首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
P. Möller  G. Morteani  F. Schley 《Lithos》1980,13(2):171-179
Analytical data on REE, Sr, Ba, and Na of carbonatites, their calcite separates, and associated alkalic rocks from Fen/Norway, Alnö/Sweden and Kaiserstuhl/Germany are discussed. The REE distribution patterns of carbonatites suggest sympathetic behaviour with those of their associated alkalic rocks. This could be interpreted as the result of liquid/liquid separation. The typically steep patterns may be the result of Ca-metasomatism of alkaline-earth rich, but alkali-poor liquids with olivine-rich, alkali bearing, subcrustal rocks. Additionally, during this process incompatible elements could become concentrated in the carbonate rich liquid.  相似文献   

2.
We present new Sr-Nd isotope compositions together with major- and trace element concentrations measured for whole rocks and mineral separate phases (apatite, biotite and calcite) from fifteen Cape Verde oceanic carbonatites (Atlantic Ocean). Trace element patterns of calcio- and magnesio-carbonatites present a strong depletion in K, Hf, Zr and Ti and an overall enrichment in Sr and REE relative to Cape Verde basalts, arguing for distinct source components between carbonatites and basalts. Sr and Nd isotopic ratios show small, but significant variations defining a binary mixing between a depleted end-member with unradiogenic Sr and radiogenic Nd values and a ‘‘enriched’’ end-member compatible with old marine carbonates. We interpret the depleted end-member as the Cape Verde oceanic lithosphere by comparison with previous studies on Cape Verde basalts. We thus propose that oceanic carbonatites are resulting from the interaction of a deep rooted mantle plume carrying a lower 4He/3He signature from the lower mantle and a carbonated metasomatized lithosphere, which by low degree melting produced carbonatite magmas. Sr-Nd compositions and trace element patterns of carbonatites argue in favor of a metasomatic agent originating from partial melting of recycled, carbonated oceanic crust. We have successfully reproduced the main geochemical features of this model using a Monte-Carlo-type simulation.  相似文献   

3.
The formation and evolution conditions for alkaline magmatism and associated igneous rocks in the western framing of the Siberian craton are shown by the example of alkaline and subalkaline intrusive bodies of the Yenisei Ridge. Here we present petrographic, mineralogical, geochemical, and geochronological data for the rocks of the Srednetatarka and Yagodka plutons located within the Tatarka–Ishimba suture zone. Ferroan and metaluminous varieties enriched with rare elements (Nb, Ta, Zr, Hf, and REE) are making up most of the studied rocks. They formed at the stages of fractional crystallization of alkaline magma in a setting of active continental margin in the west of the Siberian craton in the Late Neoproterozoic (710–690 Ma). As differentiates of mantle magmas, these rocks associate with Nb-enriched rocks—A-type leucogranites and carbonatites. Sm/Nd and Rb/Sr isotopic data imply a predominance of the mantle component in the magmatic sources of the mafic and intermediate rocks as well as contamination processes of various volumes of continental crustal material by this magma.  相似文献   

