首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The Advanced Technology Solar Telescope site survey Sky Brightness Monitor simultaneously images the solar disk and the sky to about 8 solar radii in four wavelengths at 450, 530, 890 and 940 nm. One day of data from Mees Solar Observatory on Haleakala and from the National Solar Observatory at Sacramento Peak (Sunspot, New Mexico) are analyzed. Both sites show strong Rayleigh extinction, but while Haleakala shows a larger aerosol component, Sunspot shows a large variation in the aerosol component. Overall the Haleakala extinction varies as –2 whereas the Sunspot extinction changes from about –3.5 to about –2, suggesting an increasing aerosol component during the day. Water vapor absorption measurements from both sites are similar, though Sunspot shows larger time variations than Haleakala. The instrument-corrected sky brightness from both sites show comparable values, and again the Sunspot data show more variations. The sky brightness values show a radial dependence of sky brightness of r –0.1 at Haleakala, but a dependence of r –1.0 at Sunspot. The wavelength variation of the sky brightness at Haleakala is relatively constant at –1.5 but varies at Sunspot from –1.5 to –0.1 again suggesting an increasing aerosol contribution during the day at Sunspot. Finally, dust measurements near the ground are compared with the extinction wavelength exponent for data taken at Haleakala on 24 Feb. 2003. The measurements suggest more large dust particles are present near the ground than averaged over the whole air column.  相似文献   

2.
3.
A recent suggestion that the extinction of starlight at wavelengths near 2200 Å may be due to small grains of magnesium oxide, rather than due to graphite, does not seem plausible. The potential ability of graphite to produce ultraviolet extinction is shown to be an order of magnitude greater than the extinction which MgO grains could produce under the most favourable assumptions concerning the effectiveness of O2? transitions.  相似文献   

4.
Dale W. Smith 《Icarus》1980,44(1):116-133
The Galilean satellite eclipse technique for measuring the aerosol distribution in the Jovian lower stratosphere and upper troposphere is described and applied using 30 color observations of 12 natural satellite eclipses obtained with the 200-in Hale telescope. These events probe the North and South Polar Regions, the North Temperate Belt, the South Equatorial Belt, the South Tropical Zone, the South Temperate Zone, and the Great Red Spot. Aerosol is found above the visible cloud tops in all locations. It is very tenuous and varies with altitude, increasing rapidly with downward passage through the tropopause. The aerosol extinction coefficient at 1.05 μm is 1.0 ± 0.05 × 10?8 cm?1 at the tropopause and the mass density is a few times 10?13 g cm?3. The observations require some aerosol above the tropopause but do not clearly determine its structure. The present analysis emphasizes an extended haze distribution, but the alternate possibility that the stratospheric aerosol resides in a thin layer is not excluded. The vertical aerosol optical depth above the tropopause at 1.05 μm exceeds 0.04 in the NPR, SPR, NTB, SEB, and StrZ, is ~0.006 ± 0.003 in the STZ, and is ~ 0.003 ± 0.001 above the GRS. The aerosol extinction increases with decreasing wavelength in the STZ and NTB and indicates a particle radius of 0.2–0.5 μm; a radius of ~0.9 μm is indicated in the STrZ.  相似文献   

5.
The longstanding question of the extent to which the quasar population is affected by dust extinction, within host galaxies or galaxies along the line of sight, remains open. More generally, the spectral energy distributions of quasars vary significantly, and flux-limited samples defined at different wavelengths include different quasars. Surveys employing flux measurements at widely separated wavelengths are necessary to characterize fully the spectral properties of the quasar population. The availability of panoramic near-infrared detectors on large telescopes provides the opportunity to undertake surveys capable of establishing the importance of extinction by dust on the observed population of quasars. We introduce an efficient method for selecting K -band, flux-limited samples of quasars, termed 'KX' by analogy with the UVX method. This method exploits the difference between the power-law nature of quasar spectra and the convex spectra of stars: quasars are relatively brighter than stars at both short wavelengths (the UVX method) and long wavelengths (the KX method). We consider the feasibility of undertaking a large-area KX survey for damped Ly α galaxies and gravitational lenses using the planned UKIRT wide-field near-infrared camera.  相似文献   

