首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
True relative Sr isotopic compositions, determined by the double-spike technique, are reported for 8 olivine chondrules from Allende and a single chondrule from Richardton. The Richardton chondrule has an Sr composition identical with the whole meteorite, but the Allende chondrules are up to 1.4‰ per mass unit light-isotope enriched, closely similar to Ca-Al inclusions (CAI) from the same individual stone. The correspondence of the patterns for chondrules and CAI suggests that both groups of objects derived their fractionated Sr in similar ways. The lack of any detectable non-linear Sr isotopic anomaly in the objects suggests that their Sr compositions did not have some exotic or extrasolar origin, but were derived from normal solar system Sr by mass fractionation. The consistent light-Sr enrichment of Allende objects may be explained by several schemes, and all are heavily model-dependent. Most plausible to the author is that the CAI and chondrules derived their fractionated Sr from a region of the nebula made isotopically light by partial kinetic mass separation of elements in the vapour phase. Later, the solid objects may have moved to an isotopically more normal region, where the Allende matrix accreted.  相似文献   

2.
Bulk abundances of Na, Mg, Al, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, La, Sm, Eu, Yb, Lu, Ir, and Au were determined by neutron activation analysis of chondrules separated from unequilibrated H-, L-, and LL-chondrites (Tieschitz, Hallingeberg, Chainpur, Semarkona) and correlated with chondrule petrographic properties. Despite wellknown compositional differences among the whole-rock chondrites, the geometric mean compositions of their respective chondrule suites are nearly indistinguishable from each other for many elements. Relative to the condensible bulk solar system (approximated by the Cl chondrite Orgueil), chondrules are enriched in lithophile and depleted in siderophile elements in a pattern consistent with chondrule formation by melting of pre-existing materials, preceded or attended by silicate/metal fractionation. Relative to nonporphyritic chondrules, porphyritic chondrules are enriched in refractory and siderophile elements, suggesting that these two chondrule groups may have formed from different precursor materials.  相似文献   

3.
Ultrafine matrix material has been concentrated by sieving and filtering disaggregated samples of six ordinary chondrites of different classes. This component(s), “Holy Smoke” (HS), is enriched in both volatile, e.g. Na, K, Zn, Sb, and Pb, as well as refractory elements, e.g. W and REE; however, the element ratios vary greatly among the different chondrites. SEM studies show that HS contains fragile crystals, differing in composition, and apparently in gross disequilibrium not only among themselves but also with the major mineral phases and consequently thermodynamic equilibration did not occur. Thus HS must have originated from impacting bodies and/or was inherent in the “primitive” regolith. Subsequent impact brecciation and reheating appears to have altered, to varying degrees, the original composition of this ultrafine matrix material. Recent “cosmic dust” studies may indicate that HS still exists in the solar system. Survival of such delicate material must be considered in all theories for the origin of chondrites.  相似文献   

4.
The high observed abundances of Na and Cu in chondrules indicate that the amount of loss during chondrule formation was minor and possibly negligible, consistent with the view that loss was controlled by diffusion kinetics rather than equilibrium volatility, and that the surface of the chondrule quickly cooled to temperatures at which diffusional transport was negligible. Ordinary chondrite/CI abundance ratios appear to be randomly distributed in the range 0.9-0.1. Very few values are observed in the 0.36–0.70 range, but this is not statistically significant, nor is it predicted by the two-component (chondrule-matrix) model.If CI chondrite abundances are representative of mean solar-system material, the very low chondrule content in CM chondrites (<5% of high-temperature materials) indicates that the observed volatile distribution resulted from incomplete accretion of volatile carriers (perhaps a fine aerosol). At the ordinary chondrite formation location the fraction of an element sited in unaccreted carriers increased with decreasing condensation temperature. At the CM location a similar trend is observed for elements less volatile than S, but the unaccreted fraction of more volatile elements was nearly constant.  相似文献   

