首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydrology and water resources which usually consist of three steps: (1) use of general circulation models (GCMs) to provide future global climate scenarios under the effect of increasing greenhouse gases, (2) use of downscaling techniques (both nested regional climate models, RCMs, and statistical methods) for "downscaling" the GCM output to the scales compatible with hydrological models, and (3) use of hydrologic models to simulate the effects of climate change on hydrological regimes at various scales. Great progress has been achieved in all three steps during the past few years, however, large uncertainties still exist in every stage of such study. This paper first reviews the present achievements in this field and then discusses the challenges for future studies of the hydrological impacts of climate change.  相似文献   

2.
Climate Change and People-Caused Forest Fire Occurrence in Ontario   总被引:2,自引:0,他引:2  
Climate change that results from increasing levels of greenhouse gases in the atmosphere has the potential to increase temperature and alter rainfall patterns across the boreal forest region of Canada. Daily output from the Canadian Climate Centre coupled general circulation model (GCM) and the Hadley Centre's HadCM3 GCM provided simulated historic climate data and future climate scenarios for the forested area of the province of Ontario, Canada. These models project that in climates of increased greenhouse gases and aerosols, surface air temperatures will increase while seasonal precipitation amounts will remain relatively constant or increase slightly during the forest fire season. These projected changes in weather conditions are used to predict changes in the moisture content of forest fuel, which influences the incidence of people-caused forest fires. Poisson regression analysis methods are used to develop predictive models for the daily number of fires occurring in each of the ecoregions across the forest fire management region of Ontario. This people-caused fire prediction model, combined with GCM data, predicts the total number of people-caused fires in Ontario could increase by approximately 18% by 2020–2040 and50% by the end of the 21st century.  相似文献   

3.
Understanding the response of the global hydrological cycle to recent and future anthropogenic emissions of greenhouse gases and aerosols is a major challenge for the climate modelling community. Recent climate scenarios produced for the fourth assessment report of the Intergovernmental Panel on Climate Change are analysed here to explore the geographical origin of, and the possible reasons for, uncertainties in the hydrological model response to global warming. Using the twentieth century simulations and the SRES-A2 scenarios from eight different coupled ocean–atmosphere models, it is shown that the main uncertainties originate from the tropics, where even the sign of the zonal mean precipitation change remains uncertain over land. Given the large interannual fluctuations of tropical precipitation, it is then suggested that the El Niño Southern Ocillation (ENSO) variability can be used as a surrogate of climate change to better constrain the model reponse. While the simulated sensitivity of global land precipitation to global mean surface temperature indeed shows a remarkable similarity between the interannual and climate change timescales respectively, the model ability to capture the ENSO-precipitation relationship is not a major constraint on the global hydrological projections. Only the model that exhibits the highest precipitation sensitivity clearly appears as an outlier. Besides deficiencies in the simulation of the ENSO-tropical rainfall teleconnections, the study indicates that uncertainties in the twenty-first century evolution of these teleconnections represent an important contribution to the model spread, thus emphasizing the need for improving the simulation of the tropical Pacific variability to provide more reliable scenarios of the global hydrological cycle. It also suggests that validating the mean present-day climate is not sufficient to assess the reliability of climate projections, and that interannual variability is another suitable and possibly more useful candidate for constraining the model response. Finally, it is shown that uncertainties in precipitation change are, like precipitation itself, very unevenly distributed over the globe, the most vulnerable countries sometimes being those where the anticipated precipitation changes are the most uncertain.  相似文献   

4.
 The potential of aircraft-induced ozone changes to force a substantial climate impact is investigated by means of simulations with an atmospheric general circulation model, coupled to a mixed layer ocean model. We present results from several numerical experiments that are based on ozone change patterns for 1992 aviation and on a future scenario for the year 2015. In both cases, the climate signal is statistically significant. The strength of the ozone impact is of comparable magnitude to that arising from aircraft CO2 emissions, thus meaning a non-negligible contribution to the total climate effect of aviation emissions. There are indications of a characteristic signature of the aircraft ozone related temperature response pattern, distinctly different from that associated with the increase of well-mixed greenhouse gases. Likewise, the climate sensitivity to non-uniform ozone changes including a strong concentration perturbation at the tropopause may be higher than the climate sensitivity to uniform changes of a greenhouse gas. In a hierarchy of experiments, for which the spatial structure of an aircraft-related ozone perturbation was left fixed, while the amplitude of the perturbation was artificially increased, the climate signal depends in a non-linear way on the radiative forcing. Received: 10 September 1998 / Accepted: 4 May 1999  相似文献   