6.
Graphite flakes are excluded as a major component of interstellar grains because their ultraviolet extinction peaks occur at wavelengths longward of 2700 Å. Mie calculations for spherical graphite particles are shown to have no physical or astronomical relevance.  相似文献   

7.
Graphite flakes are excluded as a major component of interstellar grains because their ultraviolet extinction peaks occur at wavelengths longward of 2700 Å. Mie calculations for spherical graphite particles are shown to have no physical or astronomical relevance.  相似文献   

8.
In order to determine the atmospheric extinction at Physics Department Astronomical Observatory of the University of Extremadura, located at Badajoz (Spain), several stars were observed during some clear nights of atmospheric stability in the period 1998–2000, at optical wavelengths corresponding to the filters of the Kron-Cousins and Strömgren photometric systems. The determination of the extinction coefficients was made by assuming the Bouguer's law, which was shown to be a good approximation for this study. The results exhibited temporal variations and can be considered to be associated with clean atmospheres at locations of low altitude.  相似文献   

9.
Nanometre-sized microdiamonds of the type recently discovered in meteorites could make up a significant fraction of interstellar carbon, and thus explain the observed excess of interstellar extinction at ultraviolet wavelengths. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The Huygens descent through Titan's atmosphere in January 2005 will provide invaluable information about Titan's atmospheric composition and aerosol properties. The Descent Imager/Spectral Radiometer (DISR) will perform upward and downward looking radiation observations at various spectral ranges and spatial resolutions. To prepare the DISR data interpretation we have developed a new model for radiation transfer in Titan's atmosphere. The model solves for the full three-dimensional polarized radiation field in spherical geometry. However, the atmosphere itself is assumed to be spherically symmetric. The model is initialized with a fast-to-compute plane–parallel solution based on the doubling and adding algorithm that incorporates a spherical correction for the incoming direct solar beam. The full three-dimensional problem is then solved using the characteristics method combined with the Picard iterative approximation as described in Rozanov et al. (J. Quant. Spectrosc. Radiat. Transfer 69 (2001) 491). Aerosol scattering properties are calculated with a new microphysical model. In this formulation, aerosols are assumed to be fractal aggregates and include methane gas absorption embedded into the extinction coefficient. The resulting radiance of the model atmosphere's internal field is presented for two prescribed DISR wavelengths.  相似文献   

11.
How dark is it inside a dark cloud? If—as is currently believed-interstellar extinction at UV wavelengths is mainly due to scattering with a strongly forward throwing phase-function, the interior of a dark cloud may be much better illuminated at UV wavelengths than its measured extinction would suggest. We consider the penetration of radiation into a dark cloud against scattering and absorption by grains; and we define a new group property for interstellar grains, the exclusion optical depth τd. τd is a measure of the ability of the grains to exclude radiation from the interior of an externally illuminated cloud. Radiation—as measured by the radiation energy density-penetrates the cloud approximately as if against pure absorption only, with effective optical depth τd. Thus τd is a conceptually and numerically useful quantity when estimating the role of UV radiation in the thermal and chemical balance within a dark cloud. Computations are made of the radiation fields in (1200, 4500) Å, at the centres of dark clouds with measured visual extinctions. It is found that even in very dark clouds, the radiation energy density in (1200, 1800) Å may be significant, due to the high grain albedo at these short wavelengths.  相似文献   

12.
The Galilean satellite eclipse technique for measuring the aerosol distribution in the upper Jovian atmosphere is described and applied using 30 color observations of the 13 May 1972 eclipse of Ganymede obtained with the 5-m Hale telescope. This event probes the South Temperate Zone. The observed aerosol lies above the visible cloud tops, is very tenuous and varies with altitude, increasing rapidly with downward passage through the tropopause. The aerosol extinction coefficient, κa (λ1.05 μm), is ~1.1 × 10?9 cm?1 in the lower stratosphere and ~1.1 × 10?8 cm?1 at the tropopause. The 1σ uncertainty in these values does not exceed 50% The observations require some aerosol above the tropopause but do not clearly determine its structure. The present analysis emphasizes an extended haze distribution, but the alternate possibility is not excluded that the stratospheric aerosol resides in a thin layer. The aerosol extinction increases with decreasing wavelength and indicates the particle radius to be ?0.2 μm. Larger radii are impossible. These overall results confirm Axel's (1972) suggestion of a small quantity of dust above the Jovian cloud tops and the optical depths are consistent with those required to explain the low uv albedo.  相似文献   

