre-bonanza and bonanza substages. The pre-bonanza substage consists of a quartz–adularia–carbonate assemblage that is observed within the secondary N45–60°W veins, in veinlets that cut the stage 1 assemblage, and in final open-space fillings. The two latter structures are finally filled by the bonanza substage characterized by a Fe-poor sphalerite–chalcopyrite–pyrite–galena–tennantite–tetrahedrite–polybasite–pearceite–electrum assemblage. The ore in the main veins is systematically brecciated, whereas the ore in the secondary veins and geodes is characteristic of open-space crystallization. Microthermometric measurements on sphalerite from both stages and on quartz and calcite from stage 2 indicate a salinity range of 0 to 15.5 wt% NaCl equivalent and homogenization temperatures bracketed between 200 and 330°C. Secondary CO2-, N2- and H2S-bearing fluid inclusions are also identified. The age of vein emplacement, based on 40Ar/39Ar ages obtained on adularia of different veins, is estimated at around 11 Ma, with some overlap between adularia of stage 1 (11.4±0.4 Ma) and of stage 2 (10.8±0.3 Ma). A three-phase tectonic model has been constructed to explain the vein formation. Phase 1 corresponds to the assumed development of E–W sinistral shear zones and associated N60°W cleavages under the effects of a NE–SW shortening direction that is recognized at Andean scale. These structures contain the stage 1 ore assemblage that was brecciated during ongoing deformation. Phase 2 is a reactivation of earlier structures under a NW–SE shortening direction that allowed the reopening of the preexisting schistosity and the formation of scarce N50°E-striking S2-cleavage planes filled by the stage 2 pre-bonanza minerals. Phase 3 coincides with the bonanza ore emplacement in the secondary N45–60°W veins and also in open-space in the core of the main E–W veins. Our combined tectonic, textural, mineralogical, fluid-inclusion, and geochronological study presents a complete model of vein formation in which the reactivation of previously formed tectonic structures plays a significant role in ore formation.  相似文献   

14.
The Sar-Cheshmeh porphyry Cu–Mo deposit is located in Southwestern Iran (∼65 km southwest of Kerman City) and is associated with a composite Miocene stock, ranging in composition from diorite through granodiorite to quartz-monzonite. Field observations and petrographic studies demonstrate that the emplacement of the Sar-Cheshmeh stock took place in several pulses, each with associated hydrothermal activity. Molybdenum was concentrated at a very early stage in the evolution of the hydrothermal system and copper was concentrated later. Four main vein Groups have been identified: (I) quartz+molybdenite+anhydrite±K-feldspar with minor pyrite, chalcopyrite and bornite; (II) quartz+chalcopyrite+pyrite±molybdenite±calcite; (III) quartz+pyrite+calcite±chalcopyrite±anhydrite (gypsum)±molybdenite; (IV) quartz±calcite±gypsum±pyrite±dolomite. Early hydrothermal alteration produced a potassic assemblage (orthoclase-biotite) in the central part of the stock, propylitic alteration occurred in the peripheral parts of the stock, contemporaneously with potassic alteration, and phyllic alteration occurred later, overprinting earlier alteration. The early hydrothermal fluids are represented by high temperature (350–520 °C), high salinity (up to 61 wt% NaCl equivalent) liquid-rich fluid inclusions, and high temperature (340–570 °C), low-salinity, vapor-rich inclusions. These fluids are interpreted to represent an orthomagmatic fluid, which cooled episodically; the brines are interpreted to have caused potassic alteration and deposition of Group I and II quartz veins containing molybdenite and chalcopyrite. Propylitic alteration is attributed to a liquid-rich, lower temperature (220–310 °C), Ca-rich, evolved meteoric fluid. Influx of meteoric water into the central part of the system and mixing with magmatic fluid produced albitization at depth and shallow phyllic alteration. This influx also caused the dissolution of early-formed copper sulphides and the remobilization of Cu into the sericitic zone, the main zone of the copper deposition in Sar-Cheshmeh, where it was redeposited in response to a decrease in temperature.  相似文献   

15.
Coexisting, liquid-rich and vapor-rich primary fluid inclusions in quartz provide direct evidence for fluid phase separation in high-grade quartz–roscoelite–gold veins and breccias from the Porgera alkalic-type gold deposit. Vapor-rich fluid inclusions are CO2-rich, and sometimes contain liquid CO2 at room temperature. The close spatial and paragenetic relationship between these “boiling assemblage” fluid inclusions and gold suggests that gold was precipitated by phase separation, at least locally. Additionally, the occurrence of carbonate and sulfate minerals in high-grade veins (reflecting pH increase and oxidation of the boiled fluid) and the appearance of hydrothermal breccias, are consistent with the process of fluid phase separation. Liquid CO2-bearing fluid inclusions are rare in near-surface epithermal deposits, and indicate that the Porgera vein system was formed at greater depths and pressures (our estimates suggest pressures between 250 and 340 bars). It is suggested that alkalic-type gold deposits may be distinguished from other epithermal deposit types by the more gaseous nature of the ore-forming fluids, in addition to their association with alkalic magmas. Received: 24 February 2000 / Accepted: 6 April 2000  相似文献   