5.
Much of southeast Australia has experienced rainfall substantially below the long-term average since 1997. This protracted drought is particularly noticeable in those parts of South Australia and Victoria which experience a winter (May through October) rainfall peak. For the most part, the recent meteorological drought has affected the first half of the rainfall season May–June–July (MJJ), while rainfall during the second half August–September–October (ASO) has been much closer to the long term average. The recent multi-year drought is without precedent in the instrumental record, and is qualitatively similar to the abrupt decline in rainfall which was observed in the southwest of Western Australia in the 1960 and 1970s. Using a statistical downscaling technique, the rainfall decline is linked to observed changes in large-scale atmospheric fields (mean sea level pressure and precipitable water). This technique is able to reproduce the statistical properties of rainfall in southeast Australia, including the interannual variability and longer time-scale changes. This has revealed that the rainfall recent decline may be explained by a shift to higher pressures and lower atmospheric precipitable water in the region. To explore the likely future evolution of rainfall in southeast Australia under human induced climate change, the same statistical downscaling technique is applied to five climate models forced with increasing greenhouse gas concentrations. This reveals that average rainfall in the region is likely to decline in the future as greenhouse gas concentrations increase, with the greatest decline occurring during the first half of winter. Projected declines vary amongst models but are generally smaller than the recent early winter rainfall deficits. In contrast, the rainfall decline in late winter–spring is larger in future projections than the recent rainfall deficits have been. We illustrate the consequences of the observed and projected rainfall declines on water supply to the major city of Melbourne, using a simple rainfall run-off relationship. This suggests that the water resources may be dramatically affected by future climate change, with percentage reductions approximately twice as large as corresponding changes in rainfall.  相似文献   

6.
Hydrologic Sensitivity of Global Rivers to Climate Change   总被引:12,自引:1,他引:12  
Climate predictions from four state-of-the-art general circulation models (GCMs) were used to assess the hydrologic sensitivity to climate change of nine large, continental river basins (Amazon, Amur, Mackenzie, Mekong, Mississippi, Severnaya Dvina, Xi, Yellow, Yenisei). The four climate models (HCCPR-CM2, HCCPR-CM3, MPI-ECHAM4, and DOE-PCM3) all predicted transient climate response to changing greenhouse gas concentrations, and incorporated modern land surface parameterizations. Model-predicted monthly average precipitation and temperature changes were downscaled to the river basin level using model increments (transient minus control) to adjust for GCM bias. The variable infiltration capacity (VIC) macroscale hydrological model (MHM) was used to calculate the corresponding changes in hydrologic fluxes (especially streamflow and evapotranspiration) and moisture storages. Hydrologic model simulations were performed for decades centered on 2025 and 2045. In addition, a sensitivity study was performed in which temperature and precipitation were increased independently by 2 °C and 10%, respectively, during each of four seasons. All GCMs predict a warming for all nine basins, with the greatest warming predicted to occur during the winter months in the highest latitudes. Precipitation generally increases, but the monthly precipitation signal varies more between the models than does temperature. The largest changes in the hydrological cycle are predicted for the snow-dominated basins of mid to higher latitudes. This results in part from the greater amount of warming predicted for these regions, but more importantly, because of the important role of snow in the water balance. Because the snow pack integrates the effects of climate change over a period of months, the largest changes occur in early to mid spring when snow melt occurs. The climate change responses are somewhat different for the coldest snow dominated basins than for those with more transitional snow regimes. In the coldest basins, the response to warming is an increase of the spring streamflow peak, whereas for the transitional basins spring runoff decreases. Instead, the transitional basins have large increases in winter streamflows. The hydrological response of most tropical and mid-latitude basins to the warmer and somewhat wetter conditions predicted by the GCMs is a reduction in annual streamflow, although again, considerable disagreement exists among the different GCMs. In contrast, for the high-latitude basins increases in annual flow volume are predicted in most cases.  相似文献   