5.
Olivine crystals in mare basalts 12004,8 and 12022,12 are normally zoned with Cr-poor rims. The Ni content of rare 2–10-μm metal inclusions in olivine decreases markedly as Fe/Mg in their immediate olivine hosts increases. Each metal grain appears to have been enclosed by late olivine almost immediately after it crystallized. The fractionation trend for the olivine and metal contrasts with the subsolidus equilibration trend for pallasites. For the basalts, not even local equilibration of Fe, Ni and Co at metal/olivine interfaces can be detected by microprobe. Ni and Co concentrations range from about 300 ppm in olivine cores to about 70 ppm in rims. The limits of detection, at 95% confidence, are 36 ppm (Ni) and 25 ppm (Co). The distribution of Ni and Co in olivine, like that of Mg and Cr, records the depletion of these elements in the melt.Fractional solidification models, using the Ni and Co concentrations of the whole rock, and Ni and Co concentrations of the earliest formed olivine, metal and “opaques” as initial compositions, allow metal and olivine compositions to be predicted if the order of crystallization is known. Conversely the order of crystallization can be established if known olivine and metal compositions are reproduced. Calculated Ni and Co contents for metal and olivine in these basalts correspond to observed concentrations only where metal precipitation is delayed until the liquid has crystallized 4–5 wt.% olivine.  相似文献   

6.
Samples of the mineral oldhamite (CaS) were extracted from enstatite chondrites and analyzed by INAA. Prior to extraction, the petrologic setting of the grains was studied microscopically and their minor element contents determined by microprobe analyses. Minor element contents of CaS are known to vary and correlate with petrologic type, indicating secondary redistribution during metamorphism. For this reason, samples were chosen that displayed a range of minor element contents. The trace element contents determined in this study follow a similar pattern. The most primitive samples of CaS studied, contain virtually the entire inventory of the host meteorite's LREE and Eu plus 30–50% of the HREE inventory. In less primitive samples the LREE are less enriched although Eu remains highly concentrated in CaS. Several other elements, including lithophiles (Ba, Cs, Cr, Hf and Sc) and chalcophiles (Sb and Zn) are most enriched in more primitive CaS. The high concentrations of refractory elements, several of which have a tendency to form sulfides at high temperatures in a gas slightly more reducing than solar, lend support to the suggestion that CaS originated at high temperatures in a reduced region of the nebula. The high concentrations of volatile Cs, Sb and Zn indicate that with decreasing temperature CaS continued to interact with the nebular gas, which therefore must have had a low oxygen fugacity at low temperatures.  相似文献   

7.
Pei  XianZhi  Ding  SaPing  Zhang  GuoWei  Liu  HuiBin  Li  ZuoChen  Li  GaoYang  Liu  ZhanQing  Meng  Yong 《中国科学:地球科学(英文版)》2007,50(2):264-276

Baihua meta-igneous complex consists mainly of pyroxenite-gabbro(diorite)-diorite-quartz diorite. They form a complete comagmatic evolutionary series. The geochemical characteristics of basic-intermediate basic igneous rocks indicate that they belong to a tholeiite suite. The REE distribution pattern is nearly flat type and LREE is slightly enriched type, and their primitive mantle-normalized and MORB-normalized trace element spider diagrams are generally similar; the LIL elements (LILE) Cs, Ba, Sr, Th and U are enriched, but Rb, K and the HFSEs Nb, P, Zr, Sm, Ti and Y are relatively depleted. All these show comagmatic evolution and origin characteristics. The tectonics environment discrimination of trace element reveals that these igneous complexes formed in an island-arc setting. The LA-ICP-MS single-zircons U-Pb age of Baihua basic igneous complex is 434.6±1.5 Ma (MSWD = 1.3), which proves that the formation time of the island-arc type magmatite in the northern zone of West Qinling is Late Ordovician or Early Silurian, also reveals that the timing of subduction of paleo-ocean basin represented by the Guanzizhen ophiolite and resulting island-arc-type magmatic activities is probably Middle-Late Ordovician to Early Silurian.

  相似文献   

8.
Individual chondrules have been separated from the H5 chondrite Richardton and subjected to a detailed chemical-petrological study. A portion of each chondrule has been examined petrographically and phase chemistry determined by electron microprobe analysis. Of the remaining portion an aliquot was taken for measurement of major element abundances by microprobe using a microfusion technique. Rb, Sr,87Sr/86Sr and REE were determined by mass spectrometric isotope dilution.The chondrules define a Rb-Sr isochron age of 4.39 ± 0.03Ga(λ = 1.42 × 10?11 a?1) and an initial ratio of 0.7003 ± 7. The age is interpreted as a metamorphic age and indicates that Sr isotope equilibration occurred in the Richardton parent body for some 100 Ma or more after condensation of the solar system. Metamorphism had little effect on chondrule textures but effected Fe/Mg exchange to produce highly uniform olivine and pyroxene compositions, and may have caused some redistribution of REE.The major element compositions of Richardton chondrules are mostly constant and close to reported averages for Tieschitz, Bishunpur and Chainpur. They contain high-temperature condensate elements in close to cosmic proportions, but are deficient in Fe. Theories of chondrule origin are briefly reviewed, and while it is difficult to distinguish between direct condensation and dust fusion by impacting, it is postulated that iron was fractionated from silicate prior to or during chondrule formation.  相似文献   

