首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
面向地上下无缝集成建模的新一代三维地理信息系统   总被引:5,自引:0,他引:5  
地上下无缝集成三维建模是新一代3DGIS的主要标志,地上下无缝集成建模已成为当务之急。在三维空间建模技术现状与存在问题、目标层次与功能需求及三维空间模型现状与趋势分析的基础上,介绍了地上下集成建模的两个层次和无缝集成的基本原理;阐述以CD-TIN为纽带、以BRep-TIN-GTP为核心、以三层混合模型为成份的地上下集成空间数据模型的概念结构与典型逻辑关系。并结合城市与矿山应用,介绍该集成模型在GeoMo3D系统中初步实现后的可视化效果。同时,指出了与地上下集成建模相关的近年3DGIS的主要攻关方向和重点理论难题。  相似文献   

2.
This paper presents the first application of spatially correlated neutral models to the detection of changes in mortality rates across space and time using the local Morans I statistic. Sequential Gaussian simulation is used to generate realizations of the spatial distribution of mortality rates under increasingly stringent conditions: 1) reproduction of the sample histogram, 2) reproduction of the pattern of spatial autocorrelation modeled from the data, 3) incorporation of regional background obtained by geostatistical smoothing of observed mortality rates, and 4) incorporation of smooth regional background observed at a prior time interval. The simulated neutral models are then processed using two new spatio-temporal variants of the Morans I statistic, which allow one to identify significant changes in mortality rates above and beyond past spatial patterns. Last, the results are displayed using an original classification of clusters/outliers tailored to the space-time nature of the data. Using this new methodology the space-time distribution of cervix cancer mortality rates recorded over all US State Economic Areas (SEA) is explored for 9 time periods of 5 years each. Incorporation of spatial autocorrelation leads to fewer significant SEA units than obtained under the traditional assumption of spatial independence, confirming earlier claims that Type I errors may increase when tests using the assumption of independence are applied to spatially correlated data. Integration of regional background into the neutral models yields substantially different spatial clusters and outliers, highlighting local patterns which were blurred when local Morans I was applied under the null hypothesis of constant risk.This research was funded by grants R01 CA92669 and 1R43CA105819-01 from the National Cancer Institute and R43CA92807 under the Innovation in Biomedical Information Science and Technology Initiative at the National Institute of Health. The views stated in this publication are those of the authors and do not necessarily represent the official views of the NCI. The authors also thank three anonymous reviewers for their comments that helped improve the presentation of the methodology.  相似文献   

3.
A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) λ of the ionospheric pierce point (IPP) and the IEF’s influence factor (IFF) . The IEF can be used to make a relatively precise distinction between ionospheric daytime and nighttime, whereas the IFF is advantageous for describing the IEF’s variations with day, month, season and year, associated with seasonal variations of total electron content (TEC) of the ionosphere. By combining λ and with the local time t of IPP, the IEFM has the ability to precisely distinguish between ionospheric daytime and nighttime, as well as efficiently combine them during different seasons or months over a year at the IPP. The IEFM-based ionospheric delay estimates are validated by combining an absolute positioning mode with several ionospheric delay correction models or algorithms, using GPS data at an international Global Navigation Satellite System (GNSS) service (IGS) station (WTZR). Our results indicate that the IEFM may further improve ionospheric delay modeling using GPS data.  相似文献   

4.
Since the advent of CHAMP, the first in a series of low-altitude satellites being almost continuously and precisely tracked by GPS, a new generation of long-wavelength gravitational geopotential models can be derived. The accuracy evaluation of these models depends to a large extent on the comparison with external data of comparable quality. Here, two CHAMP-derived models, EIGEN-1S and EIGEN-2, are tested with independent long-term-averaged single satellite crossover (SSC) sea heights from three altimetric satellites (ERS-1, ERS-2 and Geosat). The analyses show that long-term averages of crossover residuals still are powerful data to test CHAMP gravity field models. The new models are tested in the spatial domain with the aid of ERS-1/-2 and Geosat SSCs, and in the spectral domain with latitude-lumped coefficient (LLC) corrections derived from the SSCs. The LLC corrections allow a representation of the satellite-orbit-specific error spectra per order of the models spherical harmonic coefficients. These observed LLC corrections are compared to the LLC projections from the models variance–covariance matrix. The excessively large LLC errors at order 2 found in the case of EIGEN-2 with the ERS data are discussed. The degree-dependent scaling factors for the variance-covariance matrices of EIGEN-1S and –2, applied to obtain more realistic error estimates of the solved-for coefficients, are compatible with the results found here.  相似文献   

