首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In the context of climate change and rapid urbanization, urban pluvial floods pose an increasing threat to human wellbeing and security in the cities of China. A valuable aid to managing this problem lies in understanding the roles of environmental factors in influencing the occurrence of pluvial floods. This study presents a spatial analysis of records of inundated streets in the inner city of Shanghai during 1997–2013. A geographically weighted regression (GWR) is employed to examine the spatially explicit relationships between inundation frequency and spatial explanatory factors, and an ordinary least squares regression (OLS) is used to validate the GWR results. Results from the GWR model show that the inundation frequency is negatively related to elevation, pipeline density, and river density, and is positively related to road/square ratio and shantytown ratio. The green ratio is another significant explanatory factor for inundation frequency, and its coefficients range from ?1.11 to 0.81. In comparison with the OLS model, the GWR model has better performance as it has higher R2, and lower corrected Akaike information criterion and mean square error values, as well as insignificant spatial autocorrelation of the model residuals. Additionally, the GWR model reveals detailed site-specific roles of the related factors in influencing street inundation. These findings demonstrate that the GWR model is a useful tool for investigating spatially explicit causes of disasters. The results also provide guidance for policy makers aiming to mitigate urban pluvial flood risks.  相似文献   

2.
This study estimates the environmental Kuznets curve (EKC) relationship at the province level in China. We apply empirical methods to test three industrial pollutants—SO2 emission, wastewater discharge, and solid waste production—in 29 Chinese provinces in 1994–2010. We use the geographically weighted regression (GWR) approach, wherein the model can be fitted at each spatial location in the data, weighting all observations by a function of distance from the regression point. Hence, considering spatial heterogeneity, the EKC relationship can be analyzed region-specifically through this approach, rather than describing the average relationship over the entire area examined. We also investigate the spatial stratified heterogeneity to verify and compare risk factors that affect regional pollution with statistical models. This study finds that the GWR model, aimed at considering spatial heterogeneity, outperforms the OLS model; it is more effective at explaining the relationships between environmental performance and economic growth in China. The results indicate a significant variation in the existence of the EKC relationship. Such spatial patterns suggest province-specific policymaking to achieve balanced growth in those provinces.  相似文献   

3.
Alpine snowmelt is an important generation mode for runoff in the source region of the Tarim River basin, which covers four subbasins characterized by large area, sparse gauge stations, mixed runoff supplied by snowmelt and rainfall, and remarkably spatially heterogeneous precipitation. Taking the Kaidu River basin as a research area, this study analyzes the influence of these characteristics on the variables and parameters of the Snow Runoff Model and discusses the corresponding determination strategy to improve the accuracy of snowmelt simulation and forecast. The results show that: (i) The temperature controls the overall tendency of simulated runoff and is dominant to simulation accuracy, as the measured daily mean temperature cannot represent the average level of the same elevation in the basin and that directly inputting it to model leads to inaccurate simulations. Based on the analysis of remote sensing snow maps and simulation results, it is reasonable to approximate the mean temperature with 0.5 time daily maximum temperature. (ii) For the conflict between the limited gauge sta-tion and remarkably spatial heterogeneity of rainfall, it is not realistic to compute rainfall for each elevation zone. After the measured rainfall is multiplied by a proper coefficient and adjusted with runoff coefficient for rainfall, the measured rainfall data can satisfy the model demands. (iii) Adjusting time lag according to the variation of snowmelt and rainfall position can improve the simulation precision of the flood peak process. (iv) Along with temperature, the rainfall increases but cannot be completely monitored by limited gauge stations, which results in precision deterioration.  相似文献   