4.
Igneous rocks of the Devonian Kola Alkaline Carbonatite Province (KACP) in NW Russia and eastern Finland can be classified into four groups: (a) primitive mantle-derived silica-undersaturated silicate magmas; (b) evolved alkaline and nepheline syenites; (c) cumulate rocks; (d) carbonatites and phoscorites, some of which may also be cumulates. There is no obvious age difference between these various groups, so all of the magma-types were formed at the same time in a relatively restricted area and must therefore be petrogenetically related. Both sodic and potassic varieties of primitive silicate magmas are present. On major element variation diagrams, the cumulate rocks plot as simple mixtures of their constituent minerals (olivine, clinopyroxene, calcite, etc). There are complete compositional trends between carbonatites, phoscorites and silicate cumulates, which suggests that many carbonatites and phoscorites are also cumulates. CaO / Al2O3 ratios for ultramafic and mafic silicate rocks in dykes and pipes range up to 5, indicating a very small degree of melting of a carbonated mantle at depth. Damkjernites appear to be transitional to carbonatites. Trace element modelling indicates that all the mafic silicate magmas are related to small degrees of melting of a metasomatised garnet peridotite source. Similarities of the REE patterns and initial Sr and Nd isotope compositions for ultramafic alkaline silicate rocks and carbonatites indicate that there is a strong relationship between the two magma-types. There is also a strong petrogenetic link between carbonatites, kimberlites and alkaline ultramafic lamprophyres. Fractional crystallisation of olivine, diopside, melilite and nepheline gave rise to the evolved nepheline syenites, and formed the ultramafic cumulates. All magmas in the KACP appear to have originated in a single event, possibly triggered by the arrival of hot material (mantle plume?) beneath the Archaean/Proterozoic lithosphere of the northern Baltic Shield that had been recently metasomatised. Melting of the carbonated garnet peridotite mantle formed a spectrum of magmas including carbonatite, damkjernite, melilitite, melanephelinite and ultramafic lamprophyre. Pockets of phlogopite metasomatised lithospheric mantle also melted to form potassic magmas including kimberlite. Depth of melting, degree of melting and presence of metasomatic phases are probably the major factors controlling the precise composition of the primary melts formed.  相似文献   

5.
 The southern Ivrea-Verbano Zone of the Italian Western Alps contains a huge mafic complex that intruded high-grade metamorphic rocks while they were resident in the lower crust. Geologic mapping and chemical variations of the igneous body were used to study the evolution of underplated crust. Slivers of crustal rocks (septa) interlayered with igneous mafic rocks are concentrated in a narrow zone deep in the complex (Paragneiss-bearing Belt) and show evidence of advanced degrees of partial melting. Variations of rare-earth-element patterns and Sr isotope composition of the igneous rocks across the sequence are consistent with increasing crustal contamination approaching the septa. Therefore, the Paragneiss-bearing Belt is considered representative of an “assimilation region” where in-situ interaction between mantle- and crust-derived magmas resulted in production of hybrid melts. Buoyancy caused upwards migration of the hybrid melts that incorporated the last septa and were stored at higher levels, feeding the Upper Mafic Complex. Synmagmatic stretching of the assimilation region facilitated mixing and homogenization of melts. Chemical variations of granitoids extracted from the septa show that deep septa are more depleted than shallow ones. This suggests that the first incorporated septa were denser than the later ones, as required by the high density of the first-injected mafic magmas. It is inferred that density contrasts between mafic melts and crustal rocks play a crucial role for the processes of contamination of continental magmas. In thick under plated crust, the extraction of early felsic/hybrid melts from the lower crust may be required to increase the density of the lower crust and to allow the later mafic magmas to penetrate higher crustal levels. Received: 2 May 1995 / Accepted: 1 November 1995  相似文献   

