首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Up to 92 per cent of the original minerals were fused duringprogressive metamorphism of Torridonian sediment by a picritesill. The liquid precipitated microlites of tridymite, cor-dierite,hypersthene, and magnetite until that remaining quenched toa glass. Stages of fusion were determined by petrographic methods.After decomposition of sericite and reduction of haematite,liquid developed by fusion of feldspar and quartz. The compositionof liquid in a fused xenolith at various stages was calculatedfrom chemical and modal analyses. The chemical analysis indicatesthat fusion occurred in the presence of excess water-vapour.The melting and crystallization processes compare closely withthe behaviour of similar compositions in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O.Liquidus temperatures corresponding to the calculated liquidsprovide temperature estimates. An upper pressure limit is givenby the quartz-tridymite PT curve. It is estimated that the liquidcrystallized between 1,025?C and 935?C at a water-vapour pressureof 430 kg/cm2. Reaction between picrite and fused sediment indicatesthat maximum fusion occurred when crystallization of the picritewas almost completed. The estimated picrite intrusion temperatureis at least 1,175?C.  相似文献   

2.
The System CaO-CO2-H2O and the Origin of Carbonatites   总被引:2,自引:0,他引:2  
The ternary isobaric (TX) prism for the system CaO–CO2–H2Owas determined at 1,000 bars pressure between 600? C and 1,320?C. At this pressure, calcite melts incongruently at 1,310? C,portlandite (Ca(OH)2) melts congruently at 835? C, a binaryeutectic exists between calcite and portlandite at 685? C, meltingbegins at 740? C on the join calcite-water and the univariant(isobaric invariant) equilibria lime?calcite?portlandite?liquidand calcite?portlandite?liquid?vapour occur at 683? C and 675?C, respectively. The latter is the minimum liquidus temperaturein the TX prism, and the composition of this liquid is 65CaO,19CO2, 16H2O (in weight per cent). PT curves were determinedfor several univariant equilibria. In the binary system CaO-H2O,four univariant curves meet at an invariant point, at 810? Cand 100 bars pressure. Portlandite dissociates only at pressuresbelow this point. The minimum liquidus temperature in the ternarysystem varies between 685? C and 640? C in the pressure interval27 bars to 4, 000 bars. Liquids in the system are regarded as simplified carbonatitemagmas in which CaO represents the basic oxides, and CO2 andH2O the volatile constituents. The liquids have low viscosityas indicated by the rapid attainment of equilibrium and theobservation that crystal settling takes place in 15-min runs.The existence of such liquids at moderate temperatures througha wide pressure range leaves little reason to doubt a magmaticorigin for those carbonatites which appear to be intrusive.Differentiation could occur in multicomponent magmas by separationof the successive liquid fractions produced by crystallizationof calcite, dolomite, and siderite. The determined phase relationsdo not favour an origin by gas transfer. The results also suggestthat partial melting of limestones is likely at igneous contacts,and that impure limestones may be partially melted during high-graderegional metamorphism.  相似文献   

3.
The system MgO-CO2-H2O has been studied up to 1,400? C and 4,000bars pressure using the sealed-capsule quenching technique.No melting was observed. At 1,000 bars pressure magnesite dissociatesat 780? C, and brucite at 635? C, to periclase and vapor. Theunivariant reaction MgCO3?Mg(OH)2 MgO + V proceeds at 630?C, at 1,000 bars and at 700? C, at 4,000 bars. Solubility measurementsshow that, at 1,000 bars and temperatures up to 1,000? C, lessthan 1.5 weight per cent MgO is dissolved in the vapor phase.Brucite is unstable in the presence of vapors containing morethan a small amount of CO2. The maximum percentage of CO2 ina vapor that can coexist with brucite increases with decreasingpressure and with increasing temperature: 6 weight per centCO2 is the maximum at 630? C, 1,000 bars, and 4 weight per centat 700? C, 4,000 bars. The phase relations in the isobaric TXprism for 1,000 bars pressure are described. The results illustratetwo dissociation reactions, decarbonation and dehydration, occurringin the presence of a vapor phase containing two volatile components,H2O and CO2. Applications to metamorphism are briefly discussed.  相似文献   

