首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High-resolution radar observations of Mars at a wavelength of 3.8 cm have been carried out at the Haystack Observatory for a period of about 6 months surrounding the 1971 opposition. The relative surface height variation with longitude over a band of Martian latitudes between about ?14° and ?22° has been derived from these observations with an error of about 75m in the most favorable cases. At ?14° latitude, the dielectric constant was found to increase steadily from about 1.7 at 70°W to about 5.0 at 110°W. Over the same interval the rms surface slopes vary from 2° to 1°. The mean equatorial radius of Mars as determined from the combined radar data of 1967, 1969 and 1971 was found to be 3394 ± 2km.  相似文献   

2.
Taking advantage of the favorable opposition of 1971, the Goldstone radar system, operating at 2388MHz, was used to scan the Martian surface. Measurements of altitude and reflected power were taken approximately every 3 days. Each measurement represents an area 8km E-W × 80km N-S, the highest resolution attained to date. Altitude measurements obtained on different observing days were combined to produce altitude profiles for three complete rotations, each at different latitudes. Large-scale variations in altitudes cover a range of 14km. Altitude changes of 5 in 30km of longitude were observed. The altitude profiles show the heavy cratering of the surface, and several large craters (50–100km) 1–2 km deep are easily seen. Reflected power for different angles of incidence was measured, yielding the scattering properties of the surface as a function of longitude. Correlation was found between the peak intensity of the reflected signal and the width of the scattering function. The average relationship between the intensity and the width suggests a power reflection coefficient of at least 0.064 ± 0.012. Departures from the average are interpreted as deviations in the reflection coefficient from the mean value. These variations are presented as a function of longitude for each of the three rotations.  相似文献   

3.
The Goldstone radar system was operated at wavelengths of 3.5 and 12.6 cm to probe the Martian surface during the 1975 opposition. Regions studied in detail by range-Doppler techniques are Syrtis Major, Sinus Meridiani, and the crater Schiaparelli. Average rms slopes of 1.6° and 1.1° were measured in Syrtis Major at 3.5 and 12.6 cm, respectively, while the average reflectivity was 0.064 ± 0.02 at both wavelengths. No wavelength dependence of surface roughness was seen in Sinus Meridiani, where rms surface slopes averaged 1.8° and the reflectivity was 0.08 ± 0.02. The regions around Schiaparelli were probed at a 12.6-cm wavelength. The echo from the bottom of the crater was undetectable. Hence ρ0C < 25, where ρ0 is the reflectivity and C is the Hagfors roughness parameter. Operating at 3.5 cm during May and June of 1976, 149 continous-wave echo spectra were obtained near latitude 18°, sampling most longitudes including the early Viking landing sites A1 and A2. The average total radar cross section is 4.8% of the geometrical cross section. The diffuse component was estimated to be 1.9%, leaving 2.9% to the average quasi-specular component. The average rms slope is 4.1°. Six spectra obtained at site A1 indicate that rms slopes are 5 to 9° between latitudes 17 and 19°. Three spectra obtained at s site A2 indicate an rms slope of 3.9°.  相似文献   

4.
A review of Mars radar data obtained through the 1973 opposition confirms that the surface of the planet has many diverse characteristics. Analysis of the quasi-specular echo component shows changes in apparent reflectivity of at least 5 to 1. If attributed entirely to variations in surface material, these correspond to dielectric constants between 1.6 and 4.0. Values of rms surface slope on 1- to 100-m scales range from as low as 0.5° in tablelands near Vlles Marineris to more than 3.0° (the upper limit for which these analysis techniques are appropriate) in certain other areas such as inside Coprates Chasma itself. There is weak correlation between the small-scale surface characteristics inferred from radar and those inferred from Mariner 9 images, geologic maps derived from those images, and other remote sensing data sets. Topography, a large-scale surface characteristic for which good correlation exists between radar and other data sets, was not considered in this study. A search for guidelines which would allow extrapolation of radar properties to new areas on the basis of those studied has been singularly unsuccessful. Data obtained during the 1973 opposition at Arecibo, Goldstone, and Haystack Observatories indicate that the scattering behavior of Mars varies little over the 70- to 3.8-cm wavelength range. Comparison of 1971 and 1973 Goldstone results shows no detectable variation with time.  相似文献   