9.
During the summer of 1989 surface sediment samples were collected in Lake Coeur d'Alene, the Coeur d'Alene River and the St Joe River, Idaho, at a density of approximately one sample per square kilometre. Additional samples were collected from the banks of the South Fork of the Coeur d'Alene and the Coeur d'Alene Rivers in 1991. All the samples were collected to determine trace element concentrations, partitioning and distribution patterns, and to relate them to mining, mining related and discharge operations that have occurred in the Coeur d'Alene district since the 1880s, some of which are ongoing. Most of the surface sediments in Lake Coeur d'Alene north of Conkling Point and Carey Bay are substantially enriched in Ag, As, Cu, Cd, Hg, Pb, Sb and Zn relative to unaffected sediments in the southern portion of the lake near the St Joe River. All the trace element enriched sediments are extremely fine grained (mean grain sizes « 63 μm). Most of the enriched trace elements, based on both the chemical analyses of separated heavy and light mineral fractions and a two step sequential extraction procedure, are associated with an operationally defined Fe oxide phase; much smaller percentages are associated either with operationally defined organics/sulphides or refractory phases. The presence, concentration and distribution of the Fe oxides and heavy minerals indicates that a substantial portion of the enriched trace elements are probably coming from the Coeur d'Alene River, which is serving as a point source. Within the lake, this relatively simple point source pattern is complicated by a combination of (1) the formation of trace element rich authigenic Fe oxides that appear to have reprecipitated from material solubilized from anoxic bed sediments and (2) physical remobilization by currents and wind driven waves. The processes that have caused the trace element enrichment in the surface sediments of Lake Coeur d'Alene are likely to continue for the foreseeable future.  相似文献   

10.
Modal analyses of 273 different peridotites representing 43 dredge stations in the Atlantic, Caribbean, and Indian Oceans define three separate melting trends. Peridotites dredged in the vicinity of “mantle plumes” or hot spots have the most depleted compositions in terms of basaltic components, while peridotites dredged at locations removed from such regions are systematically less depleted. The modal data correlate well with mineral compositions, with the peridotites most depleted in pyroxene also having the most refractory mineral compositions. This demonstrates that they are the probable residues of variable degrees of mantle melting. Further, there is a good correlation between the modal compositions of the peridotites and the major element composition of spatially associated dredged basalts. This demonstrates for the first time that the two must be directly related, as is frequently postulated. The high degree of depletion of the peridotites in basaltic major element components in the vicinity of some documented mantle plumes provides direct evidence for a thermal anomaly in such regions—justifying their frequent designation as “hot spots”. The high incompatible element concentrations in these “plume” basalts, however, are contrary to what is expected for such high degrees of melting, and thus require either selective contributions from locally more abundant enriched veins and/or contamination by a volatile-rich metasomatic front from depth.  相似文献   

11.
DSDP Leg 82 sampled the oceanic crust, at 9 sites, west of the MAR between 33°N and 38°N, i.e., from the Azores “mantle plume” to south of the Hayes Fracture Zone. A specific aim of this DSDP Leg was to determine if the origin, and spatial and temporal evolution of oceanic mantle heterogeneity in the vicinity was related in a predictable manner to the “mantle plume”. Our approach in evaluating this question has been to select samples on the basis of trace element characteristics and age, for radiogenic isotope determinations.Isotopic and trace element heterogeneity occur both within between sites. While there is a crude correlation between trace element and isotopic characteristics, it is difficult to establish a detailed set of guidelines which would describe either trace element-isotope interrelationships. This difficulty is highlighted by the occurrence of basalts in one hole (H558) with trace element characteristics ranging from enriched to depleted, which can have identical or different isotopic characteristics.The origin, and spatial and temporal distribution of the heterogeneity cannot be reconciled with any simple models. A complicated scenario, involving mantle plums or blobs, recent local heterogeneity and complex mixing models, is required.  相似文献   