5.
Over the last three decades analytical cartography has grown from Tobler's concept of "solving cartographic problems" into a broader and deeper scientific specialization that includes the development and expansion of analytical/mathematical spatial theory and model building. In many instances Tobler himself has led the way to these new insights and developments. Fundamental concepts begin with Tobler's cartographic transformations; Nyerges' deep and surface structure and data levels; and Moellering's real and virtual maps; the sampling theorem; and concepts of spatial primitives and objects. This list can be expanded to include additional analytical concepts such as spatial frequencies, spatial surface neighborhood operators, information theory, fractals, Fourier theory, topological network theory, and analytical visualization, to name a few. This base of analytical theory can be employed to analyze and/or develop such things as spatial surfaces, terrain analysis, spatial data schemas, spatial data structures, spatial query languages, spatial overlay and partitioning, shape analysis, surface generalization, cartographic generalization, and analytical visualization. More analytical uses of theory, strategies of analysis, and implementations are being developed and continue to multiply as the field continues to grow and mature. A primary goal is to expand the mathematical/analytical theory of spatial data analysis, and theory building and analytical visualization as analytical cartography takes its place in the geographic information sciences. The research future for this area appears very bright indeed.  相似文献   

6.
Resolving the initial phase ambiguities of GPS carrier phase observations was always considered an important aspect of GPS processing techniques. Resolution of the so-called wide-lane ambiguities using a special linear combination of theL 1 andL 2 carrier and code observations has become standard. New aspects have to be considered today: (1) Soon AS, the so-called Anti-Spoofing, will be turned on for all Block II spacecrafts. This means that precise code observations will be no longer available, which in turn means that the mentioned approach to resolve the wide-lane ambiguities will fail. (2) Most encouraging is the establishment of the new International GPS Geodynamics Service (IGS), from where high quality orbits, earth rotation parameters, and eventually also ionospheric models will be available. We are reviewing the ambiguity resolution problem under these new aspects: We look for methods to resolve the initial phase ambiguities without using code observations but using high quality orbits and ionospheric models from IGS, and we study the resolution of the narrow-lane ambiguities (after wide-lane ambiguity resolution) using IGS orbits.  相似文献   

7.
This is the first of a four-part series of papers which proposes a general framework for error analysis in measurement-based geographical information systems (MBGIS). The purpose of the series is to investigate the fundamental issues involved in measurement error (ME) analysis in MBGIS, and to provide a unified and effective treatment of errors and their propagation in various interrelated GIS and spatial operations. Part 1 deals with the formulation of the basic ME model together with the law of error propagation. Part 2 investigates the classic point-in-polygon problem under ME. Continuing to Part 3 is the analysis of ME in intersections and polygon overlays. In Part 4, error analyses in length and area measurements are made. In this present part, a simple but general model for ME in MBGIS is introduced. An approximate law of error propagation is then formulated. A simple, unified, and effective treatment of error bands for a line segment is made under the name of covariance-based error band. A new concept, called maximal allowable limit, which guarantees invariance in topology or geometric-property of a polygon under ME is also advanced. To handle errors in indirect measurements, a geodetic model for MBGIS is proposed and its error propagation problem is studied on the basis of the basic ME model as well as the approximate law of error propagation. Simulation experiments all substantiate the effectiveness of the proposed theoretical construct.This project was supported by the earmarked grant CUHK 4362/00H of the Hong Kong Research grants Council.  相似文献   

