首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A.J. Dessler 《Icarus》1980,44(2):291-295
Theoretical arguments have been presented to the effect that both plasma and energy are supplied to the Jovian magnetosphere primarily from internal sources. If we assume that Io is the source of plasma for the Jovian magnetosphere and that outward flow of plasma from the torus is the means of drawing from the kinetic energy of rotation of Jupiter to drive magnetospheric phenomena, we can obtain a new, independent estimate of the rate of mass injection from Io into the Io plasma torus. We explicitly assume the solar wind supplies neither plasma nor energy to the Jovian magnetosphere in significant amounts. The power expended by the Jovian magnetosphere is supplied by torus plasma falling outward through the corotational-centrifugal-potential field. A lower limit to the rate of mass injection into the torus, which on the average must equal the rate of mass loss from the torus, is therefore derivable if we adopt a value for the power expended to drive the various magnetospheric phenomena. This method yields an injection rate of at least 103 kg/sec, a value in agreement with the results obtained by two other independent methods of estimating mass injection rate. If this injection rate from Io and extraction of energy from Jupiter's kinetic energy of rotation has been maintained over geologic time, then approximately 0.1% of Io's mass (principally in the form of sulfur and oxygen) has been lost to the Jovian magnetosphere, and Jupiter's spin rate has been reduced by less than 0.1%.  相似文献   

2.
Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the jovian system is a source of X-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are both powerful sources of X-ray emission. Chandra observations revealed X-ray emission from the Io plasma torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from the moons is due to bombardment of their surfaces by highly energetic magnetospheric protons, and oxygen and sulfur ions. These ions excite atoms in their surfaces leading to fluorescent X-ray emission lines. These lines are produced against an intense background continuum, including bremsstrahlung radiation from surface interactions of primary magnetospheric and secondary electrons. Although the X-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging X-ray spectrometer in orbit around one or more of these moons, operating from 200 eV to 8 keV with 150 eV energy resolution, would provide a detailed mapping of the elemental composition in their surfaces. Surface resolution of 40 m for small features could be achieved in a 100-km orbit around one moon while also remotely imaging surfaces of other moons and Jupiter's upper atmosphere at maximum regional resolutions of hundreds of kilometers. Due to its relatively more benign magnetospheric radiation environment, its intrinsic interest as the largest moon in the Solar System, and its mini-magnetosphere, Ganymede would be the ideal orbital location for long-term observational studies of the jovian system. Here we describe the physical processes leading to X-ray emission from the surfaces of Jupiter's moons and the properties required for the technique of imaging X-ray spectroscopy to map the elemental composition of their surfaces, as well as studies of the X-ray emission from the planet's aurora and disk and from the Io plasma torus.  相似文献   

3.
We now have four examples of planetary objects with detectable sodium (and potassium) in their atmospheres—Earth, Io, Mercury and the Moon. After a summary of the observational data, this survey discusses proposed sources and sinks. It appears that Io's surface material is rich in frozen SO2, but with around 1% of some sodium compound. The Io plasma torus contains ions of S, O and Na, also with at least one molecular ion containing Na. In turn, impact by these ions probably sustains the torus, as well as an extended neutral corona. A primary source for the Earth, Mercury and the Moon is meteoroidal bombardment; at Mercury and perhaps the Moon it may be supplemented by degassing of atoms from the regolith. Photoionization is important everywhere, although hot electrons are dominant at Io.  相似文献   

4.
R.W. Carlson  D.L. Judge 《Icarus》1975,24(4):395-399
The Pioneer 10 ultraviolet photometer observations of the Jovian hydrogen torus are analyzed to obtain the angular distribution. The cloud is asymmetric about Io, where the atoms presumably originate, with the greater density occurring in the trailing portion. A simple model which assumes Jeans escape from the atmosphere of Io is developed and compared to the observations. The results suggest that the exospheric temperature is high (~3000 K) and that the ionization lifetime of the cloud atoms is ~1 × 105 sec.  相似文献   