12.
Six samples of metamorphic rocks from three essentially coeval stratigraphic units, two of which contain Precambrian microfossils, have been analyzed by the Rb-Sr whole-rock radiometric method. Least-squares regression of the data yields an isochron date of 934 ± 80m.y. with initial 87Sr/86Sr= 0.7007 ± 0.0011. This date may reflect the approximate age of formation of these rocks or, alternately, a time of major metamorphism. Regardless, the date is significant in that it (a) is in agreement with the 900-m.y. date for rocks containing similar types of fossils from Bitter Springs, Australia, and (b) coupled with structural evidence, supports the time equivalence of these rocks with 1000-m.y. old rocks (“Kibaran cycle”) of Saudi Arabia.  相似文献   

13.
IPOD Leg 49 recovered basalts from 9 holes at 7 sites along 3 transects across the Mid-Atlantic Ridge: 63°N (Reykjanes), 45°N and 36°N (FAMOUS area). This has provided further information on the nature of mantle heterogeneity in the North Atlantic by enabling studies to be made of the variation of basalt composition with depth and with time near critical areas (Iceland and the Azores) where deep mantle plumes are thought to exist. Over 150 samples have been analysed for up to 40 major and trace elements and the results used to place constraints on the petrogenesis of the erupted basalts and hence on the geochemical nature of their source regions.It is apparent that few of the recovered basalts have the geochemical characteristics of typical “depleted” midocean ridge basalts (MORB). An unusually wide range of basalt compositions may be erupted at a single site: the range of rare earth patterns within the short section cored at Site 413, for instance, encompasses the total variation of REE patterns previously reported from the FAMOUS area. Nevertheless it is possible to account for most of the compositional variation at a single site by partial melting processes (including dynamic melting) and fractional crystallization. Partial melting mechanisms seem to be the dominant processes relating basalt compositions, particularly at 36°N and 45°N, suggesting that long-lived sub-axial magma chambers may not be a consistent feature of the slow-spreading Mid-Atlantic Ridge.Comparisons of basalts erupted at the same ridge segment for periods of the order of 35 m.y. (now lying along the same mantle flow line) do show some significant inter-site differences in Rb/Sr, Ce/Yb,87Sr/86Sr, etc., which cannot be accounted for by fractionation mechanisms and which must reflect heterogeneities in the mantle source. However when hygromagmatophile (HYG) trace element levels and ratios are considered, it is the constancy or consistency of these HYG ratios which is the more remarkable, implying that the mantle source feeding a particular ridge segment was uniform with respect to these elements for periods of the order of 35 m.y. and probably since the opening of the Atlantic. Yet these HYG element ratios at 63°N are very different from those at 45°N and 36°N and significantly different from the values at 22°N and in “MORB”.The observed variations are difficult to reconcile with current concepts of mantle plumes and binary mixing models. The mantle is certainly heterogeneous, but there is not simply an “enriched” and a “depleted” source, but rather a range of sources heterogeneous on different scales for different elements — to an extent and volume depending on previous depletion/enrichment events. HYG element ratios offer the best method of defining compositionally different mantle segments since they are little modified by the fractionation processes associated with basalt generation.  相似文献   

14.
Pb isotope data are presented for the potassic rocks from Roccamonfina and some other Campanian volcanoes. Pb isotope variations for Roccamonfina fall within the previously found range of values for the Italian potassic volcanism and form similar shallow regression lines in the Pb-Pb diagrams. Their interpretation as two-component mixing lines is well supported by other geochemical evidence. The relation of the mixing processes deduced for Roccamonfina and for the wider regional volcanism is discussed. The enriched and anomalous mantle under Italy is proposed to be a result of various degrees of metasomatism of a range of “Atlantic island” type mantle compositions by an LIL-element-enriched mantle “fluid”. The mantel “fluid” may either derive its isotope and trace element characteristics from an old LIL-element-enriched mantle source or from continental crust which has to some extend retained its geochemical identity in the upper mantle.  相似文献   

15.
近年来,国内学者强调对于复杂和超限结构需进行中震性能设计,即在小震弹性设计后进行中震下的承载力复核及调整,然而中震设计能否提高结构整体抗震性能仍存在争议.为探究中震设计与小震设计方法的差异,本文依据现行规范,以设防烈度、结构高度和场地类别为变化参数,建立了48个典型RC剪力墙模型,并分别以"小震"、"高规中震"、"广东...  相似文献   