4.
Effect of Water on the Composition of Magmas Formed at High Pressures   总被引:4,自引:3,他引:4  
KUSHIRO  IKUO 《Journal of Petrology》1972,13(2):311-334
Portions of the system MgO-CaO-Na2O-Al2O3-SiO2-H2O have beenstudied in the pressure range 13–35 kb at near-liquidustemperatures. The liquidus field of forsterite relative to thatof orthopyroxene is considerably wider under anhydrous thanunder anhydrous conditions and it covers part of the plane ofsilica-saturation in a wide pressure range. Partial meltingof simple garnet lherzolite (= forsterite+orthopyroxene+clinopyroxene+garnet)with water produces quartz-normative liquids at pressures upto at least 25 kb regardless of water content. Hydrous mineralsare not encountered at or near the solidus temperatures exceptin a Na-rich part of the system. Microprobe analysis of therun products in this synthetic system shows that the liquid(glass) in equilibrium with the lherzolite mineral assemblageis silica and alumina-rich at 20 kb under vapor-present conditions.With increasing degree of partial melting, the liquid changesits composition, passing into a ‘vapour-absent region’and becoming less silicic. Fractional crystallization of olivinetholeiitic magma under hydrous conditions also produces silica-richmagmas at high pressures. If the system is open to water, andwater pressure is less than total pressure, the compositionof the liquid varies from quartz-normative to olivine (±nepheline)-normativedepending on water pressure. It is suggested that in the presenceof water, silica-rich magmas such as those of calc-alkalic andesiteor dacite may be formed by direct partial melting of the peridotiticupper mantle at depths down to about 80 km. A large degree ofpartial melting of lherzolite under hydrous conditions wouldproduce SiO2 and MgO-rich magmas. The clinoenstatite rock fromCape Vogel, Papua, may have been formed by such a process. Peridotiteswith low CaAl2SiO5/jadeite ratios in the clinopyroxene couldproduce nepheline-normative magma by small degree of partialmelting and tholeiitic magma by large degree of partial meltingunder hydrous conditions.  相似文献   

5.
A garnet websterite nodule from the Honolulu volcanic series,Oahu, Hawaii, has been melted in the presence of nearly pureH2O. The solidus is intermediate between that of peridotiteand gabbro. The curve displays a temperature minimum around20 kb reflecting the breakdown of plagioclase. The Iiquidusis between 1130 ?C and 1150 ?C between 10 and 20 kb vapor pressure.Amphibole (pargasitic hornblende) has an extensive stabilityfield, reaching a maximum temperature about 20 ?C below thegarnet websterite liquidus at 15 kb and a maximum pressure of27.5 kb at 950 ?C. The amphibole-out curve intersects the soliduswith a positive slope. Liquids formed by partial melting of garnet websterite are quartz-normativewithin the stability field of amphibole, but become olivine-normative(tholeiitic) with increasing temperature. Amphibole and clinopyroxeneare enriched in Tschermak's molecule at higher temperatures,pargasite content of amphibole increases with increasing pressure. A garnet websterite-rich upper mantle containing modal olivineyields quartz-normative (13–16 per cent), aluminous (21–4wt. per cent A12O3) melts at 17 P 10 kb and in the presenceof nearly pure H2O. However, the presence of amphibole controlsthe liquid composition, a situation not found for liquids formedfrom wet peridotite. In contrast to many basalt liquids, liquidof garnet websterite composition cannot fractionate to andesiteby precipitation of amphibole, as amphibole is not a liquidusphase.  相似文献   

6.
Four natural peridotite nodules ranging from chemically depletedto Fe-rich, alkaline and calcic (SiO2=43?7–45?7 wt. percent, Al2O3=1?6O–8?21 wt. per cent, CaO=0?70–8?12wt. per cent,alk=0?10–0?90 wt. per cent and Mg/(Mg+Fe2+)=0?94–0?85)have been investigated in the hypersolidus region from 800?to 1250?C with variable activities of H2O, CO2, and H2. Thevapor-saturated peridotite solidi are 50–200?C below thosepreviously published. The temperature of the beginning of meltingof peridotite decreases markedly with decreasing Mg/(Mg+Fe)of the starting material at constant CaO/Al2O3. Conversely,lowering CaO/Al2O3 reduces the temperature at constant Mg/(Mg+Fe)of the starting material. Temperature differences between thesolidi up to 200?C are observed. All solidi display a temperatureminimum reflecting the appearance of garnet. This minimum shiftsto lower pressure with decreasing Mg/(Mg+Fe) of the startingmaterial. The temperature of the beginning of melting decreasesisobarically as approximately a linear function of the mol fractionof H2O in the vapor (XH2O). The data also show that some CO2may dissolve in silicate melts formed by partial melting ofperidotite. Amphibole (pargasitic hornblende) is a hypersolidus mineralin all compositions, although its P/T stability field dependson bulk rock chemistry. The upper pressure stability of amphiboleis marked by the appearance of garnet. The vapor-saturated (H2O) liquidus curve for one peridotiteis between 1250? and 1300?C between 10 and 30 kb. Olivine, spinel,and orthopyroxene are either liquidus phases or coexist immediatelybelow the temperature of the peridotite liquidus. The data suggest considerable mineralogical heterogeneity inthe oceanic upper mantle because the oceanic geotherm passesthrough the P/T band covering the appearance of garnet in variousperidotites. The variable depth to the low-velocity zone is explained byvariable aH2O conditions in the upper mantle and possibly alsoby variations in the composition of the peridotite itself. It is suggested that komatiite in Precambrian terrane couldform by direct melting of hydrous peridotite. Such melting requiresabout 1250?C compared with 1600?C which is required for drymelting. The genesis of kimberlite can be related to partial meltingof peridotite under conditions of (). Such activities of H2Oresult in melting at depths ranging between 125 and 175 km inthe mantle. This range is within the minimum depth generallyaccepted for the formation of kimberlite.  相似文献   