4.
西藏地区复杂地形下的降水空间分布估算模型   总被引:17,自引:1,他引:16       下载免费PDF全文
本文提供了一个描述西藏地区年、季降水量空间分布的估算模型.利用卫星遥测数字化地形高程资料和西藏地区仅有的27个常规气象站的多年平均降水整编资料,根据地形坡向站点分为三类.再采用多元逐步回归方法,建立西藏地区的年、季降水量和经度、纬度、海拔高度、坡度、坡向、遮蔽度等6个地理、地形因子之间的关系模型,估算西藏地区降水量的空间分布.结果表明,此方法建立的关于西藏地区降水量与诸因子之间方程的相关性显著,平均绝对误差、相对误差分别为093mm和116%,对估算模型进行F检验,均通过置信度为095的相关检验,回归效果较显著.分析表明估算降水能够定量、定性地再现西藏地区的实际降水分布.  相似文献   

5.
The spatial variability of precipitation has often been a topic of research, since accurate modelling of precipitation is a crucial condition for obtaining reliable results in hydrology and geomorphology. In mountainous areas, the sparsity of the measurement networks makes an accurate and reliable spatialization of rainfall amounts at the local scale difficult. The purpose of this paper is to show how the use of a digital elevation model can improve interpolation processes at the subregional scale for mapping the mean annual and monthly precipitation from rainfall observations (40 years) recorded in a region of 1400 km2 in southern Italy. Besides linear regression of precipitation against elevation, two methods of interpolation are applied: inverse squared distance and ordinary cokriging. Cross‐validation indicates that the inverse distance interpolation, which ignores the information on elevation, yields the largest prediction errors. Smaller prediction errors are produced by linear regression and ordinary cokriging. However, the results seem to favour the multivariate geostatistical method including auxiliary information (related to elevation). We conclude that ordinary cokriging is a very flexible and robust interpolation method because it can take into account several properties of the landscape; it should therefore be applicable in other mountainous regions, especially where precipitation is an important geomorphological factor. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Detailed hydrologic models require high‐resolution spatial and temporal data. This study aims at improving the spatial interpolation of daily precipitation for hydrologic models. Different parameterizations of (1) inverse distance weighted (IDW) interpolation and (2) A local weighted regression (LWR) method in which elevation is the explanatory variable and distance, elevation difference and aspect difference are weighting factors, were tested at a hilly setting in the eastern Mediterranean, using 16 years of daily data. The preferred IDW interpolation was better than the preferred LWR scheme in 27 out of 31 validation gauges (VGs) according to a criteria aimed at minimizing the absolute bias and the mean absolute error (MAE) of estimations. The choice of the IDW exponent was found to be more important than the choice of whether or not to use elevation as explanatory data in most cases. The rank of preferred interpolators in a specific VG was found to be a stable local characteristic if a sufficient number of rainy days are averaged. A spatial pattern of the preferred IDW exponents was revealed. Large exponents (3) were more effective closer to the coast line whereas small exponents (1) were more effective closer to the mountain crest. This spatial variability is consistent with previous studies that showed smaller correlation distances of daily precipitation closer to the Mediterranean coast than at the hills, attributed mainly to relatively warm sea‐surface temperature resulting in more cellular convection coastward. These results suggest that spatially variable, physically based parameterization of the distance weighting function can improve the spatial interpolation of daily precipitation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
This paper provides a comparison of gauge and radar precipitation data sources during an extreme hydrological event. November–December 2006 was selected as a time period of intense rainfall and large river flows for the Severn Uplands, an upland catchment in the United Kingdom. A comparison between gauge and radar precipitation time‐series records for the event indicated discrepancies between data sources, particularly in areas of higher elevation. The HEC‐HMS rainfall‐runoff model was selected to assess the accuracy of the precipitation to simulate river flows for the extreme event. Gauge, radar and gauge‐corrected radar rainfall were used as model inputs. Universal cokriging was used to geostatistically interpolate gauge data with radar and elevation data as covariates. This interpolated layer was used to calculate the mean‐field bias and correct the radar composites. Results indicated that gauge‐ and gauge‐corrected radar‐driven models replicated flows adequately for the extreme event. Gauge‐corrected flow predictions produced an increase in flow prediction accuracy when compared with the raw radar, yet predictions were comparative in accuracy to those using the interpolated gauge network. Subsequent investigations suggested this was due to an adequate spatial and temporal resolution of the precipitation gauge network within the Severn Uplands. Results suggested that the six rain gauges could adequately represent precipitation variability of the Severn Uplands to predict flows at an approximately equal accuracy to that obtained by radar. Temporally, radar produced an increase in flow prediction accuracy in mountainous reaches once the gauge time step was in excessive of an hourly interval. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Hydrology requires accurate and reliable rainfall input. Because of the strong spatial and temporal variability of precipitation, estimation of spatially distributed rain rates is challenging. Despite the fact that weather radars provide high-resolution (but indirect) observations of precipitation, they are not used in hydrological applications as extensively as one could expect. The goal of the present review paper is to investigate this question and to provide a clear view of the opportunities (e.g., for flash floods, urban hydrology, rainfall spatial extremes) the limitations (e.g., complicated error structure, need for adjustment) and the challenges for the use of weather radar in hydrology (i.e., validation studies, precipitation forecasting, mountainous precipitation, error propagation in hydrological models).  相似文献   