6.
Rocks of the northeast portion of the Colorado mineral belt form two petrographically, chemically and geographically distinct rock suites: (1) a silica oversaturated granodiorite suite; and (2) a silica saturated, high alkali monzonite suite. Rocks of the granodiorite suite generally have Sr contents less than 1000 ppm, subparallel REE patterns and initial 87Sr/ 86Sr ratios greater than 0.707. Rocks of the monzonite suite are restricted to the northeast part of the mineral belt, where few rocks of the granodiorite suite occur, and generally have Sr contents greater than 1000 ppm, highly variable REE patterns and 87Sr/86Sr initial ratios less than 0.706.Despite forming simple, smooth trends on major element variation diagrams, trace element data for rocks of the granodiorite suite indicate that they were not derived from a single magma. These rocks were derived from magmas having similar REE patterns, but variable Rb and Sr contents, and Rb/Sr ratios. The preferred explanation for these rocks is that they were derived by partial melting of a mixed source, which yielded pyroxene granulite or pyroxenite residues.The monzonite suite is chemically and petrographically more complex than the granodiorite suite. It is subdivided here into alkalic and mafic monzonites, and quartz syenites, based on the textural relations of their ferromagnesian phases and quartz. The geochemistry of these three rock types require derivation from separate and chemically distinct magma types. The preferred explanation for the alkalic monzonites is derivation from a heterogeneous mafic source, leaving a residue dominated by garnet and clinopyroxene. Early crystallization of sphene from these magmas was responsible for the severe depletion of the REE observed in the residual magmas. The lower Sr content and higher Rb/Sr ratios of the mafic monzonites requires a plagioclase-bearing source.The Sr-isotope systematics of the majority of these rocks are interpreted to be largely primary, and not the result of crustal contamination. The positive correlation of Rb/Sr and 87Sr/86Sr ratios for the least fractionated samples indicate that the sources from which parent magmas of both the granodiorite and monzonite suites were derived are Precambrian in age.  相似文献   

7.
Early Paleozoic alkaline basic magmatism in the Kuznetsk Alatau is manifested in the Upper Petropavlovka pluton of gabbro, feldspathoid rocks (theralites, mafic foidolites, and nepheline syenites), and Ca-carbonatites. According to Sm–Nd and Rb–Sr isotope data, the pluton formed in the Middle Cambrian (509 ± 10 Ma). The silicate igneous rocks correspond in the contents of silica, alumina, and alkalies to derivates of a K–Na alkaline basic association. The Ca-carbonatites are characterized by a high-temperature (600–900 °C) paragenesis of apatite, clinopyroxene, ferromonticellite, phlogopite, and magnetite. They are enriched in P2O5 (up to 6.4 wt.%), Sr (up to 3000–4500 ppm; Sr/Ba ~ 5–7), and REE + Y (up to 800 ppm) and show evidence for liquation genesis. The predominant magmatic source (εNd(T) = 5–7) was moderately depleted PREMA, possibly combined with E-MORB and EM. According to the isotopic data ((87Sr/86Sr)T ~ 0.7024–0.7065; δ18O ~ 6.3–15.5‰; δ18C ~ –3.5 to –2.0‰), the fractionation of the melts was accompanied by their crustal contamination. The trace-element composition of the mafic rocks testifies to the participation of a substance similar to the substrata of the parental magmas of MORB, IAB, and OIB in the magma generation. This suggests intrusion in the geodynamic setting of interaction between the active continental margin and an ascending mantle diapir. Most likely, the intrusion led to the mixing of material from different sources, including the components of PREMA, enriched suprasubduction lithospheric mantle (EM), and continental crust. The assumption is made that the complexes of highly alkaline rocks and carbonatites in the western Central Asian Fold Belt are of plume origin and belong to an Early Paleozoic large igneous province.  相似文献   

8.
Carbonatites are believed to have crystallized either from mantle-derived primary carbonate magmas or from secondary melts derived from carbonated silicate magmas through liquid immiscibility or from residual melts of fractional crystallization of silicate magmas. Although the observed coexistence of carbonatites and alkaline silicate rocks in most complexes, their coeval emplacement in many, and overlapping initial87Sr/86Sr and143Nd/144Nd ratios are supportive of their cogenesis; there have been few efforts to devise a quantitative method to identify the magmatic processes. In the present study we have made an attempt to accomplish this by modeling the trace element contents of carbonatites and coeval alkaline silicate rocks of Amba Dongar complex, India. Trace element data suggest that the carbonatites and alkaline silicate rocks of this complex are products of fractional crystallization of two separate parental melts. Using the available silicate melt-carbonate melt partition coefficients for various trace elements, and the observed data from carbonatites, we have tried to simulate trace element distribution pattern for the parental silicate melt. The results of the modeling not only support the hypothesis of silicate-carbonate melt immiscibility for the evolution of Amba Dongar but also establish a procedure to test the above hypothesis in such complexes.  相似文献   