5.
Thomas W. Thompson 《Icarus》1978,36(2):174-188
A high-resolution map of lunar radar reflectivity has been obtained using delay-Doppler interferometry techniques and the 7.5 m (40 Mhz) radar at the Arecibo Observatory in Arecibo, Puerto Rico. This new mapping, an extension of an earlier experiment, demonstrated an improvement of surface resolution to 25–40 km. The new map shows scattering behavior similar to other radar maps at 3.8 and 70 cm wavelengths. The maria backscatter less power than the terrae by factors of one-half to one-fourth, although a few terrae areas have the same low back-scatterer as the mare. The large young rayed craters like Tycho have backscatterer enhancement (over the environs) by about 1.5:1, a smaller difference than that observed at centimeter wavelengths. In addition, the mean scattering behavior of the Moon was measured for a range of angles from 10° to 67° and the new measurements differ little from previous measurements at 6 m wavelength. The radar map and mean backscatter data indicate that: (1) the average radar backscatter at 7.5 m wavelength for the large angles of incidence differs little from scatter at centimeter wavelengths; (2) the maria and terrae have a qualitatively similar scattering behavior although maria backscatter less power by factors of one-half to one quater; and (3) the large rayed craters show relatively small enhancements compared with enhancements at meter and centimeter wavelengths. Several different physical properties of the lunar surface could account for these results.  相似文献   

6.
Mars surface characteristics at and near the Viking Chryse and Tritonis Lacus landing areas were determined by radio scatter using the new 12.6 cm radar at the Arecibo Observatory during 1975–1976. Interpretation of each power spectrum suggests rms surface tilts of 4° at the final A1WNW (47.9°W, 22.5°N) site, 5° near the original A1 site, and 6° between the two. At the back-up site (A2) surface roughness estimates were about 4°. Striking changes in surface texture have been found near the eastern bases of Tharsis Montes and Albor Tholus, each volcanic feature marking the western boundary of very smooth surface units. The roughness sensed at 1 to 100 m scales by radar appears to be relatively independent of the surface units defined at large scale lengths by photogeologists. Radar properties thus provide an additional means by which planetary surfaces may be characterized.  相似文献   

7.
地基雷达观测可以提供太阳系天体目标的地形地貌、物理特征、轨道动力等信息。聚焦利用地基雷达天文技术开展月球观测的原理方法和科学意义,介绍了基于我国现有深空雷达上行装置、射电望远镜条件以及非相干散射雷达等系统,初步开展的特高频段(Ultra High Frequency,UHF)和X频段的地基雷达观测月球试验。通过月球反射回波的信号处理,获得了延迟、多普勒频移等参数,得到了一致的与近表层物质密度相关的月面雷达反射率,并得到了月球的左右旋圆极化率,反映了与波长同尺度的月球近表层结构。文章积累的数据处理经验将为我国的小行星预警、行星历表等地基雷达观测研究提供技术基础。  相似文献   

8.
Recent radar observations of Syrtis Major have shown it to be smooth and relatively homogeneous when sensed at centimeter wavelengths λ. There is a gradual decrease in surface roughness east to west across the basin, which correlates with an apparent decrease in small (< 1 km diameter) crater density. Root mean square surface slopes σ range from more than 1.5–2.0° in the east to less than 0.5° along the western margin at λ = 12.6 cm. The surface appears somewhat rougher at λ = 3.6 cm; a σ ∝ λ?0.3 dependence is inferred. Radar reflectivity increases from about 5% to about 12% across Syrtis Major, being greatest near the western margin. High-resolution (8 to 20 m/pixel) Viking images suggest that an increasing amount of resurfacing has occurred in western Syrtis Major compared with the eastern parts. The radar, infrared, and optical imaing evidence are consistent with resurfacing by geologically recent, low-viscosity lavas which were subsequently mantled by thin layers of aeolian material. Each data set may be taken as a unique source of scale-dependent information on surface materials and properties. From comparison of radar-derived surface roughness with image-derived crater density curves we conclude that processes other than cratering control the surface texture on 0.03- to 100-m surface scales.  相似文献   