16.
Gold‐mineralized quartz veins at the Trenggalek district of the Southern Mountains Range in East Java, Indonesia, are hosted by Oligo‐Miocene volcaniclastic and volcanic rocks, and are distributed close to andesitic plugs in the northern prospects (Dalangturu, Suruh, Jati, Gregah, Jombok, Salak, and Kojan) and the southern prospects (Sentul and Buluroto). The plugs are subalkaline tholeiitic basaltic‐andesite to calc‐alkaline andesite in composition. 40Ar–39Ar dating of a quartz‐adularia vein at the Dalangturu prospect yielded an age of 16.29 ± 0.56 Ma (2σ), and a crystal tuff of a limestone‐pyroclastic rock sequence at the southwest of the Dalangturu prospect was determined as 15.6 ± 0.5 Ma (2σ). Statistic overlap of ages suggests that the gold mineralization in the northern prospects took place in a shallow marine to subaerial transitional environment. Hydrothermal alteration of the host rocks is characterized by the replacement of quartz, illite and adularia. Quartz veins in surface outcrops are up to 50 cm wide in the northern prospects and up to 3 m wide in the southern prospects, showing a banded or brecciated texture, and are composed of quartz, adularia, carbonates with pyrite, electrum, sphalerite, galena, and polybasite. Gold contents of quartz veins are positively correlated with Ag, Zn, Pb, and Cu contents in both the northern and southern prospects. The quartz veins at the Jati, Gregah, and Sentul prospects have relatively lower gold‐silver ratios (Ag/Au = 23.2) compared to those at the Kojan, Dalangturu, Salak, and Suruh prospects (Ag/Au = 66.8). The quartz veins at the Dalangturu prospect are relatively rich in base metal sulfides. Ag/(Au+Ag) ratios of electrum in the Dalangturu prospect range from 45.2 to 65.0 at%, and FeS contents of sphalerite range from 1.2 to 6.4 mol%. Fluid inclusion microthermometry indicates ore‐forming temperatures of 190–200°C and 220–230°C at the Sentul and Kojan prospects, respectively. Widely variable vapor/liquid ratio of fluid inclusions indicates that fluid boiling took place within the hydrothermal system at the Sentul prospect. Salinities of ore‐fluids range from 0 to 0.7 wt% (av. 0.4 wt% NaCl equiv.) and from 0.5 to 1.4 wt% (av. 0.9 wt%) for the Sentul and Kojan prospects, respectively. The boiling of hydrothermal fluid was one of the gold deposition mechanisms in the Sentul prospect.  相似文献   

17.
The Dublin Gulch intrusion is a member of the Tombstone plutonic suite, a linear belt of middle Cretaceous intrusions that extend across the Yukon Territory. Like many of the intrusions in this suite, the Dublin Gulch intrusion is associated with several different zones of gold and tungsten mineralization, within and immediately adjacent to the intrusion. The Eagle zone (50.3 Mt @ 0.93 g/t gold), located in the southwestern part of the Dublin Gulch intrusion, hosts the most significant concentration of gold in the area. The gold occurs in a broadly east-west-striking, steeply south-dipping series of sheeted veins. The veins consist of early quartz-scheelite-pyrrhotite-pyrite-arsenopyrite, and are associated with K-feldspar-albite alteration envelopes. These grade out to and are overprinted by sericite-carbonate-chlorite alteration. The same assemblage also occurs in veinlets that refracture sheeted quartz veins and contain the majority of the gold. The gold occurs with molybdenite, lead-bismuth-antimony sulfosalts, galena, and bismuthinite. Gold correlates strongly with bismuth (r2=0.9), a relationship common to several intrusion-related gold deposits, but has a poor correlation with all other elements. Tungsten and molybdenum have a weak inter-element correlation (r2=0.55) and paragenetically pre-date the majority of gold precipitation. Lead, zinc, copper, silver, antimony, and arsenic have moderate to strong inter-element correlations (0.58 to 0.93). The change from tungsten-bearing mineralization through to gold-bismuth-rich ores with elevated syn- to post-ore lead, zinc, copper, silver, antimony, and arsenic can be grossly correlated with a change in hydrothermal fluid composition. Early scheelite-bearing quartz contains primary CO2-rich fluid inclusions, which are post-dated by secondary inclusions with higher salinities (up to 15 wt% NaCl equiv.) and less CO2. These latter inclusions are interpreted to coincide with the later gold-bismuth and base metal mineralization. The favored genetic model is one in which early CO2-rich fluids exsolved from a magma with an initially high CO2 content, but progressively became more saline and H2O-rich as the system evolved.  相似文献   

