首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dale P. Cruikshank 《Icarus》1977,30(1):224-230
Thermal radiation has been detected from four asteroids of the Trojan group, and J6 and J7, the brightest of the outer satellites of Jupiter. The six objects all have exceedingly low geometric albedos of 0.02 or 0.03 according to calculations based on their known visual brightness and the measured thermal fluxes. 624 Hektor, the largest object studied here, has a radius of 110 ± 20 km, though the exact shape of this body is in question. While the sample observed in this work is small (the total number of Trojans larger than 0.25 km in radius is about 1000), the fact that all four studied have similarly low albedos suggests that this property is characterisic of the Trojans and at least two of the outer members of Jupiter's retinue of satellites. The low surface albedo of the Trojans may preclude the proposed origin of the Jovian group of comets among these bodies according to E. Rabe. Updated tables of the dimensions of all the Jovian satellites are given.  相似文献   

2.
After the discovery of a huge number of satellites around Jupiter, Saturn, and Uranus, it is necessary to collect together information about all of the planetary satellite systems and to define the possible classification of objects and types of their motion. We give physical parameters of the satellites: their masses, sizes, apparent magnitudes in opposition, and geometrical albedos. We present some of the orbital quantities that characterize the orbits, their shapes and orientation in space, as well as data on the rotation of satellites. The emphasis is on the peculiarities of their motion—the forces acting on them, the main orbital perturbations, and the influence of commensurabilities in the mean motions of satellites. We list references to the main theories of their motion.  相似文献   

3.
Radar observations of the Galilean satellites, made in late 1976 using the 12.6-cm radar system of the Arecibo Observatory, have yielded mean geometric albedos of 0.04 ± , 0.69 ± 0.17, 0.37 ± 0.09, and 0.15 ± 0.04, for Io, Europa, Ganymede, and Callisto, respectively. The albedo for Io is about 40% smaller than that obtained approximately a year earlier, while the albedos for the outer three satellites average about 70% larger than the values previously reported for late 1975, raising the possibility of temporal variation. Very little dependence on orbital phase is noted; however, some regional scattering inhomogeneities are seen on the outer three satellites. For Europa, Ganymede, and Callisto, the ratios of the echo received in one mode of circular polarization to that received in the other were: 1.61 ± 0.20 1.48 ± 0.27, and 1.24 ± 0.19, respectively, with the dominant component having the same sence of circularity as that transmitted. This behavior has not previously been encountered in radar studies of solar system objects, whereas the corresponding observations with linear polarization are “normal.” Radii determined from the 1976 radar data for Europa and Ganymede are: 1530 ± 30 and 2670 ± 50 km, in fair agreement with the results from the 1975 radar observations and the best recent optical determinations. Doppler shifts of the radar echoes, useful for the improvement of the orbits of Jupiter and some of the Galilean satellites, are given for 12 nights in 1976 and 10 nights in 1975.  相似文献   

4.
G.J. Black  D.B. Campbell 《Icarus》2007,191(2):702-711
We have measured the bulk radar reflectance properties of the mid-size saturnian satellites Rhea, Dione, Tethys, and Enceladus with the Arecibo Observatory's 13 cm wavelength radar system during the 2004 through 2007 oppositions of the Saturn system. Comparing to the better studied icy Galilean satellites, we find that the total reflectivities of Rhea and Tethys are most similar to Ganymede while Dione is most similar to Callisto. Enceladus' reflectivity falls between those of Ganymede and Europa. The mean circular polarization ratios of the saturnian satellites range from ∼0.8 to 1.2, and are on average lower than those of the icy Galilean satellites at this wavelength although still larger than expected for single reflections off the surface. The ratio for the trailing hemisphere of Enceladus may be the exception with a value ?0.56. The 13 cm wavelength radar albedos and polarization ratios may be systematically lower than similar results from the Cassini orbiter's RADAR instrument at 2.2 cm wavelength [Ostro, S.J., and 19 colleagues, 2006. Icarus 183, 479-490]. Overall, these reflectivities and polarization properties, together with the shapes of the echo spectra, suggest subsurface multiple scattering to be the dominant reflection mechanism although operating less efficiently than on the large icy moons of Jupiter. All these saturnian moons and icy jovian moons are atmosphere-less, low temperature water ice surfaces, and any differences in radar properties may be indicative of differences in composition or the effects of various processes that modify the regolith structure. The degree of variation in radar properties with wavelength on each satellite may constrain the thickness and efficiency of the scattering layer.  相似文献   