7.
Four natural peridotite nodules ranging from chemically depletedto Fe-rich, alkaline and calcic (SiO2 = 43.7–45.7 wt.per cent, A12O3 = 1.6O–8.21 wt. per cent, CaO = 0.70–8.12wt. per cent, alk = 0.10–0.90 wt. per cent and Mg/(Mg+Fe2+)= 0.94–0.85) have been investigated in the hypersolidusregion from 800? to 1250?C with variable activities of H2O,CO2, and H2. The vapor-saturated peridotite solidi are 50–200?Cbelow those previously published. The temperature of the beginningof melting of peridotite decreases markedly with decreasingMg/(Mg+SFe) of the starting material at constant CaO/Al2O3.Conversely, lowering CaO/Al2O3 reduces the temperature at constantMg/(Mg+Fe) of the starting material. Temperature differencesbetween the solidi up to 200?C are observed. All solidi displaya temperature minimum reflecting the appearance of garnet. Thisminimum shifts to lower pressure with decreasing Mg/(Mg + Fe)of the starting material. The temperature of the beginning ofmelting decreases isobarically as approximately a linear functionof the mol fraction of H2O in the vapor (XH2Ov). The data alsoshow that some CO2 may dissolve in silicate melts formed bypartial melting of peridotite. Amphibole (pargasitic hornblende) is a hypersolidus mineralin all compositions, although its P/T stability field dependson bulk rock chemistry. The upper pressure stability of amphiboleis marked by the appearance of garnet. The vapor-saturated (H2O) liquidus curve for one peridotiteis between 1250? and 1300?C between 10 and 30 kb. Olivine, spinel,and orthopyroxene are either liquidus phases or co-exist immediatelybelow the temperature of the peridotite liquidus. The data suggest considerable mineralogical heterogeneity inthe oceanic upper mantle because the oceanic geotherm passesthrough the P/T band covering the appearance of garnet in variousperidotites. The variable depth to the low-velocity zone is explained byvariable aHjo conditions in the upper mantle and possibly alsoby variations in the composition of the peridotite itself. Itis suggested that komatiite in Precambrian terrane could formby direct melting of hydrous peridotite. Such melting requiresabout 1250?C compared with 1600?C which is required for drymelting. The genesis of kimberlite can be related to partial meltingof peridotite under conditions of XH2Ov = 0.5–0.25 (XCO2v= 0.5–0.75). Such activities of H2O result in meltingat depths ranging between 125 and 175 km in the mantle. Thisrange is within the minimum depth generally accepted for theformation of kimberlite.  相似文献   

8.
The molar volume of mixtures of CO2 and H2O is a strong function of the fluid composition. Both CO2 and H2O participate in the metamorphism of carbonate rocks, resulting in a change in the fluid composition during reaction. One of the effects of the change in composition is the increase in pore-fluid pressure with only small increases in extent of reaction, ;. Pressure calculated from the volumetric properties of CO2-H2O mixtures at 400 °C increases greatly with small increases of ; but drops at greater values because of the increase in pore volume as a result of (Vsolid. The pore pressure increase at small values of ;, though, readily exceeds the reported tensile strength of carbonate rocks, and the rock cannot sustain significant reaction without fracturing. The result of a small amount of reaction is a fractured rock with increased permeability, which promotes fluid transport.  相似文献   