18.
The geology of the Republic of Djibouti, in the SE Afar Triangle, is characterized by intense tectonic and bimodal volcanic activity that began as early as 25–30 Ma. Each magmatic event was accompanied by hydrothermal activity. Mineralization generally occurs as gold–silver bearing chalcedony veins and is associated with felsic volcanism. Eighty samples from mineralized hydrothermal chalcedony, quartz ± carbonate veins and breccias were studied from ten sites representing four major volcanic events that range in age from early Miocene to the present. The most recent veins are controlled by fractures at the edges of grabens established during the last 4 Myr. Gold in excess of 200 ppb is present in 30% of the samples, with values up to 16 ppm. Mineralogical compositions allowed us to identify different types of mineralization corresponding to different depths in the hydrothermal system: (1) surface and subsurface mineralization characterized by carbonate chimneys, gypsum, silica cap and quartz ± carbonate veins that are depleted in metals and Au; (2) shallow banded chalcedony ± adularia veins related to boiling that contain up to 16 ppm Au, occurring as native gold and electrum with pyrite, and tetradymite; (3) quartz veins with sulfides, and (4) epidote alteration in the deepest hydrothermal zones. Samples in which pyrite is enriched in As tend to have a high Au content. The association with bimodal volcanism, the occurrence of adularia and the native Au and electrum in banded chalcedony veins are typical of epithermal systems and confirm that this type of mineralization can occur in a young intracontinental rift system.  相似文献   

19.
小于赞金矿床是产于新疆西天山也列莫顿盆地的浅成低温热液型金矿床,赋存于晚古生代大哈拉军山组火山岩中。矿石类型主要为蚀变岩型和石英脉型,主要发育硅化、黄铁绢英岩化、伊利石化、青磐岩化蚀变。流体成矿过程可分为3个阶段,分别为石英黄铁矿、石英玉髓黄铁矿和石英方解石黄铁矿阶段。小于赞金矿床流体包裹体类型单一,主要为水溶液包裹体,可分为纯液相水溶液包裹体(PL类)、富液相水溶液包裹体(L类)和富气相水溶液包裹体(V类)。石英黄铁矿阶段包裹体均一温度集中于130~190 ℃,盐度w(NaCleqv.)为0.2%~8.0%;石英玉髓黄铁矿阶段均一温度介于115~161 ℃,盐度w(NaCleqv.)为0.7%~3.4%;石英方解石黄铁矿阶段均一温度介于110~138 ℃,盐度w(NaCleqv.)为0.2%~3.4%。鉴于赋矿角砾凝灰岩的锆石U-Pb年龄为(353.8±1.8) Ma,且被下石炭统阿恰勒河组不整合覆盖,故可将小于赞金矿床的成矿时代限定在(353.8±1.8) Ma至早石炭世维宪期。锆石εHf(t)变化范围为+4.1~+8.4,平均值+6.1,两阶段Hf模式年龄tDM2变化范围为822~1 095 Ma,指示该区岩浆演化过程中有少量地幔物质的加入。综合考量矿床地质特征、流体包裹体特征和成矿时代,认为小于赞矿床为早石炭世低硫型浅成低温热液型金矿。  相似文献   

20.
湖南东坡柴山-蛇形坪一带铅锌矿床流体包裹体研究   总被引:2,自引:1,他引:1  
东坡柴山-蛇形坪一带铅锌矿床位于千里山岩体西南侧的远接触带上,由脉状、柱状和席状的铅锌矿体组成,在矿体周围明显发生碳酸盐化和硅化作用。该带矿床中闪锌矿、萤石、石英和方解石内流体包裹体类型主要包括富液相包裹体、富气相包裹体和含子矿物包裹体;其流体包裹体的均一温度范围为140~395℃,在350℃、240~260℃和200~220℃处分别出现峰值,反映该期热液流体在形成脉状、柱状铅锌矿体过程中可能包含了不同的捕获事件,其中方解石内出现的气体包裹体同与其共生的液体包裹体的均一温度相近,两者均一温度范围主要集中在268~395℃,峰值为350℃,液相包裹体w(NaCleq)范围为9%~11%,表明流体发生过气液相分离的沸腾作用;闪锌矿、萤石、石英和方解石中流体包裹体w(NaCleq)范围为0~23%,峰值9%~10%。流体包裹体的均一温度和盐度特征与岩浆热液流体演化到裂隙阶段静水压力条件下的流体相近。闪锌矿中流体包裹体内存在方解石和白云石子矿物,表明铅锌矿的成矿作用发生在富集碳酸盐的热液流体中。千里山花岗岩体晚期释放的流体沿着不同的通道上升,当它冷却到低于400℃,这些地区产生了脆性裂隙,流体沿着裂隙继续上升,并且发生沸腾作用,因此,温度在340~400℃时,w(NaCleq)为7%左右的流体分成了w(NaCleq)约10%的液相流体和w(NaCleq)约0.02%的气相流体,由于温度和压力的迅速降低,成矿物质沿着裂隙和空洞沉淀成矿,形成了东坡矿区的脉状、柱状和席状的铅锌矿体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号