5.
Kaare Aksnes 《Icarus》1974,21(1):100-111
Two series of predictions have been published for the 1973–1974 mutual phenomena of Jupiter's satellites, one (June–October, 1973) by Milbourn and Carey, and the other (February 1973–May 1974) by Brinkmann and Millis. The main purpose of this paper is to investigate some significant discrepancies between these two sets of predictions. New predictions are calculated for the period June 1973–May 1974. They agree very nearly with the predictions by Milbourn and Carey, but frequently differ by several minutes (up to 30 min when Jupiter III and IV are involved) from those by Brinkmann and Millis. Unlike the previous predictions, the new ones also give the estimated light decreases during the phenomena. The method of prediction is documented for future applications to Jupiter's and Saturn's satellites. The paper concludes with a brief discussion of the problems involved in extracting information about the positions, radii, and albedos of the satellites from observed light curves.  相似文献   

6.
张鸿  张承志 《天文学报》2002,43(2):197-204
给出了轨道面接近赤道面的轨旋同步卫星的正常重力场在等势面上分布的展开式,并讨论了潮汐对其正常重力场的影响,利用这一方法,讨论了伽利略卫星正常重力场及其在等势面上的分布,以及木星的潮汐对伽利略卫星的正常重力场的影响,计算表明,潮汐对伽利略卫星的正常重力场影响不大,其径向的影响grt大约是10^-3-10^-5m/s^2的量级,与重力场在经度和纬度方向的分量接近,通过估算,月球的重力场所受到的潮汐影响要比绝大多数伽利略卫星受到的潮汐影响小。  相似文献   

7.
Previous analyses into flexural deformation on the icy satellites of Jupiter and Saturn have assumed static, elastic lithospheres. Viscous creep within the lithosphere, however, can cause evolution over time. Here, we apply a finite-element model that employs a time-dependent elastic–viscous-plastic rheology in order to investigate flexure on icy satellites. Factors that affect this time-dependent response are those that control creep rates; surface temperature, heat flow, and grain size. Our results show that surface temperature is by far the dominant factor. At higher surface temperatures (100–130 K), the evolution of the deformation is such that the thickness of a modeled elastic lithosphere could vary by up to an order of magnitude, depending on the time scale over which the deformation occurred. Because the flexure observed on icy satellites generally indicates transient high heat flow events, our results indicate that the duration of the heat pulse is an important factor. For the icy worlds of Jupiter and Saturn, static models of lithospheric flexure should be used with caution.  相似文献   

8.
《Icarus》1987,71(1):115-136
The Jovian and Uranian rings exist within severe energetic particle and plasma environments where magnetosphere-related losses of small ring particles and surface reflectance alteration by sputtering are likely to be important. In contrast, the main Saturnian rings exist within a zone where magnetospheric losses and surface alteration effects are negligible, primarily because of solid-body absorption of inwardly diffusing magnetospheric particles. It is shown here that solid-body absorption of radially diffusing ions is a much more efficient process in the inner Saturnian magnetosphere than in the inner Jovian and Uranian magnetospheres because of the near axial symmetry of the planetary magnetic field with respect to the rotational equatorial plane. This is especially true for continuous rings (as opposed to satellites) for which the approximate time scale against absorption is the particle bounce period in an axially symmetric field, whereas it is the particle drift period in an asymmetric field. Assuming comparable diffusion rates, inward transport of magnetospheric particles is much more strongly inhibited in the inner Saturnian magnetosphere than in the inner magnetospheres of Jupiter and Uranus. This remains true when only rings of comparable widths and optical depths are considered (e.g., the F ring at Saturn and the ϵ ring at Uranus). The most extreme possible consequence of this difference in solid-body absorption efficiency may have been the preferential development of a radially extensive, optically thick ring system at Saturn where magnetospheric losses are minimized in comparison to those at Jupiter and Uranus. A more definite consequence is that the Uranian rings are most probably directly exposed to nearly the same proton fluxes measured at Voyager 2's closest approach. Exposure of ring particle surfaces to radiation belt ion fluxes therefore remains as a viable explanation for the low albedos of the Uranian rings.  相似文献   

9.
The results of photographic observations of Jupiter’s Galilean satellites made with the 26-inch refractor at the Pulkovo Observatory from 1986 to 2005 are given. Satellite coordinates with respect to Jupiter and the mutual distances between the satellites have been determined. A scale-trale technique that does not require reference stars for the astrometric reduction of measurements has been used. The effect of the Jupiter phase has been taken into account in the jovicentric coordinates. The observation results have been compared with a modern theory of the Galilean satellites’ motions. Systematic observation errors depending on the observation technique have been studied. The intrinsic observation accuracy in the random quotient is characterized by the values 0.041″ over X and Y. The external accuracy of the relative Galilean satellite coordinates determined by comparing the observations with modern ephemerides turned out to be equal to 0.165″, 0.213″ for the Jovicentric coordinates and 0.134″, 0.170″ for the “satellite-satellite” coordinates. The highest accuracy of the relative satellite coordinates is reached at small distances between the satellites which are less than 100″: the corresponding mean-square errors of one observation are equal in to the external convergence to 0.050″, 0.070″. The results of photographic observations have been compared with the first CCD observations of the Jupiter satellites made in 2004 with the 26-inch refractor.  相似文献   