9.
Ground-based observations of the CO2 distribution on Mars were made this past opposition from Cerro Tololo Interamerican Observatory. Almost complete coverage of the Martian surface from 40°N to 60°S was obtained. Agreement with previous Kitt Peak observations is good, and confirmation of a pressure anomaly in the Tharsis region has been obtained. The ridge whose eastern slope is Syrtis Major stops at about 15°S, in agreement with the 1971 radar data. The Noachis-Hellas region south of Syrtis Major appears at about average altitude, indicating that the dust storm of 1971 was already active in that region as early as the end of August.  相似文献   

10.
Abstract— We observed 25143 Itokawa, the target of Japan's Hayabusa (MUSES‐C) sample‐return mission, during its 2001 close approach at Arecibo on twelve dates during March 18‐April 9 and at Goldstone on nine dates during March 20‐April 2. We obtained delay‐Doppler images with range resolutions of 100 ns (15 m) at Arecibo and 125 ns (19 m) at Goldstone. Itokawa's average circular polarization ratio at 13 cm, 0.26 ± 0.04, is comparable to that of Eros, so its cm‐to‐m surface roughness probably is comparable to that on Eros. Itokawa's radar reflectivity and polarization properties indicate a near‐surface bulk density within 20% of 2.5 g cm?3. We present a preliminary estimate of Itokawa's shape, reconstructed from images with rather limited rotation‐phase coverage, using the method of Hudson (1993) and assuming the lightcurve‐derived spin period (12.132 hr) and pole direction (ecliptic long., lat. = 355°, ?84°) of Kaasalainen et al. (2003). The model can be described as a slightly asymmetrical, slightly flattened ellipsoid with extents along its principal axes of 548 times 312 times 276 m ± 10%. Itokawa's topography is very subdued compared to that of other asteroids for which spacecraft images or radar reconstructions are available. Similarly, gravitational slopes on our Itokawa model average only 9° and everywhere are less than 27°. The radar‐refined orbit allows accurate identification of Itokawa's close planetary approaches through 2170. If radar ranging planned for Itokawa's 2004 apparition succeeds, then tracking of Hayabusa during its 2005 rendezvous should reveal Yarkovsky perturbation of the asteroid's orbit.  相似文献   

11.
Bistatic radar observations of Mars' north polar region during 1977–1978 showed surface rms slope σβ ranging from 1 to 6°; these values apply to horizontal scales of 1–100 m. Values of roughness tend to decrease with increasing latitude (especially over 65–80°N), but there are many exceptions. The smoothest surfaces (σβ≤1°) appear to be inclusions within generally rougher (σβ~3°) terrain, rather than broad expanses of very smooth material. The permanent north polar cap is relatively uniform with 2.5?σβ?3.0°. Considerable structure has been found in echo spectra, indicating a heterogeneous and perhaps anisotropic scattering surface. Echo spectra obtained from the same region, but several months apart (1°<LS<62°), show no significant differences in inferred roughness. Estimates of reflectivity and dielectric constant are systematically low in the polar region. This may indicate that surface material north of 65°N is less dense than that near the equator, but more study of these data is needed. Estimates of surface roughness and dielectric constant in the equatorial region are consistent with results from Earth-based measurements to the accuracy of our analysis.  相似文献   