8.
Isard’s contributions to spatial interaction modeling   总被引:2,自引:0,他引:2  
This short review, surveys Isards role in promoting what has become known as spatial interaction modeling. Some contextual information on the milieu from which his work emerged is given, together with a selected number of works that are judged to have been influenced (directly and indirectly) by his work. It is suggested that this burgeoning field owes a lot to the foundations laid in the gravity model chapter of Methods. The review is supplemented by a rather extensive bibliography of additional works that are indicative of the breadth of the impact of this field.  相似文献   

9.
Ionospheric TEC predictions over a local area GPS reference network   总被引:4,自引:0,他引:4  
Single layer ionosphere models are frequently used for ionospheric modeling and estimation using GPS measurements from a network of GPS reference stations. However, the accuracies of single layer models are inherently constrained by the assumption that the ionospheric electrons are concentrated in a thin shell located at an altitude of about 350 km above Earths surface. This assumption is only an approximation to the physical truth because the electrons are distributed in the entire ionosphere region approximately from 50 to 1,000 km. To provide instantaneous ionospheric corrections for the real-time GPS positioning applications, the ionospheric corrections need to be predicted in advance to eliminate the latency caused by the correction computation. This paper will investigate ionospheric total electron content (TEC) predictions using a multiple-layer tomographic method for ionospheric modeling over a local area GPS reference network. The data analysis focuses on the accuracy evaluation of short-term (5 min in this study) TEC predictions. The results have indicated that the obtainable TEC prediction accuracy is at a level of about 2.8 TECU in the zenith direction and 95% of the total electron content can be recovered using the proposed tomography-based ionosphere model.  相似文献   

10.
Griliches’ knowledge production function has been increasingly adopted at the regional level where location-specific conditions drive the spatial differences in knowledge creation dynamics. However, the large majority of such studies rely on a traditional regression approach that assumes spatially homogenous marginal effects of knowledge input factors. This paper extends the authors’ previous work (Kang and Dall’erba in Int Reg Sci Rev, 2015. doi: 10.1177/0160017615572888) to investigate the spatial heterogeneity in the marginal effects by using nonparametric local modeling approaches such as geographically weighted regression (GWR) and mixed GWR with two distinct samples of the US Metropolitan Statistical Area (MSA) and non-MSA counties. The results indicate a high degree of spatial heterogeneity in the marginal effects of the knowledge input variables, more specifically for the local and distant spillovers of private knowledge measured across MSA counties. On the other hand, local academic knowledge spillovers are found to display spatially homogenous elasticities in both MSA and non-MSA counties. Our results highlight the strengths and weaknesses of each county’s innovation capacity and suggest policy implications for regional innovation strategies.  相似文献   

11.
基于矢量数据模型的模糊地理对象建模   总被引:1,自引:0,他引:1  
研究了模糊地理对象建模的空间建模方法,首先以对象建模方法定义模糊地理对象,以矢量数据模型为基础,用UML设计模糊对象类和模糊地理对象类,然后以统一的UML图表示基本模糊地理对象的概念模型,尤其是模糊拓扑关系,最后将UML图直接导入通用关系数据库,完成数据库的设计。  相似文献   

12.
This paper develops a probabilistic, competing-destinations, assignment model that predicts changes in the spatial pattern of the working population as a result of transport improvements. The choice of residence is explained by a new non-parametric model, which represents an alternative to the popular multinominal logit model. Travel times between zones are approximated by a normal distribution function with different mean and variance for each pair of zones, whereas previous models only use average travel times. The model’s forecast error of the spatial distribution of the Dutch working population is 7% when tested on 1998 base-year data. To incorporate endogenous changes in its causal variables, an almost ideal demand system is estimated to explain the choice of transport mode, and a new economic geography inter-industry model (RAEM) is estimated to explain the spatial distribution of employment. In the application, the model is used to forecast the impact of six mutually exclusive Dutch core-periphery railway proposals in the projection year 2020.
Jan OosterhavenEmail:
  相似文献   