9.
The magmatic heritage of carbonatites can be identified on the basis of a combination of geological criteria such as, their mode of occurrence, the nature of associated igneous rocks, the presence of minerals of igneous origin, fenitization, characteristic trace element contents and isotopic composition. Late Proterozoic Samalpatti carbonatites were studied in view of these criteria, and were found to contain metamorphic minerals that normally form under thermal metamorphic conditions and which have unusual chemical compositions. A combination of criteria points clearly to a magmatic origin for these carbonatites. Field relations indicate that the dominant modes of intrusion of carbonatite into the encompassing pyroxenites and syenites include small dykes, veins, or lenses. The igneous nature of these carbonatites has been described elsewhere and chemically they are classified as calico-carbonatites. Currently, very little is known about the metamorphic textures and mineralogy observed in the Samalpatti carbonatites. In this study, several metamorphic minerals are reported including diopside, grossularite, vesuvianite, K-feldspar and wollastonite, and a hornfelsic texture is described. These mineral phases and texture characterize thermal metamorphism under low pressure and high temperature (LP-HT) metamorphic conditions (650°_750°C) or metasomatism aided by hot-fluid advection. The metamorphic nature of minerals reported is also confirmed by electron microprobe study. The Samalpatti carbonatite samples show much lower values of characteristic trace elements (P, Sr, Ba, Zr, Nb, Th, Y and REEs) than average concentrations for magmatic carbonatite. Stable isotopic (d13C and d18O) compositions of Samalpatti carbonatites do not fall in the primary igneous carbonatite (PIC) domain. The petrological and chemical signatures of these carbonatites suggest metasomatism in conjunction with fluid advection. Such a metasomatic process may drastically change the chemistry of the rocks in addition to enrichment of heavier stable isotopes. During this metasomatic process, characteristic elements would be dissolved in the high d18O fluid, and together with Rayleigh fractionation would contribute to enhanced concentrations of 13C and 18O in Samalpatti carbonatites.  相似文献   

10.
In most alkaline-ultrabasic-carbonatite ring complexes, the distribution of trace elements in the successive derivatives of mantle magmas is usually controlled by the Rayleigh equation of fractional crystallization in accordance with their partition coefficients, whereas, that of late derivatives, nepheline syenites and carbonatites, is usually consistent with trends characteristic of silicate-carbonate liquid immiscibility. In contrast to the carbonatites of ring complexes, carbonatites from deep-seated linear zones have no genetic relation with alkaline-ultrabasic magmatism, and the associated alkaline rocks are represented only by the nepheline syenite eutectic association. The geochemical study of magmatic rocks from the Vishnevye Gory nepheline syenite-carbonatite complex (Urals), which is assigned to the association of deep-seated linear zones, showed that neither differentiation of a parental melt nor liquid immiscibility could produce the observed trace element distribution (Sr, Rb, REE, and Nb) in miaskites and carbonatites. Judging from the available fragmentary experimental data, the distribution patterns can be regarded as possible indicators of element fractionation between alkaline carbonate fluid and alkaline melt. Such trace element distribution is presumably controlled by a fluid-melt interaction; it was also observed in carbonatites and alkaline rocks of some ring complexes, and its scarcity can be explained by the lower density of aqueous fluid released from magma at shallower depths.  相似文献   