12.
Martian altitudes were measured by radar during the oppositions of 1971 and 1963 using the 64-m antenna at Goldstone (California). The resultant topographic profiles substantiate a zonal classification of the volcanic flows blanketing the south flanks of Arsia Mons, and they confirm the existence of a secondary, parasitic shield attached from the SSW to the main Arsia shield. The secondary shield is about 400 km in diameter at its base and at least 4 km high at its center. South of Valles Marineris, the Tharsis plateau is bounded by the approximate longitudes of 80° in the east and 140° in the west. In the Sinai Planum, closely adjacent to Coprates Chasma, another rise has been detected, bounded by longitudes of 55° in the east and 80° in the west. A volcanic shield of diameter 80 km, capped with a 22 km caldera has been identified near the crest of the rise. Topographic highs of about 1 km are associated with heavily faulted tracts such as Claritas Fossae. The distribution and orientation of the lunar-mare-like ridges in Sinai Planum appear to be independent of the regional gradients. Segments of the chaotic terrain at the eastern terminus of Valles Marineris are located as much as 6 km below the level of the surrounding plains.  相似文献   

13.
The results of the investigation of two regions of Venus by bistatic radiolocation are presented. The experiments were carried out at wavelength λ0 = 32 cm. Maps of the distribution of reflectivity were obtained and characteristics of the relief, dielectric permittivity, soil density, and refraction attenuation in the atmosphere were measured. The value of the dispersion of small-scale slopes in the observed regions, γ, varies between 0.4 and 2.2°. There are some features on the reflectivity maps. Some of these features may correspond to mountain slopes with values in the range 2 to 8°. Corresponding changes of relief heights are contained in the interval 0.8 to 2.6 km. The features are found within the region (in the venerocentric IAU system): ?26.5 to 25.0° latitude and 220.0?239.2° longitude. One area was revealed with large values of permittivity in the range 6.5–7.5, and soil density between 2.7 and 2.9 g/cm3. The center of this area is located at ?23.5° latitude and 230.4° longitude. The extent of this region is 80 km. The results of measurements of the refraction angle and the refraction attenuation of radio waves are in good agreement with the parameters of the atmosphere of Venus received from the Soviet landers.  相似文献   

14.
Absolute photoelectric intensity measurements of 104 selected lunar regions are given in five interference filters 4035 Å, 4765 Å, 5538 Å, 6692 Å and 7922 Å. Among these regions, eighteen lunar regions have been measured repeatedly for several phase angles between +86° and ?43°. They include observations made very close to the full Moon. A catalogue has been compiled to serve as a basin for possible investigations of colour contrasts of lunar grounds, variation of the ratio of reflectivity with wavelengths and phase angles for morphological studies. The study can be extended for the brightness phase variation, opposition effect and radiance factors at zero phase in five colours.  相似文献   

15.
Radar observations of asteroid 1 Ceres were made at a 12.6-cm wavelength from the Arecibo Observatory in March/April 1977. The measurements, made with a received circular polarization orthogonal to that transmitted, yield a radar cross section of (0.04 ± 0.01)πR2, for R = 510 km. The corresponding radar reflectivity is less than that measured for any other celestial body. Within the accuracy of measurement, no significant variation of cross section with rotational phase is apparent. The shape of the power spectrum suggests that Ceres is rougher at the scale of the observing wavelength than the Moon and inner planets, but smoother than the outer three Galilean satellites.  相似文献   

16.
17.
The orbit of China 2 rocket, 1971-18B, has been determined at 114 epochs throughout its 5-yr life, using the RAE orbit refinement program PROP 6, with more than 7000 radar and optical observations from 83 stations.The rocket passed slowly enough through the resonances 14:1, 29:2, 15:1 and 31:2 to allow lumped geopotential harmonic coefficients to be calculated for each resonance, by least-squares fittings of theoretical curves to the perturbation-free values of inclination and eccentricity. These lumped coefficients can be combined with values from satellites at other inclinations, to obtain individual harmonic coefficients.The rotation rate of the upper atmosphere, at heights near 300 km, was estimated from the decrease in orbital inclination, and values of 1.15, 1.05, 1.10 and 1.05 rev/day were obtained between April 1971 and January 1976. From the variation in perigee height, 25 values of density scale height were calculated, from April 1971 to decay. Comparison with values from the COSPAR International Reference Atmosphere 1972 shows good agreement between April 1971 and October 1975, but the observational values are 10% lower, on average, than CIRA thereafter.A further 1400 observations, made during the final 15 days before decay, were used to determine 15 daily orbits. Analysis of these orbits reveals a very strong West-to-East wind, of 240 ± 40 ms?1, at a mean height of 195 km under winter evening conditions, and gives daily values of density scale height in the last 7 days before decay.  相似文献   