13.
The Center for Orbit Determination in Europe (CODE) has been involved in the processing of combined GPS/GLONASS data during the International GLONASS Experiment (IGEX). The resulting precise orbits were analyzed using the program SORBDT. Introducing one satellites positions as pseudo-observations, the program is capable of fitting orbital arcs through these positions using an orbit improvement procedure based on the numerical integration of the satellites orbit and its partial derivative with respect to the orbit parameters. For this study, the program was enhanced to estimate selected parameters of the Earths gravity field. The orbital periods of the GPS satellites are —in contrast to those of the GLONASS satellites – 2:1 commensurable (P Sid:P GPS) with the rotation period of the Earth. Therefore, resonance effects of the satellite motion with terms of the geopotential occur and they influence the estimation of these parameters. A sensitivity study of the GPS and GLONASS orbits with respect to the geopotential coefficients reveals that the correlations between different geopotential coefficients and the correlations of geopotential coefficients with other orbit parameters, in particular with solar radiation pressure parameters, are the crucial issues in this context. The estimation of the resonant geopotential terms is, in the case of GPS, hindered by correlations with the simultaneously estimated radiation pressure parameters. In the GLONASS case, arc lengths of several days allow the decorrelation of the two parameter types. The formal errors of the estimates based on the GLONASS orbits are a factor of 5 to 10 smaller for all resonant terms. AcknowledgmentsThe authors would like to thank all the organizations involved in the IGS and the IGEX campaign, in particular those operating an IGS or IGEX observation site and providing the indispensable data for precise orbit determination.  相似文献   

14.
Abstract

This paper discusses the role of Geoinformatics as a new scientific discipline designed for handling of geospatial information. Depending on the scientific background of the people involved in shaping the emerging discipline, emphasis may be placed on different aspects of Geoinformatics. Applications and developments may address geoscientific, spatial planning, or computer science related matters. The scientific field of Geoinformatics encompasses the acquisition and storing of geospatial data, the modelling and presentation of spatial information, geoscientific analyses and spatial planning, and the development of algorithms and geospatial database systems. It is the position of the author that these tools from Geoinformatics are necessary to bridge the gap between Digital Earth models and the real world with its real-world problems (‘connecting through location’). It is, however, crucial that Geoinformatics represents a coherent integrated approach to the acquisition, storage, analysis, modeling, presentation, and dissemination of geo-processes and not a patchwork solution of unconnected fields of activity. Geoinformatics is as such not a part of Geography, Surveying, or Computer Science, but a new self-contained scientific discipline. The current paper highlights international and national trends of the discipline and presents a number of Geoinformatics initiatives. The research and teaching activities of the newly formed Institute for Geoinformatics and Remote Sensing (IGF) at the University of Osnabrueck serve as an example for these initiatives. All these developments have lead to the long overdue formation of a scientific ‘Society for Geoinformatics’ (German: Gesellschaft für Geoinformatik – GfGI) in Germany.  相似文献   

15.
Detecting communities in large networks has become a common practice in socio-spatial analyses and has led to the development of numerous dedicated mathematical algorithms. Nowadays, however, researchers face a deluge of data and algorithms, and great care must be taken regarding methodological questions such as the values of the parameters and the geographical characteristics of the data. We aim here at testing the sensitivity of multi-scale modularity optimized by the Louvain method to the value of the resolution parameter (introduced by Reichardt and Bornholdt (Phys Rev Lett 93(21):218701, 2004.  https://doi.org/10.1103/PhysRevLett.93.218701) and controlling the size of the communities) and to a number of spatial issues such as the inclusion of internal loops and the delineation of the study area. We compare the community structures with those found by another well-known community detection algorithm (Infomap), and we further interpret the final results in terms of urban geography. Sensitivity analyses are conducted for commuting movements in and around Brussels. Results reveal slight effects of spatial issues (inclusion of the internal loops, definition of the study area) on the partition into job basins, while the resolution parameter plays a major role in the final results and their interpretation in terms of urban geography. Community detection methods seem to reveal a surprisingly strong spatial effect of commuting patterns: Similar partitions are obtained with different methods. This paper highlights the advantages and sensitivities of the multi-scale Louvain method and more particularly of defining communities of places. Despite these sensitivities, the method proves to be a valuable tool for geographers and planners.  相似文献   