5.
Strong evidence that Io's sodium emission is due to resonant scattering is given by our observations which show a monotonic increase of emission intensity with residual solar intensity. In addition we detected no emission during three eclipse observations of Io. We propose a resonant scattering model with two spacial components comprising an optically thick atmosphere extending 103 km above Io's surface surrounded by an optically thin cloud which forms a partial torus around Jupiter. In this model a flux of 107 cm?2 sec?1 sodium atoms are sputtered from Io's surface by heavy energetic ions which are accelerated in a plasma sheath around Io. The atoms sputtered from the surface collide with atoms in Io's atmosphere so the equipartition of kinetic energy is established. The total sodium abundance is about 3 × 1013 cm?2. During Io's day, sodium and other atmospheric constituents are ionized, giving rise to the ionosphere observed by Pioneer 10. Atoms escape by means of Jeans escape from the critical level, which is at the top of the atmosphere and the base of the cloud. We have observed sodium emission 6arcsec (6 Io diameters) above and below Io's orbital plane and 23arcsec toward Jupiter in Io's orbital plane. No emission was detected at maximum elongation 180° from Io. We interpret these results to mean that atoms escaping from Io form a partial torus whose thickness is about 12 arcsec and whose length is at least one-fifth of Io's orbital circumference.  相似文献   

6.
An equation of heat transport in the Jovian magnetosphere is formulated and solved in the L range between 2 and 7. Sources of thermal energy include the heating associated with inward radial diffusion and a hypothetical heat supply originating from Io's dynamo action. The principal sink of the thermal energy is charge exchange in Io's hydrogen torus. In order to explain the density and temperature profile reported by Frank et al. (1976), the presence of the heat source at Io is essential and the density of the torus hydrogen has to be considerably lower than the value inferred from Lα observations by Carlson and Judge (1975). Radial diffusion represents the principal heating mechanism for plasma at very low L values.  相似文献   

7.
Volcanic plumes on the Jovian satellite Io may be a visible manifestation of a plasma-arc discharge phenomenon. The amount of power in the plasma arc (1011 W) is not enough to account for all the energy dissipated by the volcanoes. However, once a volcano is initiated by tidal and geologic processes, the dynamics of the volcanic plumes can be influenced by the plasma arcs. As initially pointed out by Gold (1979), plasma arcs are expected because of 106 A currents and 400 kV potentials generated by the flow past Io of a torus of relatively dense magnetospheric plasma. We utilize our experience with laboratory plasma arcs to investigate the plume dynamics. The filamentation in the plume of the volcano Prometheus and its cross-sectional shape is quantitatively consistent with theories developed from laboratory observation.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

8.
It is now recognized that a number of neutral-plasma interaction processes are of great importance in the formation of the Io torus. One effect not yet considered in detail is the charge exchange between fast torus ions and the atmospheric neutrals producing fast neutrals energetic enough to escape from Io. Since near Io the plasma flow is reduced, the neutrals of charge exchange origin are not energetic enough to leave the Jovian system; these neutrals are therefore distributed over an extensive region as indicated by the sodium cloud. It is estimated here that the total neutral injection rate can reach 1027 s?1 if not more. New ions subsequently created in the distributed neutral atomic cloud as a result of charge exchange or electron impact ionization are picked up by the corotating magnetic field. The pick-up ions are hot with initial gyration speed near the corotation speed. The radial current driven by the pickup process cannot close in the torus but must be connected to the planetary ionosphere by field-aligned currents. These field-aligned currents will flow away from the equator at the outer edge of the neutral cloud and towards it at the inner edge. We find that the Jovian ionospheric photoelectrons alone cannot supply the current flowing away from the equator, and torus ions accelerated by a parallel electric field could be involved. The parallel potential drop is estimated to be several kV which is large enough to push the torus ions into the Jovian atmosphere. This loss could explain the sharp discontinuous change of flux tube content and ion temperature at L = 5.6 as well as the generation of auroral type hiss there. Finally we show that the inner torus should be denser at system III longitudes near 240° as a result of the enhanced secondary electron flux in this region. This effect may be related to the longitudinal brightness variation observed in the SII optical emissions.  相似文献   