9.
ABSTRACT

Predicting the impacts of climate change on water resources remains a challenging task and requires a good understanding of the dynamics of the forcing terms in the past. In this study, the variability of precipitation and drought patterns is studied over the Mediterranean catchment of the Medjerda in Tunisia based on an observed rainfall dataset collected at 41 raingauges during the period 1973–2012. The standardized precipitation index and the aridity index were used to characterize drought variability. Multivariate and geostatistical techniques were further employed to identify the spatial variability of annual rainfall. The results show that the Medjerda is marked by a significant spatio-temporal variability of drought, with varying extreme wet and dry events. Four regions with distinct rainfall regimes are identified by utilizing the K-means cluster analysis. A principal component analysis identifies the variables that are responsible for the relationships between precipitation and drought variability.  相似文献   

10.
We describe an objective method for evaluating the spatial distribution of water equivalents of the snow cover within a small catchment. Regression analysis is used to quantify the relationship between elevation, presence or absence of forest, and potential direct solar radiation as independent variables and water equivalent as measured at a number of sites. First, this regression relationship is used to interpolate water equivalent data all over the basin area. Then we interpolate the residuals of the regression using a geostatistical approach. Superimposing the results obtained by interpolating the regression relationship and the interpolated residuals eventually yields the water equivalent distribution over the test area. The advantages of the interpolation method used lie in the optimal (effective, unbiased) estimation of the interpolated values as well as in the possibility to quantify the associated estimation variances.  相似文献   

11.
不同与以往基于最小二乘的多元线性回归方法,本文首次尝试将新型的第二代回归分析方法——偏最小二乘回归分析方法应用到中国区域的降水建模中.利用区域内394个气象观测站建站到2000年45年(及以上)的降水资料,建立了一个简单的年、季降水量和地理、地形因子(包括纬度、经度、地形高程、坡度、坡向和遮蔽度)的关系模型,估算了区域降水量中地理、地形的影响部分,并分析了这种影响的特征.结果表明,用此方法建立的模型能够解释70%以上的因变量的变异,相关系数基本都在0.84以上,经交叉有效性检验,模型的回归效果较显著.分析表明,在多元线性回归不适用的情况下,本文基于偏最小二乘法的简单模型能够比较准确地定性、定量地再现实际降水分布.  相似文献   

12.
An understanding of the factors that affect the spread of endemic bovine tuberculosis (bTB) is critical for the development of measures to stop and reverse this spread. Analyses of spatial data need to account for the inherent spatial heterogeneity within the data, or else spatial autocorrelation can lead to an overestimate of the significance of variables. This study used three methods of analysis—least-squares linear regression with a spatial autocorrelation term, geographically weighted regression (GWR) and boosted regression tree (BRT) analysis—to identify the factors that influence the spread of endemic bTB at a local level in England and Wales. The linear regression and GWR methods demonstrated the importance of accounting for spatial differences in risk factors for bTB, and showed some consistency in the identification of certain factors related to flooding, disease history and the presence of multiple genotypes of bTB. This is the first attempt to explore the factors associated with the spread of endemic bTB in England and Wales using GWR. This technique improves on least-squares linear regression approaches by identifying regional differences in the factors associated with bTB spread. However, interpretation of these complex regional differences is difficult and the approach does not lend itself to predictive models which are likely to be of more value to policy makers. Methods such as BRT may be more suited to such a task. Here we have demonstrated that GWR and BRT can produce comparable outputs.  相似文献   