16.
Surface albedo has been documented as one of the Essential Climate Variables (ECV) of the Global Climate Observing System (GCOS) that governs the Earth's Radiation Budget. The availability of surface albedo data is necessary for a comprehensive environmental modelling study. Thus, both temporal and spatial scale issues need to be rectified. This study reports about the availability of surface albedo data through in-situ and remote sensing satellite observations. In this paper, we reviewed the existing models for surface albedo derivation and various initiatives taken by related environmental agencies in order to understand the issues of climate with respect to surface albedo. This investigation evaluated the major activities on albedo-related research specifically for the retrieval methods used to derive the albedo values. Two main existing albedo measurement methods are derived through in-situ measurement and remotely sensed observations. In-situ measurement supported with number of instruments and techniques such aspyrheliometers, pyranometers and Baseline Surface Radiation Network (BSRN) and remotely sensed observations using angularly integrated Bi-directional Reflectance Distribution Function (BRDF) by both geostationary and polar orbit satellites. The investigation results reveals that the temporal and spatial scaling is the major issues when the albedo values are needed for microclimatic study, i.e. high-resolution time-series analyses and at heterogeneity and impervious surface. Thus, an improved technique of albedo retrieval at better spatial and temporal scale is required to fulfil the need for such kind of studies. Amongst many others, there are two downscaling methods that have been identified to be used in resolving the spatial scaling biased issues: Smoothing Filter-based Intensity Modulation (SFIM) and Pixel Block Intensity Modulation (PBIM). The temporal issues can be resolved using the multiple regression techniques of land surface temperature, selected air quality parameters, aerosol and daily skylight.  相似文献   

17.
Global gravity field models have been determined based on kinematic orbits covering an observation period of one year beginning from March 2002. Three different models have been derived up to a maximum degree of n=90 of a spherical harmonic expansion of the gravitational potential. One version, ITG-CHAMP01E, has been regularized beginning from degree n=40 upwards, based on the potential coefficients of the gravity field model EGM96. A second model, ITG-CHAMP01K, has been determined based on Kaulas rule of thumb, also beginning from degree n=40. A third version, ITG-CHAMP01S, has been determined without any regularization. The physical model of the gravity field recovery technique is based on Newtons equation of motion, formulated as a boundary value problem in the form of a Fredholm-type integral equation. The observation equations are formulated in the space domain by dividing the one-year orbit into short sections of approximately 30-minute arcs. For every short arc, a variance factor has been determined by an iterative computation procedure. The three gravity field models have been validated based on various criteria, and demonstrate the quality of not only the gravity field recovery technique but also the kinematically determined orbits.  相似文献   

18.
Recent advances in thermal infrared remote sensing include the increased availability of airborne hyperspectral imagers (such as the Hyperspectral Thermal Emission Spectrometer, HyTES, or the Telops HyperCam and the Specim aisaOWL), and it is planned that an increased number spectral bands in the long-wave infrared (LWIR) region will soon be measured from space at reasonably high spatial resolution (by imagers such as HyspIRI). Detailed LWIR emissivity spectra are required to best interpret the observations from such systems. This includes the highly heterogeneous urban environment, whose construction materials are not yet particularly well represented in spectral libraries. Here, we present a new online spectral library of urban construction materials including LWIR emissivity spectra of 74 samples of impervious surfaces derived using measurements made by a portable Fourier Transform InfraRed (FTIR) spectrometer. FTIR emissivity measurements need to be carefully made, else they are prone to a series of errors relating to instrumental setup and radiometric calibration, which here relies on external blackbody sources. The performance of the laboratory-based emissivity measurement approach applied here, that in future can also be deployed in the field (e.g. to examine urban materials in situ), is evaluated herein. Our spectral library also contains matching short-wave (VIS–SWIR) reflectance spectra observed for each urban sample. This allows us to examine which characteristic (LWIR and) spectral signatures may in future best allow for the identification and discrimination of the various urban construction materials, that often overlap with respect to their chemical/mineralogical constituents. Hyperspectral or even strongly multi-spectral LWIR information appears especially useful, given that many urban materials are composed of minerals exhibiting notable reststrahlen/absorption effects in this spectral region. The final spectra and interpretations are included in the London Urban Micromet data Archive (LUMA; http://LondonClimate.info/LUMA/SLUM.html).  相似文献   