11.
http://www.sciencedirect.com/science/article/pii/S1674987110000125   总被引:3,自引:0,他引:3  
<正>Carbonatites are commonly related to the accumulation of economically valuable substances such as REE.Cu,and P.The debate over the origin of carbonatites and their relationship to associated silicate rocks has been ongoing for about 45 years.Worldwide,the rocks characteristically display more geochemical enrichments in Ba,Sr and REE than sedimentary carbonate rocks.However,carbonatite's geochemical features are disputed because of secondary mineral effects.Rock-forming carbonates from carbonatites at Qinling.Panxi region,and Bayan Obo in China show REE distribution patterns ranging from LREE enrichment to flat patterns.They are characterized by a Sr content more than 10 times higher than that of secondary carbonates.The coarse- and fine-grained dolomites from Bayan Obo H8 dolomite marbles also show similar high Sr abundance,indicating that they are of igneous origin.Some carbonates in Chinese carbonatites show REE(especially HREE) contents and distribution patterns similar to those of the whole rocks.These intrusive carbonatites display lower platinum group elements and stronger fractionation between Pt and Ir relative to high-Si extrusive carbonatite.This indicates that most intrusive carbonatites may be carbonate cumulates.Maoniuping and Daluxiang in Panxi region are large REE deposits.Hydrothermal fluorite ore veins occur outside of the carbonatite bodies and are emplaced in wallrock syenite.The fiuorite in Maoniuping has Sr and Nd isotopes similar to carbonatite.The Daluxiang fiuorite shows Sr and REE compositions different from those in Maoniuping.The difference is reflected by both the carbonatites and rock-forming carbonates,indicating that REE mineralization is related to carbonatites.The cumulate processes of carbonate minerals make fractionated fluids rich in volatiles and LREE as a result of low partition coefficients for REE between carbonate and carbonatite melt and an increase from LREE to HREE.The carbonatite-derived fluid has interacted with wallrock to form REE ore veins.The amount of carbonatite dykes occurring near the Bayan Obo orebodies may support the same mineralization model,i.e.that fluids evolved from the carbonatite dykes reacted with H8 dolomite marble,and thus the different REE and isotope compositions of coarse- and fine-grained dolomite may be related to reaction processes.  相似文献   

12.
Jifeng Ying  Xinhua Zhou  Hongfu Zhang 《Lithos》2004,75(3-4):413-426
Major and trace element and Nd–Sr isotope data of the Mesozoic Laiwu–Zibo carbonatites (LZCs) from western Shandong Province, China, provide clues to the petrogenesis and the nature of their mantle source. The Laiwu–Zibo carbonatites can be petrologically classified as calcio-, magnesio- and ferro-carbonatites. All these carbonatites show a similarity in geochemistry. On the one hand, they are extremely enriched in Ba, Sr and LREE and markedly low in K, Rb and Ti, which are similar to those global carbonatites, on the other hand, they have extremely high initial 87Sr/86Sr (0.7095–0.7106) and very low Nd (−18.2 to −14.3), a character completely different from those global carbonatites. The small variations in Sr and Nd isotopic ratios suggest that crustal contamination can not modify the primary isotopic compositions of LZC magmas and those values are representatives of their mantle source. The Nd–Sr isotopic compositions of LZCs and their similarity to those of Mesozoic Fangcheng basalts imply that they derived from an enriched lithospheric mantle. The formation of such enriched lithospheric mantle is connected with the major collision between the North China Craton (NCC) and the Yangtze Craton. Crustal materials from the Yangtze Craton were subducted beneath the NCC and melts derived from the subducted crust of the Yangtze Craton produced an enriched Mesozoic mantle, which is the source for the LZCs and Fangcheng basalts. The absence of alkaline silicate rocks, which are usually associated with carbonatites suggest that the LZCs originated from the mantle by directly partial melting.  相似文献   