7.
This paper assesses the implications of climate policy for exposure to water resources stresses. It compares a Reference scenario which leads to an increase in global mean temperature of 4 °C by the end of the 21st century with a Mitigation scenario which stabilises greenhouse gas concentrations at around 450 ppm CO2e and leads to a 2 °C increase in 2100. Associated changes in river runoff are simulated using a global hydrological model, for four spatial patterns of change in temperature and rainfall. There is a considerable difference in hydrological change between these four patterns, but the percentages of change avoided at the global scale are relatively robust. By the 2050s, the Mitigation scenario typically avoids between 16 and 30% of the change in runoff under the Reference scenario, and by 2100 it avoids between 43 and 65%. Two different measures of exposure to water resources stress are calculated, based on resources per capita and the ratio of withdrawals to resources. Using the first measure, the Mitigation scenario avoids 8-17% of the impact in 2050 and 20-31% in 2100; with the second measure, the avoided impacts are 5-21% and 15-47% respectively. However, at the same time, the Mitigation scenario also reduces the positive impacts of climate change on water scarcity in other areas. The absolute numbers and locations of people affected by climate change and climate policy vary considerably between the four climate model patterns.  相似文献   

8.
The East Asian summer monsoon (EASM) circulation and summer rainfall over East China have experienced large decadal changes during the latter half of the 20th century. To investigate the potential causes behind these changes, a series of simulations using the national center for atmospheric research (NCAR) community atmospheric model version 3 (CAM3) and the geophysical fluid dynamics laboratory (GFDL) atmospheric model version 2.1 (AM2.1) are analyzed. These simulations are forced separately with different historical forcing, namely tropical sea surface temperature (SSTs), global SSTs, greenhouse gases plus aerosols, and a combination of global SSTs and greenhouse gases plus aerosols. This study focuses on the relative roles of these individual forcings in causing the observed monsoon and rainfall changes over East Asia during 1950–2000. The simulations from both models show that the SST forcing, primarily from the Tropics, is able to induce most of the observed weakening of the EASM circulation, while the greenhouse gas plus (direct) aerosol forcing increases the land-sea thermal contrast and thus enhances the EASM circulation. The results suggest that the recent warming in the Tropics, especially the warming associated with the tropical interdecadal variability centered over the central and eastern Pacific, is a primary cause for the weakening of the EASM since the late 1970s. However, a realistic simulation of the relatively small-scale rainfall change pattern over East China remains a challenge for the global models.  相似文献   

9.
对IPCC第五次评估报告中有关淡水资源相关结论的解读   总被引:3,自引:0,他引:3  
IPCC第五次评估报告指出,与淡水资源相关的气候变化风险随着温室气体浓度增加而显著增加。气候变化已经导致区域降水发生显著变化;多年冻土、冰川持续萎缩,积雪不断减少;降雪区春季最大径流量逐渐提前,夏季干旱不断加剧。预估结果表明:21世纪温室气体排放将加剧淡水资源相关风险。如显著减少亚热带干旱地区的地表水和地下水资源,加剧行业之间用水竞争;极端事件(如极端降水)明显影响原水水质,威胁用水安全;气候变化同时将导致农业灌溉用水量增加、能源生产效率降低等不利影响。报告指出需采取硬性基础设施建设和软性制度措施建设相结合的适应措施,加强水资源管理,克服气候变化的负面影响,减少损失。  相似文献   

10.
Anthropogenic global warming will lead to changes in the global hydrological cycle. The uncertainty in precipitation sensitivity per 1 K of global warming across coupled atmosphere-ocean general circulation models (AOGCMs) has been actively examined. On the other hand, the uncertainty in precipitation sensitivity in different emission scenarios of greenhouse gases (GHGs) and aerosols has received little attention. Here we show a robust emission-scenario dependency (ESD); smaller global precipitation sensitivities occur in higher GHG and aerosol emission scenarios. Although previous studies have applied this ESD to the multi-AOGCM mean, our surprising finding is that current AOGCMs all have the common ESD in the same direction. Different aerosol emissions lead to this ESD. The implications of the ESD of precipitation sensitivity extend far beyond climate analyses. As we show, the ESD potentially propagates into considerable biases in impact assessments of the hydrological cycle via a widely used technique, so-called pattern scaling. Since pattern scaling is essential to conducting parallel analyses across climate, impact, adaptation and mitigation scenarios in the next report from the Intergovernmental Panel on Climate Change, more attention should be paid to the ESD of precipitation sensitivity.  相似文献   