19.
Summary Basically two different evaluation methods are available to compute geoid heights from residual gravity anomalies in the inner zone: numerical integration and least squares collocation.If collocation is not applied to a global gravity data set, as is usually the case in practice, its result will not be equal to the numerical integration result. However, the cross covariance function between geoid heights and gravity anomalies can be adapted such that the geoid contribution is computed only from a small gravity area up to a certain distance o from the computation point. Using this modification, identical results are obtained as from numerical integration.Applying this modification makes the results less dependent on the covariance function used. The difference between numerical integration and collocation is mainly caused by the implicitly extrapolated residual gravity anomaly values, outside the original data area. This extrapolated signal depends very much on the covariance function used, while the interpolated values within the original data area depend much less on it.As a sort of by-product, this modified collocation formula also leads to a new combination technique of numerical integration and collocation, in which the optimizing practical properties of both methods are fully exploited.Numerical examples are added as illustration.  相似文献   

20.
A new theory for high-resolution regional geoid computation without applying Stokess formula is presented. Operationally, it uses various types of gravity functionals, namely data of type gravity potential (gravimetric leveling), vertical derivatives of the gravity potential (modulus of gravity intensity from gravimetric surveys), horizontal derivatives of the gravity potential (vertical deflections from astrogeodetic observations) or higher-order derivatives such as gravity gradients. Its algorithmic version can be described as follows: (1) Remove the effect of a very high degree/order potential reference field at the point of measurement (POM), in particular GPS positioned, either on the Earths surface or in its external space. (2) Remove the centrifugal potential and its higher-order derivatives at the POM. (3) Remove the gravitational field of topographic masses (terrain effect) in a zone of influence of radius r. A proper choice of such a radius of influence is 2r=4×104 km/n, where n is the highest degree of the harmonic expansion. (cf. Nyquist frequency). This third remove step aims at generating a harmonic gravitational field outside a reference ellipsoid, which is an equipotential surface of a reference potential field. (4) The residual gravitational functionals are downward continued to the reference ellipsoid by means of the inverse solution of the ellipsoidal Dirichlet boundary-value problem based upon the ellipsoidal Abel–Poisson kernel. As a discretized integral equation of the first kind, downward continuation is Phillips–Tikhonov regularized by an optimal choice of the regularization factor. (5) Restore the effect of a very high degree/order potential reference field at the corresponding point to the POM on the reference ellipsoid. (6) Restore the centrifugal potential and its higher-order derivatives at the ellipsoidal corresponding point to the POM. (7) Restore the gravitational field of topographic masses ( terrain effect) at the ellipsoidal corresponding point to the POM. (8) Convert the gravitational potential on the reference ellipsoid to geoidal undulations by means of the ellipsoidal Bruns formula. A large-scale application of the new concept of geoid computation is made for the Iran geoid. According to the numerical investigations based on the applied methodology, a new geoid solution for Iran with an accuracy of a few centimeters is achieved.Acknowledgments. The project of high-resolution geoid computation of Iran has been support by National Cartographic Center (NCC) of Iran. The University of Tehran, via grant number 621/3/602, supported the computation of a global geoid solution for Iran. Their support is gratefully acknowledged. A. Ardalan would like to thank Mr. Y. Hatam, and Mr. K. Ghazavi from NCC and Mr. M. Sharifi, Mr. A. Safari, and Mr. M. Motagh from the University of Tehran for their support in data gathering and computations. The authors would like to thank the comments and corrections made by the four reviewers and the editor of the paper, Professor Will Featherstone. Their comments helped us to correct the mistakes and improve the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号