9.
Natrocarbonatite flows in the crater of the volcano Oldoinyo Lengai (Tanzania) are the only carbonatite magmas observed to erupt and have provided strong arguments in favor of a magmatic origin for carbonatite. The currently favored explanation for the genesis of these carbonatites by liquid immiscibility between a silicate and a carbonatite melt is questioned based on the extremely low eruption temperatures of 544-593 °C and compositional and mineralogical characteristics not in agreement with experimental constraints. Experimental investigations of the relationship between Oldoinyo Lengai natrocarbonatite and related silicate rock compositions do indicate that alkali-bearing peralkaline carbonatite with liquidus calcite can form by liquid immiscibility. At the same time, these experiments result in evidence which speaks against a liquid immiscibility origin for the highly alkaline and peralkaline Oldoinyo Lengai natrocarbonatite. On the carbonatite side of the miscibility gap, fractional crystallization cannot account for a liquid evolution from alkali-bearing peralkaline carbonatite to highly alkaline natrocarbonatite. Such an evolution does not seem to be compatible with the liquidus mineral assemblages and the chemistry of Oldoinyo Lengai natrocarbonatite. No natural silicate magma is known to produce natrocarbonatite compositions by liquid immiscibility. The best interpretation of the Oldoinyo Lengai natrocarbonatite flows involves expulsion of a cognate, mobile, alkaline, and CO2-rich fluid condensate. This conclusion is supported by recent studies of silicate and carbonatite melt inclusions in minerals of ultramafic alkaline complexes, trace element partitioning, isotopic constraints, and by experimental data on major element partitioning between coexisting H2O-CO2-rich fluid and carbonatitic melt. In contrast to all other suggested modes of formation, an origin of Oldoinyo Lengai natrocarbonatite from cognate fluid appears best to be in agreement with the field observations, the petrography, mineralogy, and geochemistry of Oldoinyo Lengai natrocarbonatite and the dynamics of the Oldoinyo Lengai natrocarbonatite extrusion.  相似文献   

10.
Beginning of melting and subsolidus relationships in the system K2O-CaO-Al2O3-SiO2-H2O have been experimentally investigated at pressures up to 20 kbars. The equilibria discussed involve the phases anorthite, sanidine, zoisite, muscovite, quartz, kyanite, gas, and melt and two invariant points: Point [Ky] with the phases An, Or, Zo, Ms, Qz, Vapor, and Melt; point [Or] with An, Zo, Ms, Ky, Qz, Vapor, and Melt.The invariant point [Ky] at 675° C and 8.7 kbars marks the lowest solidus temperature of the system investigated. At pressures above this point the hydrated phases zoisite and muscovite are liquidus phases and the solidus temperatures increase with increasing pressure. At 20 kbars beginning of melting occurs at 740 °C. The solidus temperatures of the quinary system K2O-CaO-Al2O3-SiO2-H2O are almost 60° C (at 20 kbars) and 170° C (at 2kbars) below those of the limiting quaternary system CaO-Al2O3-SiO2-H2O.The maximum water pressure at which anorthite is stable is lowered from 14 to 8.7 kbars in the presence of sanidine. The stability limits of anorthite+ vapor and anorthite+sanidine+vapor at temperatures below 700° C are almost parallel and do not intersect. In the wide temperature — pressure range at pressures above the reaction An+Or+Vapor = Zo+Ms+Qz and temperatures below the melting curve of Zo+Ms+Ky+Qz+Vapor, the feldspar assemblage anorthite+sanidine is replaced by the hydrated phases zoisite and muscovite plus quartz. CaO-Al2O3-SiO2-H2O. Knowledge of the melting relationships involving the minerals zoisite and muscovite contributes to our understanding of the melting processes occuring in the deeper parts of the crust. Beginning of melting in granites and granodiorites depends on the composition of plagioclase. The solidus temperatures of all granites and granodiorites containing plagioclases of intermediate composition are higher than those of the Ca-free alkali feldspar granite system and below those of the Na-free system discussed in this paper.The investigated system also provides information about the width of the P-T field in which zoisite can be stable together with an Al2SiO5 polymorph plus quartz and in which zoisite plus muscovite and quartz can be formed at the expense of anorthite and potassium feldspar. Addition of sodium will shift the boundaries of these fields to higher pressures (at given temperatures), because the pressure stability of albite is almost 10kbars above that of anorthite. Assemblages with zoisite+muscovite or zoisite+kyanite are often considered to be products of secondary or retrograde reactions. The P-T range in which hydration of granitic compositions may occur in nature is of special interest. The present paper documents the highest temperatures at which this hydration can occur in the earth's crust.  相似文献   