9.
On January 14, 2001, shortly after the Cassini spacecraft's closest approach to Jupiter, the Ultraviolet Imaging Spectrometer (UVIS) made a radial scan through the midnight sector of Io plasma torus. The Io torus has not been previously observed at this local time. The UVIS data consist of 2-D spectrally dispersed images of the Io plasma torus in the wavelength range of 561-1912 Å. We developed a spectral emissions model that incorporates the latest atomic physics data contained in the CHIANTI database in order to derive the composition of the torus plasma as a function of radial distance. Electron temperatures derived from the UVIS torus spectra are generally less than those observed during the Voyager era. We find the torus ion composition derived from the UVIS spectra to be significantly different from the composition during the Voyager era. Notably, the torus contains substantially less oxygen, with a total oxygen-to-sulfur ion ratio of 0.9. The average ion charge state has increased to 1.7. We detect S(V) in the Io torus at the 3σ level. S(V) has a mixing ratio of 0.5%. The spectral emission model used can approximate the effects of a nonthermal distribution of electrons. The ion composition derived using a kappa distribution of electrons is identical to that derived using a Maxwellian electron distribution; however, the kappa distribution model requires a higher electron column density to match the observed brightness of the spectra. The derived value of the kappa parameter decreases with radial distance and is consistent with the value of κ=2.4 at 8RJ derived by the Ulysses URAP instrument (Meyer-Vernet et al., 1995). The observed radial profile of electron column density is consistent with a flux tube content, NL2, that is proportional to r−2.  相似文献   

10.
Atoms which escape Titan's atmosphere are unlikely to possess escape velocity from Saturn, and can orbit the planet until lost by ionization or collision with Titan. It is predicted that a toroidal ring of between ~1 and ~103 atoms or molecules cm?3 exists around Saturn at a distance of about 10 times the radius of the visible rings. This torus may be detectable from Earth-orbit and detection of nondetection of it may provide some information about the presence or absence of a Saturnian magnetic field, and the exospheric temperature and atmospheric escape rate of Titan. It is estimated that, if Titan has a large exosphere, ~97% or more of the escaping atoms can be recaptured by Titan, thereby decreasing the effective net atmospheric loss rate by up to two orders of magnitude. With such a reduction in atmospheric loss rates, it becomes more plausible to suggest that satellites previously thought too small to retain an atmosphere may have one. It is suggested that Saturn be examined by Lyman-α and other observations to search for the gaseous torus of Titan. If successful, these could then be extended to other satellites.The effect of a hypothetical Saturnian magnetosphere on the atmosphere of Titan is investigated. It is shown that, if Saturn has a magnetic field comparable to Jupiter's (~10 G at the planetary surface), the magnetospheric plasma can supply Titan with hydrogen at a rate comparable to the loss rates in some of the models of Trafton (1972) and Sagan (1973). A major part of the Saturnian ionospheric escape flux (~ 1027 photoelectrons sec?1) could perhaps be captured by Titan. At the upper limit, this rate of hydrogen input to the satellite could total ~0.1 atm pressure over the lifetime of the solar system, an amount comparable to estimates of the present atmospheric pressure of Titan.  相似文献   

11.
We find that faint sodium emission originating in the middle Jupiter magnetosphere has two distinct kinematical components. The “normal” signature of atoms on bound orbits with large apojoves seems always to be present, and we suggest these atoms are an extension of the bright, near-Io sodium cloud. The “fast” signature, with speeds up to at least 100 km sec?1, is seen only occasionally, and we suggest it is due to an interaction of the near-Io sodium cloud with the corotating, heavy-ion plasma. Both elastic and charge-exchange collisions seem consistent with the observed kinematical and temporal signatures. Elastic collisions seem marginally more capable of producing the high observed sodium atom speeds. We predict observable occurences of the fast component in the hours following passage of the Io sodium cloud through the plasma centrifugal symmetry surface if Io is at a favorable orbital longitude. Between 10 and 20 RJ we find an atomic sodium density ~10?2 cm?3. If the photoionization lifetime applies, an Io source of at least 1026 sodium atoms sec? is required to maintain this remote sodium population.  相似文献   