13.
Isophotes of the luminance distribution over the disk of Venus at several phase angles and in several wavelengths are constructed by means of isodensitometry of high-quality photographic negatives of Venus. Twenty-three plates were selected from more than 2000 original negatives available at the IAU Planetary Photographs Center of Meudon Observatory. Six isophote maps were made from a series of yellow light images (λ = 5850Å), corresponding to phase angles from 22° to 129°. Special attention was paid to the rare occurrences of distinct features in yellow light. A sequence of isophote maps was taken in six wavelengths from λ = 5850 to 3250Å. The ultraviolet cloud markings appear as changes in the isophote configurations for different wavelengths. Variations of contrast with wavelengths are deduced. Dark features, almost invisible at 4500Å, reach a contrast of 25% at 3500Å which then no longer increases toward ultraviolet. The polar bright clouds give contrasts of 40% to 60% in ultraviolet. A series of images taken in ultraviolet at 3500Åshows configurations characteristic of observations at short wavelengths for both the waxing and the waning crescent.In Parts II and III of this series of papers, the isophote maps will be compared with theoretical curves computed from the theory of multiple-order scattering by aerosol particles.  相似文献   

14.
Laboratory data on the spectra of CO adsorbed on small MgO particles show that CO absorption leads to a weakening of the 220 nm band together with a shift of this band to shorter wavelengths. CO adsorption also results in the formation of a cyclic CO carbon ion that absorbs at 2.15 m–1. It is shown that this band provides a close match to a major component of the very broad structure seen in interstellar extinction at the same energy. Effects of CO adsorption on the 220 nm band and VUV extinction are discussed in light of recent observational data on stars with peculiar extinction curves.  相似文献   

15.
We present spectropolarimetric observations of the radio galaxy 3C 234 at optical and, for the first time, near-IR wavelengths. In agreement with previous observations we detect broad Hα in total and polarized flux, consistent with the scenario in which the central active nucleus is hidden from view and observed via scattered radiation.
We model the flux and polarization properties at optical and near-IR wavelengths, which result in a point-source, cone-based scattering geometry in the optical, and an extended source scattering in the near-IR, with a dichroic view to the emission regions, which becomes important only at the longer wavelengths. From this model we calculate an intrinsic Hα luminosity of 4.9×1044 erg s−1, and an extinction to the near-IR emission region of 60 mag for AV . The scattered radiation also undergoes extinction, this time by 1 mag for AV , assuming a source function of a typical stellar-subtracted Seyfert 1 galaxy. Our modelling does not require the presence of a second featureless continuum (FC2).
Additionally, we require that the scatterers are in bulk radial outflow at approximately 600 km s−1 to explain an observed increase in the intrinsic polarization of the scattered broad Hα line in the red wing, and blueshifted narrow-line components in polarized flux.  相似文献   

16.
An investigation of the optical response of the atmosphere before, during, and afterthe total solar eclipse of 26 February 1998 at the Caribbean Peninsula of Paraguaná (Falcón State) in Venezuela, was made by measuring photometrically the intensity of the sky brightness in three strategic directions: zenith, horizon anti-parallel or opposite the umbra path, and horizon perpendicular to this path. From these measurements, and by applying in an inverse way an empirical photometric model, very rough estimations of theextinction coefficient, and also of the average optical depth, were obtained in one of these particular directions. However based on meteorological measurements such as those of relative humidity and temperature, and applying a different model, a better estimation in the visual of the total global extinction coefficient of the sky (except the horizon), were made considering the contribution of each component: atmospheric aerosol, water vapour, ozone and Rayleigh scattering. It is shown that this global coefficient is mostly dependent upon aerosol extinction. In spite of the strong reduction of sky brightness photometrically observed during the totality, the results show that the sky was not dark. This is confirmed by the results obtained for the total global extinction coefficient. Additionally it is estimated that the total solar eclipse that took place also in Falcón State, Venezuela, at the beginning of the last century on 3 February 1916, was 30% darker that the 1998 eclipse, and that atmospheric aerosol played a relevant and similar role in the scattering of sunlight during the totality as it was for 1998's. Visual observations made during each event, which show that at length only one or two bright stars could be seen in the sky, support the results obtained for both eclipses.  相似文献   