11.
Change in climate variability in the 21st century   总被引:3,自引:0,他引:3  
As climate changes due to the increase of greenhouse gases, there is the potential for climate variability to change as well. The change in variability of temperature and precipitation in a transient climate simulation, where trace gases are allowed to increase gradually, and in the doubled CO2 climate is investigated using the GISS general circulation model. The current climate control run is compared with observations and with the climate change simulations for variability on three time-scales: interannual variability, daily variability, and the amplitude of the diurnal cycle. The results show that the modeled variability is often larger than observed, especially in late summer, possibly due to the crude ground hydrology. In the warmer climates, temperature variability and the diurnal cycle amplitude usually decrease, in conjunction with a decrease in the latitudinal temperature gradient and the increased greenhouse inhibition of radiative cooling. Precipitation variability generally changes with the same sign as the mean precipitation itself, usually increasing in the warmer climate. Changes at a particular grid box are often not significant, with the prevailing tendency determined from a broader sampling. Little change is seen in daily persistence. The results are relevant to the continuing assessments of climate change impacts on society, though their use should be tempered by appreciation of the model deficiencies for the current climate.  相似文献   

12.
Potential impacts of climate change on heavy rainfall events and flooding in the Australian region are explored using the results of a general circulation model (GCM) run in an equilibrium enhanced greenhouse experiment. In the doubled CO2 simulation, the model simulates an increase in the frequency of high-rainfall events and a decrease in the frequency of low-rainfall events. This result applies over most of Australia, is statistically more significant than simulated changes in total rainfall, and is supported by theoretical considerations. We show that this result implies decreased return periods for heavy rainfall events. The further implication is that flooding could increase, although we discuss here the many difficulties associated with assessing in quantitative terms the significance of the modelling results for the real world.The second part of the paper assesses the implications of climate change for drought occurrence in Australia. This is undertaken using an off-line soil water balance model driven by observed time series of rainfall and potential evaporation to determine the sensitivity of the soil water regime to changes in rainfall and temperature, and hence potential evaporation. Potential impacts are assessed at nine sites, representing a range of climate regimes and possible climate futures, by linking this sensitivity analysis with scenarios of regional climate change, derived from analysis of enhanced greenhouse experiment results from five GCMs. Results indicate that significant drying may be limited to the south of Australia. However, because the direction of change in terms of the soil water regime is uncertain at all sites and for all seasons, there is no basis for statements about how drought potential may change.  相似文献   

13.
In this study we present rainfall results from equilibrium 1 ×– and 2 × CO2 experiments with the CSIRO 4-level general circulation model. The 1 × CO2 results are discussed in relation to observed climate. Discussion of the 2 × CO2 results focuses upon changes in convective and non-convective rainfall as simulated in the model, and the consequences these changes have for simulated daily rainfall intensity and the frequency of heavy rainfall events. In doing this analysis, we recognize the significant shortcomings of GCM simulations of precipitation processes. However, because of the potential significance of any changes in heavy rainfall events as a result of the enhanced greenhouse effect, we believe a first examination of relevant GCM rainfall results is warranted. Generally, the model results show a marked increase in rainfall originating from penetrative convection and, in the mid-latitudes, a decline in largescale (non-convective) rainfall. It is argued that these changes in rainfall type are a consequence of the increased moisture holding capacity of the warmer atmosphere simulated for 2 × CO2 conditions. Related to changes in rainfall type, rainfall intensity (rain per rain day) increases in the model for most regions of the globe. Increases extend even to regions where total rainfall decreases. Indeed, the greater intensity of daily rainfall is a much clearer response of the model to increased greenhouse gases than the changes in total rainfall. We also find a decrease in the number of rainy days in the middle latitudes of both the Northern and Southern Hemispheres. To further elucidate these results daily rainfall frequency distributions are examined globally and for four selected regions of interest. In all regions the frequency of high rainfall events increases, and the return period of such events decreases markedly. If realistic, the findings have potentially serious practical implications in terms of an increased frequency and severity of floods in most regions. However, we discuss various important sources of uncertainty in the results presented, and indicate the need for rainfall intensity results to be examined in enhanced greenhouse experiments with other GCMs.  相似文献   