10.
The sets of photographic observations of the Galilean satellites of Jupiter taken at the Abastumani Astrophysical Observatory of the Academy of Sciences of Georgia are analyzed here. Positional observations of the system of Jupiter were made in the period from 1985 to 1994 with the use of the double Zeiss astrograph in order to determine the exact coordinates of Jupiter and its satellites. The accurate positions of the satellites and Jupiter itself, as well as their stellar (equatorial) coordinates relative to the stars of the currently available catalogs and the relative ??satellite ?? satellite?? coordinates were obtained from the observations. From the comparison of the observation results with the modern theories of motion of satellites, the accuracy in determining the positions of the satellites and Jupiter was analyzed. The results of observations are presented in the Pulkovo database of observations of Solar System bodies that is accessible to users at http://www.puldb.ru.  相似文献   

11.
Infrared images of Jupiter have been obtained on 5 nights before, during and shortly after the period of the impacts of the fragments of comet Shoemaker-Levy 9 (1993e) with the giant planet. Long lived bright spots produced by the impacts have been measured and analyzed. By measuring the intensity variation of the spots as a function of Jupiter rotation we show that these spots are likely constituted by large and thin clouds of dust located above the methane layer. The IR relative albedos has been also measured for some of these spots.On leave from Center for Astrophysics - Cambridge (USA)  相似文献   

12.
The irregular satellites of Jupiter are believed to be captured asteroids or planetesimals. In the present work is studied the direction of capture of these objects as a function of their orbital inclination. We performed numerical simulations of the restricted three-body problem, Sun-Jupiter-particle, taking into account the growth of Jupiter. The integration was made backward in time. Initially, the particles have orbits as satellites of Jupiter, which has its present mass. Then, the system evolved with Jupiter losing mass and the satellites escaping from the planet. The reverse of the escape direction corresponds to the capture direction. The results show that the Lagrangian points L1 and L2 mainly guide the direction of capture. Prograde satellites are captured through these two gates with very narrow amplitude angles. In the case of retrograde satellites, these two gates are wider. The capture region increases as the orbital inclination increases. In the case of planar retrograde satellites the directions of capture cover the whole 360° around Jupiter. We also verified that prograde satellites are captured earlier in actual time than retrograde ones. This paper was presented at the Asteriods, Comets and Meteors meeting held at Búzios, Rio de Janeiro, Brazil in August 2005 and could not be included in the special issue related to that conference.  相似文献   

13.
We suggest a new approach and develop an original method for deriving astrometric data from the photometry of mutual occultations and eclipses of planetary satellites. We decide to model not the relative apparent motion of one satellite with respect to another satellite but the deflection of the observed relative motion with respect to the theoretical motion implied by appropriate ephemerides.We have attempted to reduce the results of photometric observations of the Gallilean satellites during their mutual occultations and eclipses in 2002-2003. The data of observation for 319 light curves of 106 mutual events were received from the observers. The reliable 245 light curves were processed with our method. Eighty six apparent relative positions have been obtained.Systematic errors arise inevitably while deriving astrometric data. Most of them are due to factors that are unrelated to the methods for deriving astrometric data. The systematic errors are more likely due to incorrect excluding the effect of background on photometric counts. In the case of mutual occultations, the flux drop is determined to a considerable degree by the ratio of the mean albedos of the two satellites. Some mutual event observations revealed wrong adopted values of the mean albedos.  相似文献   

14.
Olav L. Hansen 《Icarus》1975,26(1):24-29
Infrared (1.5–5 μm) albedos and rotation curves of the Galilean satellites have been obtained. The data suggest that the rotational variation in the infrared is less than ±10% for all four satellites. While no conclusion about rotational variation could be reached for Io, the 1.57 μm data for the outer three satellites marginally suggest phase correlation with the visual variation. The geometric albedos obtained are in general agreement with earlier results. For Io, the absorption feature near 1.5 μm found by Pilcher et al. (1972) is confirmed, thus contradicting the flat spectrum measured by Fink et al. (1973). Io and Ganymede were observed in the 1.57 μm bandpass as they reappeared from eclipse. The curve for Io shows a slight (<10%) overshoot similar to those sometimes reported for visual measurements. This result is based on a single reappearance, and is extremely tentative.  相似文献   

15.
We present spectrophotometry in the 27–41 μm spectral region for icy satellites of Saturn (Tethys, Dione, Rhea, Iapetus, and Hyperion) and Jupiter (Europa, Ganymede, and Callisto). The 3.6-μm reflectance peak characteristic of fine-grained water ice is observed prominently on the satellites of Saturn, faintly on the leading side of Europa, and not all on Ganymede, Callisto, or the dark side of Iapetus. The spectral reflectances of these icy satellites may be affected by their equilibrium surface temperatures and magnetospheric effects.  相似文献   