13.
Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs.  相似文献   

14.
Rainfall data in continuous space provide an essential input for most hydrological and water resources planning studies. Spatial distribution of rainfall is usually estimated using ground‐based point rainfall data from sparsely positioned rain‐gauge stations in a rain‐gauge network. Kriging has become a widely used interpolation method to estimate the spatial distribution of climate variables including rainfall. The objective of this study is to evaluate three geostatistical (ordinary kriging [OK], ordinary cokriging [OCK], kriging with an external drift [KED]), and two deterministic (inverse distance weighting, radial basis function) interpolation methods for enhanced spatial interpolation of monthly rainfall in the Middle Yarra River catchment and the Ovens River catchment in Victoria, Australia. Historical rainfall records from existing rain‐gauge stations of the catchments during 1980–2012 period are used for the analysis. A digital elevation model of each catchment is used as the supplementary information in addition to rainfall for the OCK and kriging with an external drift methods. The prediction performance of the adopted interpolation methods is assessed through cross‐validation. Results indicate that the geostatistical methods outperform the deterministic methods for spatial interpolation of rainfall. Results also indicate that among the geostatistical methods, the OCK method is found to be the best interpolator for estimating spatial rainfall distribution in both the catchments with the lowest prediction error between the observed and estimated monthly rainfall. Thus, this study demonstrates that the use of elevation as an auxiliary variable in addition to rainfall data in the geostatistical framework can significantly enhance the estimation of rainfall over a catchment.  相似文献   

15.
Study on snowmelt runoff simulation in the Kaidu River basin   总被引:2,自引:0,他引:2  
Alpine snowmelt is an important generation mode for runoff in the source region of the Tarim River basin, which covers four subbasins characterized by large area, sparse gauge stations, mixed runoff supplied by snowmelt and rainfall, and remarkably spatially heterogeneous precipitation. Taking the Kaidu River basin as a research area, this study analyzes the influence of these characteristics on the variables and parameters of the Snow Runoff Model and discusses the corresponding determination strategy to improve the accuracy of snowmelt simulation and forecast. The results show that: (i) The temperature controls the overall tendency of simulated runoff and is dominant to simulation accuracy, as the measured daily mean temperature cannot represent the average level of the same elevation in the basin and that directly inputting it to model leads to inaccurate simulations. Based on the analysis of remote sensing snow maps and simulation results, it is reasonable to approximate the mean temperature with 0.5 time daily maximum temperature. (ii) For the conflict between the limited gauge station and remarkably spatial heterogeneity of rainfall, it is not realistic to compute rainfall for each elevation zone. After the measured rainfall is multiplied by a proper coefficient and adjusted with runoff coefficient for rainfall, the measured rainfall data can satisfy the model demands. (iii) Adjusting time lag according to the variation of snowmelt and rainfall position can improve the simulation precision of the flood peak process. (iv) Along with temperature, the rainfall increases but cannot be completely monitored by limited gauge stations, which results in precision deterioration.  相似文献   