12.
《Icarus》1987,69(3):519-531
The existence of an atmosphere at Io is presumed and used as a starting point to generate neutral coronae produced by magnetospheric ion sputtering from the exobase and to calculate injection of neutrals and ions into the plasma torus. Several different exobase heights, temperatures, and compositions are used to characterize the neutral and ion ejection processes associated with possible atmospheres. Collision ejection from the sputter-produced corona is shown to be an important supply of neutrals for all atmospheres considered. The net injection rates are compared with estimates of the rates required to populate the plasma torus. We show that by including the sputtered atmospheric corona produced by assuming an unattenuated incident ion flux, the supply rate to the torus can be satisfied with an exobase very close to the surface. An exobase close to the surface would imply that the atmosphere at Io is not robust enough to support a fully photodissociated corona and that a significant fraction of the incident plasma ions can penetrate to the surface, providing a sputter source of atmospheric gas. Conversely, a high exobase could only be consistent with the estimated supply rates if the incident plasma flux is attenuated or deflected. The results presented scale approximately with the magnitude of the incident ion flux and, therefore, can be used as knowledge of both the plasma flow and atmospheric composition improve.  相似文献   

13.
The Alfvén's critical ionization velocity (CIV) have been observed in a number of laboratory and space experiments. In the Io-torus system, relative velocity of the plasma species in the torus with respect to the neutral species in the Io's atmosphere and neutral cloud exceeds the critical velocity required for CIV. Townsand condition is satisfied up to 6r io , in the neutral cloud when Io passes through the torus. In this paper it is shown that during the passage of Io through the plasma torus, apart from critical velocity and Townsand condition, a number of other requirements are also satisfied. Therefore, it is concluded that, the CIV mechanism must play an important role in ionizing the neutral cloud and enriching the plasma torus.  相似文献   

14.
An analysis and interpretation of reflected solar Lyman α intensity data acquired with the Hubble Space Telescope (HST) implies an equatorially confined atmosphere with SO2 column densities ∼ 1–2 × 1016 cm-2. Poleward of 30° the SO2 density must decrease sharply reaching an asymptotic polar value of < 1015 cm-2 at 45° to achieve the observed 2 kR intensity peaks. The corresponding surface reflectivities must be either a constant 0.047 for higher equatorial SO2 or a variable reflectivity of 0.027 with lower SO2 densities at the equator increasing to a polar value of ∼ 0.05. The average residence time for an atmospheric SO2 molecule is ∼ 2–3 days for the canonical mass loading rate of the Io plasma torus = 1030 amu s-1. With atomic hydrogen in the atmosphere and corona constrained by the HST observations, it is estimated that a pickup proton density ratio of 0.25–0.4% can be sustained by a supply of Io plasma torus protons neutralized in Io's atmosphere/exosphere, if protons constitute 7% of the total torus ion density, which is close to the Chust et al. (1999) pickup proton density ratio and under the widely quoted 10% proton content of the torus. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Io's sodium clouds result mostly from a combination of two atmospheric escape processes at Io. Neutralization of Na+ and/or NaX+ pickup ions produces the “stream” and the “jet” and results in a rectangular-shaped sodium nebula around Jupiter. Atmospheric sputtering of Na by plasma torus ions produces the “banana cloud” near Io and a diamond-shaped sodium nebula. Charge exchange of thermal Na+ with Na in Io's atmosphere does not appear to be a major atmospheric ejection process. The total ejection rate of sodium from Io varied from 3×1026 to 25×1026 atoms/s over seven years of observations. Our results provide further evidence that Io's atmospheric escape is driven from collisionally thick regions of the atmosphere rather than from the exosphere.  相似文献   

16.
Models are developed to describe the spatial distribution of gases emitted by Io and are applied to recent observations which indicate extensive gas clouds of hydrogen and sodium in orbit around Jupiter. Hydrogen and sodium atoms are emitted from Io with velocities in the range 2 to 3 km sec?1, with fluxes of about 1010 and 108cm?2sec?1 for hydrogen and sodium respectively. Hydrogen atoms may be formed by photodecomposition of gases such as NH3 or H2S released from the satellite surface and may escape thermally from an exosphere whose temperature is about 500 K. Sodium may be ejected from the surface by energetic particles or by ultraviolet radiation and it appears that a non-thermal mechanism drawing energy from Jupiter's magnetic field is required in order to account for its release to space.  相似文献   