17.
We describe here a simple irradiance photometer built at Astrophysical and Geophysical Laboratory (LAG) for the integrated photometry of sun light at Oukaimeden, a 2700m summit in the Morrocan High Atlas. The solar irradiance measurement is performed simultaneously at three wavelengths to sample different levels of the sky transparency. The total of 1182 days in the data base shows that the number of clear hours is about 3086 per year which represents 65.32% of clear sky. The extinction coefficient is computed to evaluate the quality of the sky transparency at the site. We find that there is a seasonal effect for the sky transparency, and the monthly average of the extinction coefficient has a minimum value of about 0.05 in winter (oct-nov-dec) and a maximum of about 0.15 in summer (jun-jul) at 700 nm.  相似文献   

18.
We investigate the extinction curves of young galaxies in which dust is supplied from Type II supernovae (SNe II) and/or pair instability supernovae (PISNe). Since at high redshift ( z > 5), low-mass stars cannot be dominant sources for dust grains, SNe II and PISNe, whose progenitors are massive stars with short lifetimes, should govern the dust production. Here, we theoretically investigate the extinction curves of dust produced by SNe II and PISNe, taking into account reverse shock destruction induced by collision with ambient interstellar medium. We find that the extinction curve is sensitive to the ambient gas density around a SN, since the efficiency of reverse shock destruction strongly depends on it. The destruction is particularly efficient for small-sized grains, leading to a flat extinction curve in the optical and ultraviolet wavelengths. Such a large ambient density as   n H≳ 1 cm−3  produces too flat an extinction curve to be consistent with the observed extinction curve for SDSS J1048+4637 at z = 6.2. Although the extinction curve is highly sensitive to the ambient density, the hypothesis that the dust is predominantly formed by SNe at z ∼ 6 is still allowed by the current observational constraints. For further quantification, the ambient density should be obtained by some other methods. Finally, we also discuss the importance of our results for observations of high- z galaxies, stressing a possibility of flat extinction curves.  相似文献   

19.
The variability of the aerosol loading in the mesosphere of Venus is investigated from a large data set obtained with SOIR, a channel of the SPICAV instrument suite onboard Venus Express. Vertical profiles of the extinction due to light absorption by aerosols are retrieved from a spectral window around 3.0 μm recorded in many solar occultations (~200) from September 2006 to September 2010. For this period, the continuum of light absorption is analyzed in terms of spatial and temporal variations of the upper haze of Venus. It is shown that there is a high short-term (a few Earth days) and a long-term (~80 Earth days) variability of the extinction profiles within the data set. Latitudinal dependency of the aerosol loading is presented for the entire period considered and for shorter periods of time as well.  相似文献   

20.
We utilized aerosol extinction coefficient inferred from Cassini/CIRS spectra in the far and mid infrared region to derive the extinction cross-section near an altitude of 190 km at 15°S (from far-IR) and 20°S (from mid-IR). By comparing the extinction cross section that are derived from observations with theoretical calculations for a fractal aggregate of 3000 monomers, each having a radius of 0.05 μm, and a fractal dimension of 2, we are able to constrain the refractive index of Titan’s aerosol between 70 and 1500 cm?1 (143 and 6.7 μm). As the real and imaginary parts of the refractive index are related by the Kramers–Kronig equation, we apply an iterative process to determine the optical constants in the thermal infrared. The resulting spectral dependence of the imaginary index displays several spectral signatures, some of which are also seen for some Titan’s aerosol analogues (tholins) produced in laboratory experiments. We find that Titan’s aerosols are less absorbent than tholins in the thermal infrared. The most prominent emission bands observed in the mid-infrared are due to CH bending vibrations in methyl and methylene groups. It appears that Titan’s aerosols predominantly display vibrations implying carbon and hydrogen atoms and perhaps marginally nitrogen. In the mid infrared, all the aerosol spectral signatures are observed at three additional latitudes (56°S, 5°N and 30°N) and in the 193–274 km altitude range, which implies that Titan’s aerosols exhibit the same chemical composition in all investigated latitude and altitude regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号