11.
Equilibrium H2O pressure (PeH2O) was fixed at values less thantotal pressure (PT) in melting experiments on mixtures of 1921Kilauea tholeiite, H2O, and CO2 (58.5 mole per cent H2O, 41.5mole per cent CO2), buffered by Ni+NiO. New determinations ofthe beginning of melting of mixtures of 1921 Kilauea tholeiiteand H2O buffered by quartz+fayalite+magnetite were made at 2and 3 kb. Microprobe analyses of coexisting glass, clinopyroxene,?olivine, ?amphibole were determined for several runs. Decreasing H2O fugacity (fH2O) to about six-tenths the fugacityof pure H2O (f?II2O) raises the solidus and the upper stabilitylimit of plagioclase. Plagioclase and clinopyroxene coexistin equilibrium with liquid-a feature not observed in the pureH2O system. Amphibole is stable to about 970 ?C at 2 kb, 1025?C at 5 kb and 1060 ?C at 8 kb. The Al (VI)+Ti contents of theamphibole increase with P, yielding kaersutite at 1050 ?C and8 kb. Calculated modes for the condensed phases reveal large differencesin the amount of glass (liquid) present and large differencesin liquid composition below and above the breakdown temperatureof amphibole at 5 and 8 kb. Liquids coexisting with amphibole,clinopyroxene, olivine, and magnetite are dacitic near the solidusand silica-rich andesites around 1000 ?C at 5 and 8 kb. Theresults of this study substantiate the model for the generationof the calc-alkaline suite by partial melting of H2O-rich basalts.  相似文献   

12.
Experimental Petrology of a Highly Potassic Magma   总被引:3,自引:0,他引:3  
The melting behaviour of a highly potassic biotite mafuriteof the Central African olivine leucitite kindred has been studiedexperimentally as a function of pressure (to 30kb) temperature,and water content (0%, 5%, 15%, 25%, and 40% H2O). Olivine isthe liquidus phase up to 30 kb for all water contents studiedexcept for anhydrous (clinopyroxene on the liquidus) and 15%H2O (phlogopite on the liquidus) conditions. Analyses of phasescrystallizing from the biotite mafurite show that pressure hasvery little effect on the composition of clinopyroxene whichis extremely calcium-rich, and low in Al2O3 and TiO2 for allconditions investigated. Phlogopite has low TiO2 content andtitanphlogopite cannot be a refractory phase in the upper mantlecausing Ti-depletion in partial melts in equilibrium with titanphlogopite.There are apparently no conditions where the extremely potassicbiotite mafurite could be a partial melt from pyrolite but derivationfrom an olivine+clinopyroxene+phlogopite+ilmenite assemblageoccurring as ‘enriched’ patches in the upper mantle,is possible. Liquids in equilibrium with phlogopite as a residualphase at 30 kb would be olivine nephelinites with approximately5% K2O, Na2O/K2O 1 and TiO2 > 5+. Crystal elutriation withtransported residual phlogopite reacting (phlogopite+liquid1 olivine+liquid 2) at lower pressures provides a mechanismfor K-enrichment and generating Na2O/K2O < 1.  相似文献   

13.
Subsolidus and vapor-saturated liquidus phase relations for a portion of the system CaO-MgO-SiO2-H2O, as inferred from experimental data for the composition regions CaMgSi2O6-Mg2SiO4-SiO2-H2O and CaMgSi2O6-Mg2SiO4-Ca3MgSi2O8 (merwinite)-H2O, are presented in pressure-temperature projection. Sixteen invariant points and 39 univariant reactions are defined on the basis of the 1 atm and 10 kbar (vapor-saturated) liquidus diagrams. Lack of experimental control over many of the reactions makes the depicted relations schematic in part.An invariant point involving orthoenstatite, protoenstatite, pigeonite, and diopside (all solid solutions) occurs at low pressure (probably between 1 and 2 kbar). At pressures below this invariant point, orthoenstatite breaks down at high temperature to the assemblage diopside + protoenstatite; with increasing temperature, the latter assemblage reacts to form pigeonite. At pressures above the invariant point, pigeonite forms according to the reaction diopside + orthoenstatite = pigeonite, and the assemblage diopside + protoenstatite is not stable. At 1 atm, both pigeonite and protoenstatite occur as primary liquidus phases, but at pressures above 6–7 kbar orthoenstatite is the only Ca-poor pyroxene polymorph which appears on the vapor-saturated liquidus surface.At pressures above approximately 10.8 kbar, only diopside, forsterite, and merwinite occur as primary liquidus phases in the system CaMgSi2O6-Mg2SiO4-Ca3MgSi2O8-H2O, in the presence of an aqueous vapor phase. At pressures between 1 atm and 10.2 kbar, both akermanite and monticellite also occur as primary liquidus phases. Comparison of the 1 atm and 10 kbar vapor-saturated liquidus diagrams suggests that melilite basalt bears a low pressure, or shallow depth, relationship to monticellite-bearing ultrabasites.  相似文献   