14.
A global perspective on African climate   总被引:4,自引:1,他引:3  
We describe the global climate system context in which to interpret African environmental change to support planning and implementation of policymaking action at national, regional and continental scales, and to inform the debate between proponents of mitigation v. adaptation strategies in the face of climate change. We review recent advances and current challenges in African climate research and exploit our physical understanding of variability and trends to shape our outlook on future climate change. We classify the various mechanisms that have been proposed as relevant for understanding variations in African rainfall, emphasizing a “tropospheric stabilization” mechanism that is of importance on interannual time scales as well as for the future response to warming oceans. Two patterns stand out in our analysis of twentieth century rainfall variability: a drying of the monsoon regions, related to warming of the tropical oceans, and variability related to the El Niño–Southern Oscillation. The latest generation of climate models partly captures this recent continent-wide drying trend, attributing it to the combination of anthropogenic emissions of aerosols and greenhouse gases, the relative contribution of which is difficult to quantify with the existing model archive. The same climate models fail to reach a robust agreement regarding the twenty-first century outlook for African rainfall, in a future with increasing greenhouse gases and decreasing aerosol loadings. Such uncertainty underscores current limitations in our understanding of the global climate system that it is necessary to overcome if science is to support Africa in meeting its development goals.  相似文献   

15.
Rainfall in the southwest of Western Australia (SWWA) is sensitive to shifts in the hemispheric scale circulation due to its location at the northward extent of the influence of mid-latitude fronts. A step-drop in the 1970s to a new winter rainfall regime has caused great concern for water users in the region. The synoptic systems at the height of winter in the latter half of the 20th century over this region have been described in Hope et al. (Clim Dyn, 2006) using a self-organising map, and in this study the projected future shifts in those systems has been examined. Bounds are placed on the possible responses by examining a number of different models and, into the future, two scenarios at the upper (SRES A2) and lower (SRES B1) limits of plausible human induced emissions. Rainfall taken directly from the models captures the rainfall decline in the 1970s, and, although it is not as large as observed in any one model, all the models express a decline, which is a very strong result. Into the future the rainfall decline is dramatic. The scenario at the upper bound of emissions, where atmospheric concentrations of greenhouse gases continue to rise strongly, shows a rainfall decline right through to the end of the century. The shift in synoptic systems for most models is to far fewer troughs and more high pressure systems across the region. One model exhibits a different signature, with a shift to more systems with a zonal structure. The fact that there is a rainfall decline shown by all models, yet the synoptic changes are different, highlights how sensitive SWWA rainfall is to the different responses of climate models to increasing greenhouse gases. In the B1 scenario, the concentrations rise only slowly in the second half of the century and the shift is still to drier conditions, but it is not as striking. These results show that increasing concentrations of greenhouse gases lead to increasingly dry conditions in SWWA, and as the atmospheric concentrations rise, the synoptic response intensifies.  相似文献   

16.
U.S. Country Studies supported analyses of climate change impacts on water resources have been completed or are underway in the following Central and Eastern European nations: Czech Republic, Slovakia, Poland, Romania, Estonia, Russian Federation, and the Ukraine. Climate change impacts on the hydrologic resources of these countries is being performed at the river basin scale using monthly water balance models using GCM-based climate scenarios. The authors have performed a regional analysis of climate change impacts on the Hydrologic Resources of Europe using the Turc Annual Model. The regional analysis was done with GIS methodolgies using regional climate databases. The regional results were compared to the U.S. Country Studies hydrologic assessmnent results to validiate the use of this simplified methodolgy for making regional climate change assessment. Results from three countries showed acceptable performace of the annual approach . Using GCM-based climate scenarios regional analysis of potential climate change impacts on the hydrologic resources of Europe was conducted and national and regional results are presented.  相似文献   

17.
Wetlands are ecosystems of important functions in the earth??s climate system. Through relatively high evapotranspiration, they affect surface water and energy exchange with the atmosphere directly influencing the physical climate. Through CH4, CO2 and N2O fluxes, they regulate the biogeochemical cycles, indirectly influencing the physical climate. However, current models do not explicitly include the water table, present under all large and stable wetlands; model wetlands are identified as flat land with wet soil resulting from precipitation events. That is, the wetlands are only ??wetted?? from above but not from below by the high water table. Furthermore, without the knowledge of the water table position, estimates of CH4 and other gases (e.g., CO2 and N2O) are poorly constrained. We present a simple hydrologic framework for simulating wetlands based on water table depth. A synthesis of hydrologic controls on wetlands highlights the key role that groundwater plays. It directly feeds wetlands, supports surface-water fed wetlands by maintaining a saturated substrate, and links land drainage to sea level by impeding drainage in lowlands. Forced by routine climate model output (precipitation?Cevapotranspiration-surface runoff), land topography, and sea level, we simulate the present-day water table in North America at the 1?km scale. We validate the simulation with water table observations and compare regions of shallow water table to mapped wetlands. Our results show that the framework captures the salient features of wetland distribution and extent at regional and continental scales, a direct result of large-scale groundwater convergence that nourishes the lowlands even in arid climates. The low requirement of forcing and computation make the framework easy to adopt in climate and earth system models for simulating wetland responses to climate and sea level change for the present, paleo reconstructions, and future projections.  相似文献   