16.
Basalts dredged from the Galapagos Rift Zone between 85°W and 100°W were analyzed by electron microprobe to determine the chemistry of the glass exteriors and included phenocrysts, microphenocrysts and quench minerals. The basalts come from both “normal” mid-ocean ridge segments and from ridge segments that cross the Galapagos Platform. The basalts fall into two chemical and geographical groups. Group A basalts come from outside the central region of the Galapagos Platform (i.e., outside 89–92.5°W) and are chemically similar to basalts from “normal” ocean ridge segments. Group B basalts come from the center of the Galapagos Platform (89–92.5°W) and are enriched in incompatible elements like “plume-influenced” basalts from the Mid-Atlantic Ridge. The spinel, olivine, plagioclase and clinopyroxene phenocrysts in both groups of basalts are low-pressure, equilibrium phases, but the chemical difference among basalts from within each group indicates high-pressure fractional crystallization is also responsible for the chemical evolution of some of these basalts. Presently, no crystallization or partial melting model can relate the chemistry of the two groups of basalts and the compositional influence of a large-ion-lithophile elements and water-rich mantle beneath the Galapagos Platform is a viable alternate hypothesis. The eruption temperature of magmas from the “normal” ridge segments, as determined by olivine-liquid thermometry is 1217±10°C, suggesting steady-state conditions but on the Galapagos Platform the eruption temperatures are lower and more variable than on the “normal” ridge (1186°C±30°C) suggesting a more complex plumbing system and the absence of a steady-state magma chamber beneath the platform.  相似文献   

17.
Selected basalts from a suite of dredged and drilled samples (IPOD sites 525, 527, 528 and 530) from the Walvis Ridge have been analysed to determine their rare earth element (REE) contents in order to investigate the origin and evolution of this major structural feature in the South Atlantic Ocean. All of the samples show a high degree of light rare earth element (LREE) enrichment, quite unlike the flat or depleted patterns normally observed for normal mid-ocean ridge basalts (MORBs). Basalts from Sites 527, 528 and 530 show REE patterns characterised by an arcuate shape and relatively low (Ce/Yb)N ratios (1.46–5.22), and the ratios show a positive linear relationship to Nb content. A different trend is exhibited by the dredged basalts and the basalts from Site 525, and their REE patterns have a fairly constant slope, and higher (Ce/Yb)N ratios (4.31–8.50).These differences are further reflected in the ratios of incompatible trace elements, which also indicate considerable variations within the groups. Mixing hyperbolae for these ratios suggest that simple magma mixing between a “hot spot” type of magma, similar to present-day volcanics of Tristan da Cunha, and a depleted source, possibly similar to that for magmas being erupted at the Mid-Atlantic Ridge, was an important process in the origin of parts of the Walvis Ridge, as exemplified by Sites 527, 528 and 530. Site 525 and dredged basalts cannot be explained by this mixing process, and their incompatible element ratios suggest either a mantle source of a different composition or some complexity to the mixing process. In addition, the occurrence of different types of basalt at the same location suggests there is vertical zonation within the volcanic pile, with the later erupted basalts becoming more alkaline and more enriched in incompatible elements.The model proposed for the origin and evolution of the Walvis Ridge involves an initial stage of eruption in which the magma was essentially a mixture of enriched and depleted end-member sources, with the N-MORB component being small. The dredged basalts and Site 525, which represent either later-stage eruptives or those close to the hot spot plume, probably result from mixing of the enriched mantle source with variable amounts and variable low degrees of partial melting of the depleted mantle source. As the volcano leaves the hot spot, these late-stage eruptives continue for some time. The change from tholeiitic to alkalic volcanism is probably related either to evolution in the plumbing system and magma chamber of the individual volcano, or to changes in the depth of origin of the enriched mantle source melt, similar to processes in Hawaiian volcanoes.  相似文献   

18.
Mineral and whole-rock REE abundances in garnet lherzolite and megacrystalline nodules from The Thumb display broad correlations with major element compositions. Lherzolites with > 12 modal % clinopyroxene plus garnet (“high-CaAl lherzolites”) have relatively flat chondrite-normalized whole-rock REE patterns. Lherzolites poor in clinopyroxene and garnet (“low-CaAl lherzolites”) have lower HREE in clinopyroxenes and garnets and higher whole-rock LREE/HREE. It is concluded that the low-CaAl lherzolites may have undergone LREE metasomatism after depletion of the major element compositions by partial melting and that much of the garnet now present was originally dissolved in aluminous orthopyroxene. The high-CaAl lherzolites may be interpreted either as primordial mantle samples or as products of equilibration with very LREE-enriched liquids. The “megacrystalline” nodules are medium- to ultracoarse-grained intergrowths and megacrysts with mineral compositions similar to discrete nodule suites in kimberlites. The REE abundances of the megacrystalline minerals are consistent with an origin as cumulates from magma with extremely fractionated REE, similar to minette or kimberlite.The patterns of correlation of REE and major elements in this inclusion suite are similar to the patterns observed in the garnet lherzolite and discrete nodule suites of southern African kimberlites. Both of the subcontinental mantle provinces represented by these suites contain three distinct petrogenetic components: refractory garnet lherzolite enriched in LREE and depleted in HREE, fertile garnet lherzolite with generally chondritic REE abundances, and a suite of ultracoarse minerals precipitated from magma with extremely fractionated REE generally similar to the host magmas.  相似文献   