14.
Two roof pendants in the Hope Valley area, Alpine County, containabundant calc-silicate assemblages which can be related to univariantor invariant equilibria in the CaO-Al3O3-SiO2-H2O-CO2 system.Such assemblages are considered to represent components of reactionsthat buffered the chemistry of the pore fluid. Through dataobtained from microprobe analysis it is concluded that solidsolution in plagioclase, garnet, and clinozoisite are importantvariables such that on a TXco2 projection each sample had aunique path during metamorphism. Differences in the plagioclasecomposition of nearby samples with assemblages related by thereaction: grossularite(s.s)+quartz = anorthite(s.s.)+wollastonite, suggest unique equilibration temperatures for assemblages inlocal domains. In the Twin Lakes pendant in Fresno County, thereaction: clinohumite+calcite+CO2= 4forsterite+dolomite+H2O, is importantin magnesian marbles. Contrasting parageneses, which are relatedby this equilibrium, are considered to reflect variations influid composition. Constrasting assemblages in calc-silicaterocks, which are linked by the reactions: calcite+quartz= wollastonite+CO2, tremolite+calcite= dolomite+diopside+CO2+H2O, exist down to the scale of a thin section. Variation in Ti contentof idocrase may be an important factor in assemblages linkedby reactions involving this phase. This study suggests that during contact metamorphism of calcareousrocks in the Sierra Nevada, H2O and CO2 behaved as ‘initialvalue components’ (Zen, 1963) whose activities were controlledby reactions withion local systems.  相似文献   

15.
Subsolidus and liquidus phase relations along the join MgSiO3—CaMgSi2O6have been determined from the results of dry and hydrothermalruns. Two-pyroxene mixtures which crystallize within the solvusin dry runs form cryptoperthites, and X-ray methods must beused to determine their compositions and locate the boundariesof the solvus. Mg-rich and Ca-rich pyroxenes can, however, bedistinguished in well-crystallized hydrothermal runs by opticaltechniques. The results obtained indicate that solid solution along thisjoin is more restricted than was found by Atlas (1952). Thesolvus intersects the solidus over a composition interval of42 wt per cent. Additional data on the rhombic enstatite protoenstatiteinversion are consistent with Atlas's value of 985??10?C. Thisinversion has proved to be very sensitive to pressure, and thedT/dP slope of the transition is 84??10?/kb. The crystallization of natural pyroxenes from basaltic magmasis reviewed in the light of the experimental data. The solidsolution shown by Fe-poor pyroxene pairs from layered intrusionssuch as the Skaergaard is remarkably restricted. The temperatureof crystallization of these pyroxenes as deduced from the solvuson the join MgSiO3—CaMgSi2O6 is about 1000? C. In makingthis estimate it is assumed that any subsolidus exsolution hasnot proceeded beyond the stage of lamellae formation. This temperatureis below the dry solidus of basalt, and the result indicatesthat either the solid solution shown by these natural pyroxenesis influenced by impurities such as Al or Fe', or the meltinginterval of the magmas which formed the intrusions was loweredby a substantial vapor pressure of H2O. It is suggested that pyroxenes which have crystallized fromextrusive basalts and which have compositions that plot in thecentral portion of the pyroxene quadrilateral are metastablesolid solutions formed by quick cooling. Available informationis not sufficient to clarify the relationship between pigeoniteand the various polymorphs of MgSiO3. It is probable, however,that there is a first-order inversion between pigeonite andprotoenstatite, and possible phase relations between these formsin the system MgSiO3—FeSiO3 are discussed.  相似文献   