13.
In the Upper Murray Valley, Victoria, Late Silurian, high‐Si igneous rocks, which are closely associated with alkalic, basaltic dykes, were emplaced at high crustal levels following the peak of the Benambran Orogeny, which deformed and metamorphosed the Wagga Zone in Late Ordovician‐Early Silurian times. These rocks, which are informally termed ‘the Upper Murray high‐Si magmatic suite’, include leucogranites, rhyolite dykes and flows, and ash‐flow tuffs characterised by the following features. They are transitional from mildly peraluminous to mildly metaluminous; they represent relatively anhydrous magmas, in which halides were important volatile constituents; they have high Si, total alkalies, Rb, Th, U, Nb, Sn and heavy rare earth elements; and they are relatively repleted in Mg, Ca, Sr, Eu, V, Cr and Ni. In these respects and in their post‐orogenic setting and close association with alkalic basalts, they resemble many post‐orogenic granitoids from elsewhere. Such granitoids appear to have formed as partial melts during crustal extension following major episodes of deformation and high‐Si magmatism. A residual granulitic crust, from which an earlier generation of granitoid magmas had been extracted, is argued to be the source rock‐type for these post‐orogenic magmas. Tectonic extension, affecting such a crust, was accompanied by deep fracturing and basaltic vol‐canism. Mantle‐derived, CO2‐ and halide‐rich fluids moved into the residual crust, causing widespread metasomatism, and emplacement of basaltic magma caused temperatures to rise until melting took place and a second group of magmas was produced. This model explains most aspects of the trace and major element chemistry of post‐orogenic, high‐Si igneous rocks and, for the Upper Murray high‐Si suite it also provides an explanation for variations in trace elements and isotopic characteristics. Other processes, such as crystal fractionation, magma mixing, thermogravi‐tational diffusion, and separation and loss of a volatile phase, provide explanations for variations within individual units of the suite, but they do not explain overall variations or the highly fractionated nature of the suite.  相似文献   

14.
New major and trace element and Nd-Sr isotope results are reported for the carbonatites of the Veseloe and Pogranichnoe occurrences, Northern Transbaikalia. The carbonatites from both these occurrences are enriched in Sr, Ba, LREE, Th, U, and depleted in Ti, Cr, and V relative to primitive mantle. As compared to the “average dolomite carbonatite”, the rocks from the Northern Transbaikalia have higher contents of Ni, Cr, and low contents of Ba, Ti, and V. The rocks are characterized by 87Sr/86S in the range of 0.7037–0.7043 and ɛNd from + 0.6 to + 2.05. Obtained geochemical and isotope data indicate that the carbonatites were derived from moderately depleted source with a contribution of enriched component.  相似文献   

15.
已有的研究得出:华北克拉通火成碳酸岩在时间上主要形成于古元代末—中元古代初、早中生代和晚中生代3个时段,反映了华北克拉通演化历史上3个拉张阶段。在空间上,前两个拉张阶段形成的火成碳酸岩分布在华北克拉通的北缘和南缘;后一个拉张阶段形成的火成碳酸岩分布在克拉通的中部和东部。华北克拉通火成碳酸岩的钕同位素主要特征是εNd(t )全为负值,而且随时间由老到新负值趋于降低。在εNd(t )-I Sr图解上,其投影点都落到了第3和第4象限,除莱芜—淄博地区火成碳酸岩外,其它都在富集地幔演化线附近,而且从老到新富集程度越来越高。推测华北克拉通火成碳酸岩形成的深部动力学机制可能是:在热地幔柱活动或周边板块向华北板块俯冲之后华北克拉通构造环境转变为伸展拉张环境,因压力减小而引起地幔部分熔融形成的碱性基性—超基性岩浆或碱性中性岩浆沿区域深断裂上侵,又经分异作用冷凝结晶形成杂岩体,火成碳酸岩是这些碱性岩浆演化晚阶段的主要产物。部分火成碳酸岩可能是从上地幔低程度部分熔融形成的碳酸岩浆直接上侵冷凝结晶而成。  相似文献   

