首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Diffuse streaks in diffraction patterns of synthetic pyroxene single crystals at elevated temperatures are used to determine which reactions are initiated and how they proceed. The samples investigated are a) a host orthopyroxene (Wo4En83Fs13) containing oriented pigeonite (Wo6En78Fs16) parallel to (100) and b) a pigeonite (Wo8En75Fs17). The maximum temperatures were 820° C and 1,015° C, respectively. No partial melting occurs at these temperatures, all reactions are in the subsolidus. In case a) augite is formed parallel to the (001) plane of pigeonite, but the augite is not exsolved by the pigeonite. This is proved by the absence of the obligatory streaks between corresponding reflections in highly resolved precession photographs. Instead, there are streaks from augite to the corresponding reflections of the host orthopyroxene. Example b) demonstrates that the temperature of the high-low transformation of pigeonite is very sensitive to the Ca content and clearly depends on the exsolution of augite. This augite is oriented parallel to (100) of pigeonite, not to (001). Both the high and the low pigeonite are present over a range of ~150° C, while the exsolution of augite continues. Simultaneously, orthopyroxene is also formed sharing (100) of pigeonite. There seems to be an indication that only low pigeonite inverts to orthopyroxene.  相似文献   

2.
Abstract A suite of granulites including a meta-ironstone, pyroxenites, and spinel-lherzolites from East Tonagh Island, Enderby Land, Antarctica, preserve exsolution-recry-stallization features consistent with a shared metamorphic evolution that involves marked cooling from initial metamorphic temperatures of nearly 1000°C. Reintegrated pre-exsolution and pre-reaction grain compositions in the meta-ironstone indicate the former coexistence of metamorphic pigeonite (Wo12En38Fs50) and ferroaugite (Wo35En31Fs34) at temperatures in excess of 980°C for pressures of 7 kbar (0.7 GPa) using pyroxene quadrilateral thermometry (Lindsley, 1983). Intra-grain lamellae relationships indicate the exsolution of a second pigeonite (Wo12En35Fs53) from the ferroaugite at temperatures in the range 930–970°C, prior to the c. 720–600°C exsolution of orthopyroxene and clinopyroxene (100) lamellae and later partial recrystallization at similar temperatures. Although pyroxenitic and iherzolitic granulites preserve a much less complete history, reintegrated porphyroclast compositions in these yield temperature estimates which approach those inferred from the metaironstone. Pyroxene thermometry based on neoblast compositions suggests that recrystallization post-dating a late, low intensity, deformation phase (D3) occurred at temperatures greater than 600°C. These results are consistent with the independent evidence obtained from studies of metapelitic and felsic rock types for very high temperature metamorphism throughout the Napier Complex followed by near-isobaric cooling and later deformation under lower-grade granulite facies conditions. Comparison with similar pyroxene data from Fyfe Hills (Sandiford & Powell, 1986) demonstrates further the regional significance of these high temperatures, and implies broadly isothermal metamorphic conditions over a large area (~ 5000 km2) and thickness (6–9 km) of lower crust at c. 3070 Ma.  相似文献   

3.
The Precambrian Sierra Ancha sill complex, more than 700 feet thick, is a multiple intrusion with a central layer of feldspathic olivine-rich diabase, and upper and lower layers of olivine diabase derived from a high-alumina basalt magma. Minor rock types include albite diabase and albite-diabase pegmatite. Deuteric alteration was extensive. Principal primary minerals are plagioclase (An72 to An16), augite (Wo43En44Fs13 to Wo40En38Fs22), olivine (Fo74 to Fo54), orthopyroxene (En77 to En44), magnetite (Mgt66Usp34 to Mgt89Usp11), and ilmenite (Ilm86Hem14 to Ilm96Hem4). Ilmenite formed by reaction-exsolution from magnetitess is consistently different in compositon from primary ilmenite. Primary ilmenite became enriched in Mn and depleted in Mg as crystallization proceded. A systematic Fe-Mg partition between contacting olivine and orthopyroxene suggests that equilibrium prevailed on an extremely local scale during crystallization. Albite-diabase pegmatite contains a mineral assemblage including augite, ferrosalite (Wo49En28Fs23 to Wo49En14Fs37), albite (An2 to An0), and iron-rich chlorite. Altered diabase and albite diabase also have unusually calcium-rich pyroxenes. The calcium-rich pyroxenes, which occur in assemblages like those characterizing some spilites, are richer in calcium and lower in aluminum and titanium than basaltic augite.Contribution No. 1712 of the Division of Geological Sciences, California Institute of Technology, Pasadena, California.  相似文献   