16.
The Volume and Composition of Melt Generated by Extension of the Lithosphere   总被引:111,自引:2,他引:111  
Calculation of the volume and composition of magma generatedby lithospheric extension requires an accurate mitial geotherm,and knowledge of the variation and composition of the melt fractionas a function of pressure and temperature. The relevant geophysicalobservations are outlined, and geotherms then obtained fromparameterized convective models. Experimental observations whichconstrain the solidus and liquidus at various pressures aredescribed by simple empirical functions. The variation in meltfraction is then parameterized by requiring a variation from0 on the solidus to 1 on the liquidus. The composition of the melts is principally controlled by themelt fraction, though those of FeO, MgO, and SiO2 in additionvary with pressure. Another simple parameterization allows theobserved compositions of major elements in 91 experiments tobe calculated with a mean error of 1.1%, and those of TiO2 andNa2O to 0.3%. These expressions are then used to calculate theexpected compositions of magma produced by adiabatic upwelling.The mean major element composition of the most magnesium-richMORB glasses resemble the mean composition calculated for amantle potential temperature Tp of 1280?C. Adiabatic meltingduring upwelling of mantle of this temperature generates a meltthickness of 7 km. The observed variations of the MgO and TiO2concentrations in a large collection of MORB glass compositionssuggest that extensive low pressure fractional crystallizationoccurs, but that its effect on the concentrations of SiO2, Al2O3,and CaO is small. There is no evidence that normal oceanic crustis produced from magmas containing more than 11% MgO. The mantlepotential temperature within hot rising jets is about 1480?Cand can generate 27 km of magma containing 17% MgO. Extension of the continental lithosphere generates little meltunless ß> 2 and Tp> 1380?C. The melts generatedby larger values of ß or of Tp are alkali basalts,and change to tholeiites as the amount of melting increases.Large quantities of melt can be generated, especially at continentalmargins, where estimates of ß obtained from changesin crustal thickness will in general be too small.  相似文献   

17.
The central portion of the system MgO–Al2O3–SiO2has been studied with the aim of determining the range of solidsolution, as well as the stability limits of the various structuralstates of the ternary compound cordierite. The previously suggestedlimited solid solution between cordierite of the composition2MgO? 2Al2O3? 5SiO2 (2: 2: 5) and SiO2 is now believed to existonly metastably. Between 800? and 1,300? C the composition ofcordierite was found to be invariably 2MgO. 2Al2O3 5SiO2. Above1,300?C, however, there is evidence for the existence of limitedsolid solution in cordierite (2: 2: 5) toward a theoreticalcompound ‘Mg-beryl’ (3: 1: 6). The existence ofcordierite solid solution at liquidus temperatures has an importantbearing on the melting relations of many compositions withinthe system. Because of this solid solution the courses of crystallizationof melts consisting of normative cordierite (2: 2: 5) and smallamounts of MgSiO3, for example, have to follow parts of theboundary curve between the cordierite and spinel fields withthese two phases coprecipitating over a limited range of temperatures.The dividing line between compositions which complete theircrystallization at the ternary eutectic forsterite+protoenstatite+cordierite+liquid,1,364? ?3? C, and those which complete their crystallizationat the ternary eutectic protoenstatite +cordierite+tridymite+liquid,1, 355??3? C was formerly considered to be the join MgSiO3-cordierite(2: 2: 5). Because of solid solution in cordierite coexistingwith liquid this dividing line is displaced slightly in thedirection toward more siliceous bulk compositions. Furthermore,the temperature maximum along the boundary curve cordierite+protoenstatite+liquid cannot lie at the intersection of this boundary curvewith the join MgSiO3–2: 2: 5, but with the tie line MgSiO3-cordieritess.The position of this temperature maximum thus moves closer tothe ternary eutectic protoenstatite+cordierite+tridymite+liquid.Temperatures and compositions of some of the invariant pointsin the system have been redeter-mined.  相似文献   