19.
We report new trace element data for an extensive suite of quench basalt glasses dredged from the southern Mid-Atlantic Ridge (MAR) between 40°S and 52.5°S. Ratios between highly incompatible trace elements are strongly correlated and indicate a systematic distribution of incompatible element enriched mid-ocean ridge basalt (MORB) (E-type: Zr/Nb=5.9-19, Y/Nb=0.9-8.4, (La/Sm)n=1.0-2.9) and incompatible element depleted MORB (N-type: Zr/Nb=30-69, Y/Nb=11-29, (La/Sm)n=0.48-0.79) along this section of the southern MAR. A notable feature of N-type MORB from the region is the higher than usual Ba/Nb (4-9), La/Nb (1.2-2.4) and primitive mantle normalised K/Nb ratios (>1). Ba/Nb ratios in E-type MORB samples from 47.5 to 49°S are especially elevated (>10). The occurrence and geographic distribution of E-type MORB along this section of the southern MAR can be correlated with the ridge-centred Shona and off-axis Discovery mantle plumes. In conjunction with published isotope data for a subset of the same sample suite [Douglass et al., J. Geophys. Res. 104 (1999) 2941], a model is developed whereby prior to the breakup of Gondwana and the opening of the South Atlantic Ocean, the underlying asthenospheric mantle was locally contaminated by fluids/melts rising from the major Mesozoic subduction zone along the south-southwest boundary of Gondwana, leaving a subduction zone geochemical imprint (elevated (K/Nb)n and 87Sr/86Sr ratios, decreased 143Nd/144Nd ratios). Subsequent impingement of three major mantle plume heads (Tristan/Gough, Discovery, Shona) resulted in heating and thermal erosion of the lowermost subcontinental lithosphere and dispersal into the convecting asthenospheric mantle. With the opening of the ocean basin, continued plume upwelling led to plume-ridge interactions and mixing between geochemically enriched mantle derived from the Shona and Discovery mantle plumes, material derived from delamination of the subcontinental lithosphere, and mildly subduction zone contaminated depleted asthenospheric mantle.  相似文献   

20.
A correlary of sea floor spreading is that the production rate of ocean ridge basalts exceeds that of all other volcanic rocks on the earth combined. Basalts of the ocean ridges bring with them a continuous record in space and time of the chemical characteristics of the underlying mantle. The chemical record is once removed, due to chemical fractionation during partial melting. Chemical fractionations can be evaluated by assuming that peridotite melting has proceeded to an olivine-orthopyroxene stage, in which case the ratios of a number of magmaphile elements in the extracted melt closely match the ratios in the mantle. Comparison of ocean ridge basalts and chondritic meteorites reveals systematic patterns of element fractionation, and what is probably a double depletion in some elements. The first depletion is in volatile elements and is due to high accretion temperatures of a large percentage of the earth from the solar nebula. The second depletion is in the largest, most highly charged lithophile elements (“incompatible elements”), probably because the mantle source of the basalts was melted previously, and the melt, enriched in these elements, was removed. Migration of melt relative to solid under ocean ridges and oceanic plates, element fractionation at subduction zones, and fractional melting of amphibolite in the Precambrian are possible mechanisms for depleting the mantle in incompatible elements. Ratios of transition metals in the mantle source of ocean ridge basalts are close to chondritic, and contrast to the extreme depletion of refractory siderophile elements, the reason for which remains uncertain. Variation of ocean ridge basalt chemistry along the length of the ridge has been correlated with ridge elevation. Thus chemically anomalous ridge segments up to 1000 km long appear to broadly coincide with regions of high magma production (plumes, hot spots). Basalt heterogeneity at a single location indicates mantle heterogeneity on a smaller scale. Variation of ocean ridge basalt chemistry with time has not been established, in fact, criteria for recognizing old oceanic crust in ophiolite terrains are currently under debate. The similarity of rare earth element patterns in basalt from ocean ridges, back-arc basins, some young island arcs, and some continental flood basalts illustrates the dangers of tectonic labeling by rare earth element pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号