16.
Audouin Dollfus 《Icarus》1975,25(3):416-431
New measurements of the amount of polarization of the Galilean satellites are given and, within the context of other data, are interpreted as follows. The polarization of Europa is consistent with a water-frost surface. Io has a surface of partly absorbing crystals thought to result from evaporates released from the mantle and damaged by radiation. Ganymede has alternating water-frost areas and darker terrain, possibly of a silicaceous nature. Callisto is explained as having a mantle of ice containing embedded blocks of rocks, which occurred when recent evaporation left the blocks piled at the surface in a chaotic manner. This event occurred after the vicinity of Jupiter had been cleared of small orbiting objects able to impact Callisto. Meteorites which continue to enter within the sphere of influence of Jupiter can collide with Callisto only on its leading hemisphere, which is thereby comminuted by impacts. The surface of the trailing hemisphere is not regolithic.  相似文献   

17.
Observational results are presented for Jupiter and its Galilean moons from the Normal Astrograph at Pulkovo Observatory in 2013–2015. The following data are obtained: 154 positions of the Galilean satellites and 47 calculated positions of Jupiter in the system of the UCAC4 (ICRS, J2000.0) catalogue; the differential coordinates of the satellites relative to one another are determined. The mean errors of the satellites’ normal places in right ascension and declination over the entire observational period are, respectively: εα = 0.0065″ and εδ = 0.0068″, and their standard deviations are σα = 0.0804″ and σδ = 0.0845″. The equatorial coordinates are compared with planetary and satellite motion theories. The average (O–C) residuals in the two coordinates relative to the motion theories are 0.05″ or less. The best agreement with the observations is achieved by a combination of the EPM2011m and V. Lainey-V.2.0|V1.1 motion theories; the average (O–C) residuals are 0.03″ or less. The (O–C) residuals for the features of the positions of Io and Ganymede are comparable with measurement errors. Jupiter’s positions calculated from the observations of the satellites and their theoretical jovicentric coordinates are in good agreement with the motion theories. The (О–С) residuals for Jupiter’s coordinates are, on average, 0.027″ and–0.025″ in the two coordinates.  相似文献   

18.
New spectrophotometry from 1.5 to 2.5 μm is reported for the Uranian satellites Titania, Oberon, and Umbriel. A spectrum of the rings of Uranus from 2.0 to 2.4 μm is also reported. No evidence is found for frost covering the surface of the ring material, consistent with the low albedo of the rings (PK = 0.03) previously reported by Nicholson and Jones (1980). The surfaces of the satellites are found to be covered by dirty water frost. Assuming albedos of the frost and gray components covering the Uranian satellites to be the same as the light and dark faces of Iapetus, radii are derived that are roughly twice those inferred from the assumption of a visual albedo of 0.5.  相似文献   

19.
In this article, expanded equations of normal gravity on the equipotential surface are proposed for a natural satellite whose orbital plane is close to its equatorial plane. Tidal effects on the normal gravity are also discussed. The authors apply these to the Galilean satellites. Calculations suggest that the tides raised by Jupiter weakly affect the Galilean satellites. The radial displacements of the gravity due to the tides are in the range between 10−3 and 10−5 m s−2, which are similar to the latitudinal and longitudinal displacements. The variations along the latitude circle are larger than those along the longitude circle. We conclude that the tidal effects on most of the Galilean satellites are larger than those on the Moon.  相似文献   

20.
John Caldwell 《Icarus》1977,32(2):190-209
Ultraviolet photometric and spectrophotometric observations of Mars and Saturn obtained by two Earth-orbiting satellites are combined in this report. High-resolution data from the S59 experiment aboard TD1A reveal no definite absorption features in the spectra of either planet. The absence of a prominent absorption in the Mars data near 2150 Å can be reconciled with the preliminary Viking measurement of NO only if that gas is preferentially concentrated at high Martian altitudes. Broadband photometry from OAO-2 shows that atmospheric dust on Mars during the great dust storm of 1971–1972 reduced the ultraviolet geometric albedo by a factor of ?3 at the height of the storm. This atmospheric energy deposition is probably an important mechanism in the storm dynamics. Diurnal variation in the ultraviolet brightness of Mars appears to be marginally detectable during the dust storm. A real brightness variation during a clear season is observed. The combined Saturn data from the two satellites strongly suggest that NH3 does not influence the ultraviolet spectrum of Saturn, but that some other absorber does. A candidate for such an absorber, H2S, is investigated. OAO-2 broadband photometry of Jupiter and of Saturn demonstrate that these planets have very similar albedos from 2100 to 2500 Å. This implies a common ultraviolet absorber on both planets, other than NH3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号