16.
The incompatible element signatures of volcanic rocks formingJeju Island, located at the eastern margin of the Asian continent,are identical to those of typical intraplate magmas. The sourceof these volcanic rocks may be a mantle plume, located immediatelybehind the SW Japan arc. Jeju plume magmas can be divided intothree series, based on major and trace element abundances: high-aluminaalkalic, low-alumina alkalic, and sub-alkalic. Mass-balancecalculations indicate that the compositional variations withineach magma series are largely governed by fractional crystallizationof three chemically distinct parental magmas. The compositionsof primary magmas for these series, using inferred residualmantle olivine compositions, suggest that the low-alumina alkalicand sub-alkalic magmas are generated at the deepest and shallowestdepths by lowest and highest degrees of melting, respectively.These estimates, together with systematic differences in traceelement and isotopic compositions, indicate that the upper mantlebeneath Jeju Island is characterized by an increased degreeof metasomatism and a change in major metasomatic hydrous mineralsfrom amphibole to phlogopite with decreasing depth. The originalplume material, having rather depleted geochemical characteristics,entrained shallower metasomatized uppermost mantle material,and segregated least-enriched low-alumina alkalic, moderatelyenriched high-alumina alkalic, and highly enriched sub-alkalicmagmas, with decreasing depth. KEY WORDS: Jeju Island; magma genesis; mantle plume; subcontinental mantle  相似文献   

17.
In late Cretaceous time, subsilicic, alkalic magmas formed sills,laccoliths, plug-like bodies, small volcanoes, and a few dikesin Cretaceous sedimentary rocks of the Texas coastal plain alongan arcuate trend approximately coinciding with the buried Ouachitastructural belt. Transverse structural features apparently localizedthe igneous activity in two centers. In the larger center nearUvalde, Texas about half of the bodies are melilite-olivinenephelinite, a third olivine nephelinite and the remainder analcitephonolite, olivine basalt, and nepheline basanite, in orderof decreasing abundance. Basaltic and nephelinitic magmas were the primary magmas fromwhich all igneous rocks of the province were derived. Removalof olivine gave rise to a small range in chemical compositionof the basaltic rocks, but not gradation toward silica undersaturation.Nephelinitic magmas with compositions near that at which normativecalcium orthosilicate appears differentiated along two trendsto form melilite-olivine nephelinite as one end product andthrough nepheline basanite to analcite phonolite as the other.These two trends arose independently, their courses being determinedby the composition of the primary nephelinitic magma and theplane Fo-Di-Ne which has no piercing point at low pressure.  相似文献   

18.
《International Geology Review》2012,54(11):1027-1047
New geological and petrological data on the range of magmatic complexes and formations of the Eastern Sayan show two primary magmas: basic and granitoid. These magmas were formed through melting hard deep-seated layers of the earth crust: basaltic and sialic. During the geosynclinal stage the development of magmas belonging to the Archean, Proterozoic, and Salair [Cambrian] volcanic cycles proceeded consecutively from ultrabasic and basic formations formed in a pre-orogenic or earlier-orogenic geosynclinal development stage to granitoids set up in a synorogenic or later-synorogenic development stage. During the platform stage middle Paleozoic (Lower Devonian) and Mesozoic-Cenozoic cycles of magmatism proceeded directly, without the geosynclinal preparatory stage. Their development, accompanied by faulting, proceeded in reverse order from acidic and alkalic intrusions to predominantly basic eruptives. A further development of deep-seated basic and granitoid magmas was determined first by magmatic differentiation and later by assimilation phenomena which took place during the magma's passage into upper structural layers. The granitoids of geosynclinal magmatic complexes correspond petrochemically to the intermediate types of calc-alkalic rocks of the Pacific Ocean belt. The granitoids and alkalic rocks of the Lower Devonian platform magmatic complex resemble those of the Cenozoic East-Asia alkalic province. The composition of the granitoid magma belonging to the volcanic cycle is conditioned initially chiefly by the sial environment and geosynclinal strata. Magmatic complexes and formations are characterized by definite endogenic mineralizations. Chromium, nickel, cobalt, platinum, diamond, asbestos and other deposits are genetically connected with Proterozoic basic and ultrabasic rocks; gold, muscovite and tin-rare metal pegmatite with upper Proterozoic granitoids. Copper, galenaite and gold-ore occurrences are related to the postmagmatic manifestations of Salair granitoids. Deposits of pyrochlore carbonatites, molybdenite, graphite and others belong to Lower Devonian acidic and alkalic granitoids. — Auth. English summ.  相似文献   