18.
Abstract– The Grimsby meteorite (H4–6) fell on September 25, 2009. As of mid‐2010, 13 fragments totaling 215 g have been recovered. Records of the accompanying fireball from the Southern Ontario Meteor Network, including six all‐sky video cameras, a large format CCD, infrasound and radar records, have been used to characterize the trajectory, speed, orbit, and initial mass of the meteoroid. From the four highest quality all‐sky video records, the initial entry velocity was 20.91 ± 0.19 km s?1 while the derived radiant has a local azimuth of 309.40° ± 0.19° and entry angle of 55.20° ± 0.13°. Three major fragmentation episodes are identified at 39, 33, and 30 km height, with corresponding uncertainties of approximately 2 km. Evidence for early fragmentation at heights of approximately 70 km is found in radar data; dynamic pressure of this earliest fragmentation is near 0.1 MPa while the main flare at 39 km occurred under ram pressures of 1.5 MPa. The fireball was luminous to at least 19.7 km altitude and the dynamic mass estimate of the largest remaining fragment at this height is approximately several kilograms. The initial mass is constrained to be <100 kg from infrasound data and ablation modeling, with a most probable mass of 20–50 kg. The preatmospheric orbit is typical of an Apollo asteroid with a likely immediate origin in either the 3:1 or ν6 resonances.  相似文献   

19.
During the evening of 9 April and the morning of 10 April 1969, the twilight zenith intensity of the atomic oxygen red line OI(3P-1D) at 6300 Å was measured at the Blue Hill Observatory (42°N, 17°W). At the same time incoherent scatter radar data were being obtained at the Millstone Hill radar site 50 km distant. We have used a diurnal model of the mid-latitude F-region to calculate the ionospheric structure over Millstone Hill conditions similar to 9–10 April 1969. The measured electron temperature, ion temperature, and electron density at 800 km are used as boundary conditions for the model calculations. The diurnal variation of neutral composition and temperature were obtained from the OGO-6 empirical model and the neutral winds were derived from a semiempirical three-dimensional dynamic model of the neutral thermosphere. The solar EUV flux was adjusted to yield reasonable agreement between the calculated and observed ionospheric properties.This paper presents the results of these model computations and calculations of the red line intensity. The 6300 Å emission includes contributions from photoelectron excitation, dissociative recombination, Schumann-Runge photodissociation and thermal electron impact. The variations of these four components for morning and evening twilight between 90–120° solar zenith angles, and their relative contributions to the total 6300 Å emission line intensity, are presented and the total is compared to the observations. For this particular day the Schumann-Runge photodissociation component, calculated using the solar fluxes tabulated by Ackermann (1970), is the dominant component of the morning twilight 6300 Å emission. During evening twilight it is necessary to utilize a lower O2 density than for the morning twilight in order to bring the calculated and observed 6300 Å emission rates into agreement. The implication that there may be a diurnal variation in the O2 density at the base of the thermosphere is discussed in the light of available experimental data and current theoretical ideas.  相似文献   

20.
Radar echoes from Venus have been mapped at a wavelength of 3.8 cm from approximately 270° to 10° in longitude and ?50° to +50° in latitude during the inferior conjunctions of 1969 and 1972. Observations made in April 1969 and again in June 1972 both show the same regions of high reflectivity as well as several large regions of low reflectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号