首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
2.
The rifting history of the Atlantic continental margin of Newfoundland is very complex and so far has been investigated at the crustal scale primarily with the use of 2-D seismic surveys. While informative, the results generated from these surveys cannot easily be interpreted in a regional sense due to their sparse sampling of the margin. A 3-D gravity inversion of the free air data over the Newfoundland margin allows us to generate a 3-D density anomaly model that can be compared with the seismic results and used to gain insight into regions lacking seismic coverage. Results of the gravity inversion show good correspondence with Moho depths from seismic results. A shallowing of the Moho to 12 km depth is resolved on the shelf at the northern edge of the Grand Banks, in a region poorly sampled by other methods. Comparisons between sediment thickness and crustal thickness show deviations from local isostatic compensation in locations which correlate with faults and rifting trends. Such insights must act as constraints for future palaeoreconstructions of North Atlantic rifting.  相似文献   

3.
4.
5.
Gravity anomalies and flexure of the lithosphere at Ascension Island   总被引:1,自引:0,他引:1  
Ascension Island, in the northern South Atlantic, forms the summit of a volcanic edifice 60 km in diameter which places a substantial load on the underlying young oceanic lithosphere. An analysis of a combined data set of recent and historical surface-gravity and bathymetry measurements on and around the island suggests that the lithosphere responds to this load by flexure equivalent to that of an elastic plate only ≈ 3 km thick, and that the mean density of the volcanic edifice is ≈ 2500 kg m-3. A steep gravity gradient across the island cannot be explained by a simple flexural model and must be attributed to lateral density variations within the volcano itself. The effective elastic thickness is considerably less than the expected ≈ 12 km mechanical thickness of the ≈ 6 Ma lithosphere loaded by the volcano, and less even than zero-age elastic thicknesses commonly observed at slow-spreading ridges with axial rift valleys. The unusually small elastic thickness may be attributed to the combined effects of the high curvature beneath the island, which produces bending stresses that are limited by the yield stress envelope, localized heating of the lithosphere during emplacement of the island, and crustal thickening. When these factors are taken into account, the observed flexure is consistent with rheological models based on experimental rock mechanics.  相似文献   

6.
7.
8.
9.
Structure and early evolution of the Arabian Sea and East Somali Basin   总被引:5,自引:0,他引:5  
The Laxmi Ridge is a large-scale basement high buried beneath the sediments of the Indus Fan. The location of the ocean–continent transition (OCT) on this margin has previously been proposed at either the southern edge of the Laxmi Ridge or beyond it towards the India–Pakistan shelf. The former explains the margin-parallel Laxmi Basin as thinned continental crust, the latter as a failed rift of earlier seafloor spreading. To examine the structure of this margin, a reassessment of marine magnetic data has detailed seafloor-spreading magnetic anomalies prior to anomaly 24 in both the Arabian and East Somali basins. The previously identified anomaly 28 is not interpreted as a seafloor-spreading anomaly but as a magnetized basement feature adjacent to, and merging with, the ridge—the Laxmi Spur. New gravity models across the Laxmi Ridge and adjacent margin using ship and satellite data corroborate the existence of underplated crust beneath the Laxmi Ridge and Basin and the location of the OCT at the southern edge of the Ridge. The results are not compatible with the existence of a pre-anomaly 28 phase of seafloor spreading, although large-scale intrusions may be the origin of some of the basement features in the Laxmi Basin. The models also identify the Laxmi Spur as a low-density feature with a natural remanent magnetization (NRM) compatible with serpentinization. The Laxmi Ridge is mapped to the southeast, where it appears to terminate at a point coinciding with the appearance of E–W magnetic lineations and gravity anomalies at 15.5°N. Thereafter it becomes indistinct. This is interpreted as necessary in the reconstruction to the Mascarene Plateau to avoid continental overlap.  相似文献   

10.
11.
武衡 《极地研究》1988,1(1):1-1
《南极研究》与广大读者见面了.我怀着十分高兴的心情为它的创刊致以热烈的祝贺!我国的南极考察工作起步较晚,但发展较快,尤其是近几年,建成了南极长城站,已在长城站地区进行了三次较大规模的多学科考察,初步取得了可喜的成果.我国已经具备了独立开展南极考察的能力,并取得了一些经验.这些成绩是在党中央、国务院的关怀和支持下取得的,  相似文献   

12.
13.
The deep seismic reflection profile Western Approaches Margin (WAM) cuts across the Goban Spur continental margin, located southwest of Ireland- This non-volcanic margin is characterized by a few tilted blocks parallel to the margin. A volcanic sill has been emplaced on the westernmost tilted block. The shape of the eastern part of this sill is known from seismic data, but neither seismic nor gravity data allow a precise determination of the extent and shape of the volcanic body at depth. Forward modelling and inversion of magnetic data constrain the shape of this volcanic sill and the location of the ocean-continent transition. The volcanic body thickens towards the ocean, and seems to be in direct contact with the oceanic crust. In the contact zone, the volcanic body and the oceanic magnetic layer display approximately the same thickness. The oceanic magnetic layer is anomalously thick immediately west of the volcanic body, and gradually thins to reach more typical values 40 km further to the west. The volcanic sill would therefore represent the very first formation of oceanic crust, just before or at the continental break-up. The ocean-continent transition is limited to a zone 15 km wide. The continental magnetic layer seems to thin gradually oceanwards, as does the continental crust, but no simple relation is observed between their respective thinnings.  相似文献   

14.
15.
16.
17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号