19.
Mafic igneous rocks are widespread in the Nevado-Filábride Complex, the lowermost metamorphic unit of the internal zones of the Betic Cordilleras. They form intrusive, small, discontinuous bodies, predominantly dikes with subordinate small lava flows. The entire complex underwent alpine compressional metamorphism during the Paleogene continental collision, resulting in eclogites and blueschists in the mafic bodies and high-pressure assemblages in the intruded metasediments. Locally, weakly metamorphosed or completely unmetamorphosed igneous rocks with the same textural features occur as patches surrounded by eclogitized igneous rocks. The bulk rock chemistry of unmetamorphosed and completely metamorphosed mafic igneous rocks is consistent with an alkaline to transitional tholeiitic magmatism with typical within-plate geochemical characteristics. All but a few samples are nepheline normative and display REE and trace element characteristics typical of continental, rift-related magmatism. This conclusion is strongly supported by the mineral chemistry of the major constituents, in particular the calcic Ti-rich character of clinopyroxene, the lack of orthopyroxene, and the occurrence of kaersutitic amphibole. Incompatible trace element abundances and Sr and Nd isotopes support the provenance of these magmas from a variably metasomatized previously depleted sub-continental lithospheric mantle source. Received: 5 July 1999 / Accepted: 28 February 2000  相似文献   

20.
This paper studies the petrology of K-alkaline lamproite-carbonatite complexes, which are widespread in Siberia. They are exemplified by the Murun and Bilibino massifs in West and Central Aldan. In these massifs, the entire range of differentiates was first found, from K-ultrabasic-alkalic rocks through basic and intermediate ones to alkali granites and unique residual calc-silicate rocks (benstonite Ba-Sr carbonatites and charoite rocks). Also, intrusive equivalents of lamproites occur in these massifs, and the Murun massif was probably formed from highly differentiated lamproite magmas. In many K-alkaline complexes, silicate and silicate-carbonate magma layering takes place. Stages of magmatism are described for both massifs. Binary and ternary petrochemical diagrams exhibit the same compositional trend from early to late rocks.In this paper, lamproites are considered from the chemical point of view; their diagnostic properties are described in terms of chemical and mineral composition. From geological, petrological, and geochemical data, formational analysis of alkaline complexes was performed, four formational types of world lamproites were first identified, and diamond content criteria were developed for them.The carbonatite problem was studied from the petrological point of view, and four formational types of carbonatites were identified using geological, geochemical, and genetic criteria. It has been suggested that for dividing carbonatite complexes into four formational types the following criteria be used: the alkalinity type (Na or K) of alkalic rocks in the complex and the time when the carbonatite liquid separates from silicate melts in different stages of primary magma differentiation. These linked parameters influence the ore content type of carbonatite complexes.A formation model for K-alkaline carbonatite complexes is given, and the Tomtor alkaline carbonatite massif with tuffaceous rare-metal ores is described to prove that they have ore reserves. The geochemistry of C, O, Sr, and Nd isotopes shows that K-alkaline complexes, depending on their geotectonic setting, can originate from three types of mantle sources: depleted mantle, enriched mantle 1 (EM1), and enriched mantle 2 (EM2). It is concluded that ore-bearing ultrabasic-alkaline complexes of lamproites and carbonatites can melt out of different types of mantle, whose composition only slightly influences their ore content. Apparently, the main factors are the low degree of selective mantle melting (less than 1%) and plumes supplying fluid and alkaline components, which stimulate this melting. Later on, the processes important for the accumulation of ore and trace elements are long-term magma differentiation and its layering during crystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号