18.
《大气与海洋》2013,51(2):93-105
Abstract

Global warming due to increased greenhouse gases is believed to result in not only higher surface temperatures but also an acceleration of the hydrological cycle leading to increased precipitation. Although climate models consistently predict increases in global temperatures due to increasing greenhouse gases and the accompanying global warming, observations at the climatic timescales necessary to confirm the models are rare. Multidecadal studies at global and regional scales are necessary to determine whether the presently observed changes in temperature and precipitation are due to short‐term fluctuations or long‐term trends. In this study, we address this issue by examining changes in temperature and precipitation on Long Island, New York over a 74‐year time period (1931 to 2004) using a network of rain gauges and temperature measurements. The mean annual temperature on Long Island has increased at a rate of 0.05°C per decade, which is less than that of observed global values and is most likely due to the urban warming effects of New York City, not large‐scale climate change. The mean total annual precipitation has increased at a rate of 0.71 cm per decade during the study period, which is consistent with global observations. Intra‐annual temperature fluctuations are decreasing at a rate of 0.36% per decade, while precipitation variations are increasing at a rate of 0.91% per decade. Empirical orthogonal function analysis indicates that variations in temperature and precipitation on Long Island are dominated by island‐wide fluctuations that are directly related to the North Atlantic Oscillation, the Arctic Oscillation, and the El Niño Southern Oscillation.  相似文献   

19.
In this study the potential impact of the anticipated increase in the greenhouse gas concentrations on different aspects of the Indian summer monsoon is investigated, focusing on the role of the mechanisms leading to these changes. Both changes in the mean aspects of the Indian summer monsoon and changes in its interannual variability are considered. This is done on the basis of a global time-slice experiment being performed with the ECHAM4 AGCM at a high horizontal resolution of T106. The experiment consists of two 30-year simulations, one representing the present-day climate (period: 1970–1999) and one representing the future climate (period: 2060–2089). The time-slice experiment predicts an intensification of the mean rainfall associated with the Indian summer monsoon due to the general warming, while the future changes in the large-scale flow indicate a weakening of the monsoon circulation in the upper troposphere and only little change in the lower troposphere. The intensification of the monsoon rainfall in the Indian region is related to an intensification of the atmospheric moisture transport into this region. The weakening of the monsoon flow is caused by a pronounced warming of the sea surface temperatures in the central and eastern tropical Pacific and the associated alterations of the Walker circulation. A future increase of the temperature difference between the Indian Ocean and central India as well as a future reduction of the Eurasian snow cover in spring would, by themselves, lead to a strengthening of the monsoon flow in the future. These two mechanisms compensate for the weakening of the low-level monsoon flow induced by the warming of the tropical Pacific. The time-slice experiment also predicts a future increase of the interannual variability of both the rainfall associated with the Indian summer monsoon and of the large-scale flow. A major part of this increase is accounted for by enhanced interannual variability of the sea surface temperatures in the central and eastern tropical Pacific.  相似文献   

20.
Recent increases in the accuracy of climate models have enhanced the possibilities for analyzing the impacts of climate change on society. This paper explores how the local, economic impacts of climate change can be modeled for a specific eco-region, the Western Sahel. The people in the Sahel are highly dependent on their natural resource base, and these resources are highly vulnerable to climate change, in particular to changes in rainfall. Climate models project substantial changes in rainfall in the Sahel in the coming 50 years, with most models predicting a reduction in rainfall. To connect climate change to changes in ecosystem productivity and local income, we construct an ecological–economic model that incorporates rangeland dynamics, grazing and livestock prices. The model shows that decreased rainfall in the Sahel will considerably reduce local incomes, in particular if combined with increases in rainfall variability. Adaptation to these climate change projections is possible if reductions in rainfall are followed by destocking to reach efficient grazing levels. However, while such a strategy is optimal from the perspective of society, the stocking rate is determined by individual pastoralists that face few incentives to destock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号