17.
During the Cassini spacecraft's flyby of Jupiter (October, 2000-March, 2001), the Ultraviolet Imaging Spectrograph (UVIS) produced an extensive dataset consisting of 3349 spectrally dispersed images of the Io plasma torus. Here we present an example of the raw data and representative EUV spectra (561-1181 Å) of the torus, obtained on October 1, 2000 and November 14, 2000. For most of the flyby period, the entire Io torus fit within the UVIS field-of-view, enabling the measurement of the total power radiated from the torus in the extreme ultraviolet. A typical value for the total power radiated in the wavelength range of 580-1181 Å is 1.7×1012 W, with observed variations of up to 25%. Several brightening events were observed. These events lasted for roughly 20 hours, during which time the emitted power increased rapidly by ∼20% before slowly returning to the pre-event level. Observed variations in the relative intensities of torus spectral features provide strong evidence for compositional changes in the torus plasma with time. Spatial profiles of the EUV emission show no evidence for a sharply peaked “ribbon” feature. The ratio of the brightness of the dusk ansa to the brightness of the dawn ansa is observed to be highly variable, with an average value of 1.30. Weak longitudinal variations in the brightness of the torus ansae were observed at the 2% level.  相似文献   

18.
Using Voyager results, we have made crude estimates of the rate at which Io loses volatiles by a variety of processes to the surrounding magnetosphere for both the current SO2-dominated atmosphere as well as hypothetical paleoatmospheres in which other gases, such as N2, may have been the dominant constituent. Loss rates are strongly influenced by the surface pressure on the night side, the relationship between the exobase and the Jovian magnetospheric boundary, the exospheric temperature, and the peak altitudes reached by volcanic plumes. Several mechanisms make significant contributions to the prodigious rate at which Io is currently losing volatiles. These include: interaction of the magnetospheric plasma with volcanic plume particles and the background atmosphere; sputtering of ices on the surface, if the nightside atmospheric pressure is low enough; and Jeans' escape of O, a dissociation product of SO2 gas. For paleoatmospheres, only the first two of these mechanisms would have been effective. However, they are capable of eliminating large amounts of N2 and other volatiles from Io over the satellite's lifetime. Io could have also lost large amounts of water over its lifetime due to the extensive recycling of water between its upper and lower crust, with the partial dissociation of water vapor in silicate magma chambers initiating this loss process. Significant amounts of water may also have been lost as a result of the interaction of the magnetospheric plasma with water ice particles in volcanic plumes. Once an SO2-dominated atmosphere becomes established, much water may have also been lost through the sputtering of surface water ice.  相似文献   

19.
The Voyager 1 observations of whistlers at Jupiter are summarized in order to provide a basis for further analyses of the density profile of the Io plasma torus as well as to support studies of atmospheric lightning at Jupiter. All the whistlers detected by Voyager I fell into three general regions in the torus at radial distances ranging between 5 and 6RJ. An analysis of the broadband wave amplitudes measured by the Voyager 1 plasma wave instrument and estimates of the peak whistler amplitudes imply that the grouping of whistlers was due to variations in the sensitivity of the receiver to the whistlers and not to variations in the source or propagation paths of the whistlers. The whistler dispersions are presented in statistical form for each of the three groups of events and analyzed in view of the structure of the Io plasma torus as determined by plasma measurements. The results of these analyses give source locations for the whistlers at the foot of the magnetic field lines threading the torus in both hemispheres and over a range of longitudes.  相似文献   

20.
Shailendra Kumar 《Icarus》1985,61(1):101-123
Models of Io's ionosphere at the time of the Pioneer 10 encounter are constructed in the presence of an SO2Na atmosphere on Io. The formation of the observed ionosphere on the downstream side requires precipitation of electrons; solar EUV alone is inadequate. Electron impact in the range 500–800 eV on an SO2 atmosphere with a surface density of 14 × 1010 cm?3 provides the best fit to the Pioneer 10 radio occultation entry data. The SO2+, the major ion produced, is converted rapidly to SO+ and in turn to S+ by reactions with the dissociation products of SO2. Ion chemistry leads to the formation of S+ as the dominant ion at and above the ionospheric peak. Na+ would dominate the ion composition near the surface, and it provides important constraints on the amount of Na allowed in the atmosphere. The relatively narrow energy range and flux required for incident electrons suggests that a fraction of torus plasma is accelerated in the wake region and penetrates deep into the atmosphere. On the upstream side the torus plasma compresses the ionosphere. These characteristics support the possible presence of a weak magnetic field associated with Io. S+ ions would escape from Io in the wake region at a rate of up to 1026 sec?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号