16.
根据1975年地形图、1970s末至2013年19期Landsat(MSS、TM、ETM+)陆地资源卫星和20032009年ICESat卫星数据,以及近40年气象资料,对西藏佩枯错湖泊面积变化进行分析.结果表明,湖泊面积、湖泊高度变化波动较大,均呈减少和退缩趋势.19752013年间湖泊面积减少10.68 km2,减幅为3.79%.从空间动态变化来看,变化较明显的区域位于该湖的南岸和东北岸,南岸、东北岸湖岸线分别向北、向西南萎缩.20032009年湖面高度和湖泊面积均呈现出下降趋势,分别下降了0.17 m和4.4 km2.19992013年之间对该流域湖泊有影响的冰川变化分析显示,冰川呈现出退缩、面积减少趋势.数据显示冰川面积总共减少了17.17 km2,减少率为7.91%.自1971年以来,流域气温总体呈上升趋势,2000年以后升温显著.佩枯错43 a来降水量年际变化波动较大,年降水量呈减少趋势,总的来说降水量每10 a减少6.99 mm.虽然佩枯错属于降水和冰雪融水补给湖泊,但该流域湖面增减与周围冰川变化的关系并不明显,与温度变化呈负相关,而与流域内降水量呈正相关.综合分析表明,佩枯错流域湖泊变化与冰川退缩关系不密切,降水量是湖泊变化的主要原因.  相似文献   

17.
ABSTRACT

Numerous statistical downscaling models have been applied to impact studies, but none clearly recommended the most appropriate one for a particular application. This study uses the geographically weighted regression (GWR) method, based on local implications from physical geographical variables, to downscale climate change impacts to a small-scale catchment. The ensembles of daily precipitation time series from 15 different regional climate models (RCMs) driven by five different general circulation models (GCMs), obtained through the European Union (EU)-ENSEMBLES project for reference (1960–1990) and future (2071–2100) scenarios are generated for the Omerli catchment, in the east of Istanbul city, Turkey, under scenario A1B climate change projections. Special focus is given to changes in extreme precipitation, since such information is needed to assess the changes in the frequency and intensity of flooding for future climate. The mean daily precipitation from all RCMs is under-represented in the summer, autumn and early winter, but it is overestimated in late winter and spring. The results point to an increase in extreme precipitation in winter, spring and summer, and a decrease in autumn in the future, compared to the current period. The GWR method provides significant modifications (up to 35%) to these changes and agrees on the direction of change from RCMs. The GWR method improves the representation of mean and extreme precipitation compared to RCM outputs and this is more significant, particularly for extreme cases of each season. The return period of extreme events decreases in the future, resulting in higher precipitation depths for a given return period from most of the RCMs. This feature is more significant with downscaling. According to the analysis presented, a new adaption for regulating excessive water under climate change in the Omerli basin may be recommended.  相似文献   

18.
Kriging in the hydrosciences   总被引:1,自引:0,他引:1  
Most of the methods currently used in hydrosciences for interpolation and spatial averaging fail to quantify the accuracy of the estimates.The theory of regionalized variables enables one to point out the relationship between the spatial correlation of hydrometeorological or hydrogeological fields and the precision of interpolation, or determination of average values, over these fields.A new estimation method called kriging has proven to be quite well adapted to solving water resources problems. The author presents a series of case-studies in automatic contouring, data input for numerical models, estimation of average precipitation over a given catchment area, and measurement network design.  相似文献   

19.
20.
We have developed a novel method for missing seismic data interpolation using f‐x‐domain regularised nonstationary autoregression. f‐x regularised nonstationary autoregression interpolation can deal with the events that have space‐varying dips. We assume that the coefficients of f‐x regularised nonstationary autoregression are smoothly varying along the space axis. This method includes two steps: the estimation of the coefficients and the interpolation of missing traces using estimated coefficients. We estimate the f‐x regularised nonstationary autoregression coefficients for the completed data using weighted nonstationary autoregression equations with smoothing constraints. For regularly missing data, similar to Spitz f‐x interpolation, we use autoregression coefficients estimated from low‐frequency components without aliasing to obtain autoregression coefficients of high‐frequency components with aliasing. For irregularly missing or gapped data, we use known traces to establish nonstationary autoregression equations with regularisation to estimate the f‐x autoregression coefficients of the complete data. We implement the algorithm by iterated scheme using a frequency‐domain conjugate gradient method with shaping regularisation. The proposed method improves the calculation efficiency by applying shaping regularisation and implementation in the frequency domain. The applicability and effectiveness of the proposed method are examined by synthetic and field data examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号