18.
Pressures, temperatures, water activities (aH2O) and fugacitiesof the other C-O-H fluid species have been estimated on a traverseacross the amphibolite-granulite facies boundary in the MajorParagneiss, northwest Adirondacks, N.Y. Two-feldspar pairs givetemperatures ranging from 650?C in the central portion of theunit to 760?C towards the northeast. Biotite-garnet pairs giveerratic temperatures compared to two-feldspar temperatures.This discrepancy appears to be due to retrograde resetting asdetermined from compositional zoning patterns in biotites andgarnets. Some of the discrepancy may also be due to non-idealityof pyrope-almandine mixing or to non-ideality from other components.Pressures ranging from 5?4 kb for the southwestern portion ofthe unit to 8?0 kb in the northeast were determined from anorthite-grossular-sillimanite-quartzbarometry. Minimum pressures of 5?8 kb were also determinedfrom coexisting garnet + rutile. Values of aH2O of 0?08-0?5estimated from biotite and muscovite dehydration reactions showno correlation with grade. The variability in aH2O suggeststhat it is locally controlled and that a homogeneous, pervasivefluid was not present during high grade metamorphism. Graphiteequilibria indicate that fO2 was less than 0?5 log units belowQFM and that if a fluid was present, it was rich in CO2 andH2O. P-T-aH2O values suggest that partial melting did not occurduring metamorphism. Pervasive flooding with CO2 does not appearto have occurred. The amphibolite-granulite transition at thislocality is characterized by increasing temperature and pressure.  相似文献   

19.
In the system CaO-MgO-Al2O3-SiO2-Na2O-H2O under 5 kb pressurethe invariant equilibrium forsterite-orthopyroxene-Ca-rich clinopyroxene-amphibole-plagioclase-liquid-vapourhas been identified at 960?12 ?C. A similar invariant assemblagewith spinel replacing Ca-rich clinopyroxene exists at 950?8?C. The liquid in the former equilibrium contains 16.5 per cent(wt.) normative quartz and 3 per cent Na2O; the plagioclaseis more calcic than An87; the pyroxenes contain about 3 percent Al2O3 and the amphibole is hypersthene-normative. Two anhydrousthermal maxima, the olivine-Ca-rich clinopyroxene-plagioclaseand the orthopyroxene-Ca-rich clinopyroxene-plagioclase dividezones are not encountered in this system, and nepheline-normativeliquids may crystallize amphibole?olivine?Ca-rich clinopyroxeneto produce quartz-normative residual liquids of andesite-typecomposition. A thermal maximum involving amphibole-olivine-Ca-richclinopyroxene-liquid-vapour exists for liquids containing approximately11 per cent normative nepheline and liquids more undersaturatedthan this will crystallize these phases to produce extremelynephelinitic liquids. Phase diagrams are presented which facilitate the predictionof crystallization sequences and liquid evolution paths forany basic or intermediate composition under the conditions employedhere.  相似文献   

20.
Multi-stage Melting in the Lower Crust of the Serre (Southern Italy)   总被引:3,自引:1,他引:3  
The lower-crustal section exposed in the Serre, southern Italy,consists mainly of Al-rich metasediments, which underwent granulite-faciesmetamorphism, partial melting and melt extraction. The paperconsiders the formation of melts in metapelites and metagreywackes.Leucosomes and host rocks have been studied to investigate themelting process. Biotite-rich and biotite-free melanosomes withscarce felsic components are present; the biotite-rich typesare widespread in the upper part of the section and the twotypes may occur side by side in the lower part. Na-rich andK-rich leucosomes including residual phases are interspersedwithin the metasediments; on the whole they do not show geochemicalsignatures suggestive of magmatic fractionation. Leucotonalitictypes prevail among the sampled leucosomes, which generallyare rare earth element (REE) depleted with positive Eu anomalieswhereas the host rocks are REE enriched with overall negativeEu anomalies. Melanosomes and migmatites show restitic chemistries.The precursor metagreywackes underwent depletion in Na2O andenrichment in K2O. The precursor metapelites document generaldepletion in Na2O and they may be enriched or depleted in K2O.All the characteristics of the migmatites and of their componentsreflect a two-stage melting: (1) H2O-present melting, involvingmainly plagioclase, and (2) dehydration melting of micas. Allthe metasediments underwent H2O-present melting, forming mostlysodic melts which, owing to their removal from the source asfast as they formed, did not accumulate in such proportionsas to allow migration and mostly remained within the lower-crustalmetasediments; metapelites also underwent variable dehydrationmelting, depending on chemical features and physical conditions,forming larger volumes of mobile granitic melts, most of whichmigrated far from the source. Extractions of 57–66 vol.% of total melts (sodic + potassic) from the most residual metapeliticmelanosomes and of about 27–44 vol. % of potassic meltsfrom metapelitic migmatites have been calculated. Higher volumesof the extracted melts have been calculated for the metapelitesof the lower part of the section; the most depleted metagreywackesunderwent melt extraction of about 9–13 vol. %. The two-stagemelting occurred during the prograde metamorphism and continuedduring the isothermal decompression. KEY WORDS: Calabria; lower crust; multi-stage melting  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号