4.
Electron microprobe analyses of orthopyroxene and Ca-clinopyroxene in 21 ordinary petrographic type 6 chondrites (7 H-, 8 L-, and 6 LL-group chondrites) result in differentK D (distribution coefficient) values for H-, L-, and LL-group chondrites, which suggest different equilibration temperatures for each group. If we consider the Blander model (Blander 1972), the differences in Fe-Mg distributions for these groups reflect only their different Wo (CaSiO3) contents, and are not due to differences in equalibration temperature. Ca-clinopyroxene and orthopyroxene in contact with each other give a lower analytical spread and more meaningful results than those analyzed at random. Olivine and orthopyroxene in nearly all analyzed chondrites are homogenous within and between grains; Ca-clinopyroxene shows heterogenous compositions in petrographic types 4 and 5, but is homogenous in type 6. Ca-clinopyroxene in disequilibrated chondrites contains unusual amounts of minor elements Al, Ti, and Cr, a feature that can be used to denote meteorites of this type. Equilibration temperatures for ordinary chondrites, based on the pyroxene-pyroxene geothermometer are not known, although a range of 750–950° C appears to be a fair estimate. The exact equilibration temperatures can be determined only after this geothermometer is carefully calibrated experimentally or empirically, with due consideration given to Wo content.  相似文献   

5.
Optically homogeneous augite xenocrysts, closely associated with spinel–peridotite nodules, occur in alkali basalts from Hannuoba (Hebei province, China). They were studied by electron and X-ray diffraction to define the occurrence and significance of pigeonite exsolution microtextures. Sub-calcic augite (Wo34) exsolved into En62–62Fs25–21Wo13–17 pigeonite and En46–45Fs14–14Wo40–42 augite, as revealed by TEM through diffuse coarser (001) lamellae (100–300 Å) and only incipient (100) thinner ones (<70 Å). C2/c augite and P21/c pigeonite lattices, measured by CCD-XRD, relate through a(Aug)?a(Pgt), b(Aug)?b(Pgt), c(Aug)≠c(Pgt) [5.278(1) vs 5.189(1)Å] and β(Aug)≠β(Pgt) [106.55(1) vs 108.55(2)°]. Cell and site volumes strongly support the hypothesis that the augite xenocrysts crystallised at mantle depth from alkaline melts. After the augite xenocrysts entered the magma, (001) lamellae first formed by spinodal decomposition at a Tmin of about 1,100 °C, and coarsened during very rapid transport to the surface; in a later phase, possibly on cooling, incipient (100) lamellae then formed.  相似文献   

6.
 The Middle Miocene Tobe hornfels in the Sanbagawa metamorphic belt, western Shikoku, southwest Japan, is characterized by an abnormally steep metamorphic gradient compared with other hornfelses associated with intrusive bodies. The basic hornfels, originally Sanbagawa greenschist rocks, is divided into the following three metamorphic zones: plagioclase, hornblende, and orthopyroxene. The plagioclase zone is defined by the appearance of calcic plagioclase, the hornblende zone by the assemblage of hornblende+calcic plagioclase+quartz, and the orthopyroxene zone is characterized by the assemblage of orthopyroxene + clinopyroxene + plagioclase + quartz. Calcic amphibole compositions change from actinolite to hornblende as a result of the continuous reactions during prograde metamorphism. Petrographical and thermometric studies indicate a metamorphic temperature range of 300–475°C for the plagioclase zone, 475–680°C for the hornblende zone, and 680–730°C for the orthopyroxene zone. The temperature gradient based on petrological studies is approximately 5°C/m, which is unusually high. Geological and petrological studies demonstrate that the hornfelses were formed by the focusing of high-temperature fluids through zones of relatively high fracture permeability. The steep thermal gradient in the Tobe hornfels body is consistent with a large fluid flux, greater than 8.3 × 10–7 m3 m–2S–1, over the relatively short duration of metamorphism, approximately 100 years. Received: 10 October 1995 / Accepted: 28 May 1996  相似文献   

7.
Portions of the Gunflint Iron Formation, originally a ferruginoussediment, were metamorphosed by the intrusion of the DuluthComplex to assemblages containing: pigeonite (Wo10En24Fs66)+olivine(Fo13Fa37)+Fe-Ti oxide (Mt62Usp34Hc4)+plagioclase (An94Ab6)+vapor+augite (Wo40En20Fs40) or cummingtonite Fe/(Fe+Mg) {smalltilde} 0.69; quartz was present but probably was not in equilibriumwith olivine. Comparison with synthetic phase-equilibrium studiesindicate conditions of initial recrystallization of T 800 °C,Ptotal 2kb, fo2 slightly below that of the pure fayalite-magnetite-quartzassemblage, and PH2O < Ptotal. During the slow cooling process following initial recrystallization,the phases present underwent a complex series of exsolution,inversion, oxidation, and hydration reactions. Pigeonite initiallyexsolved augite along (001), then inverted to orthopyroxene,which then exsolved augite along (100). The augite exsolvedonly pigeonite on (001) during its cooling history. The Fe-Tioxide for the most part oxidized to an intergrowth of magnetiteand ilmenite, although unoxidized portions later exsolved ulvöspinel.Cummingtonite exsolved actinolite, forming irregular patchesof the latter. Olivine, orthopyroxene, and augite reacted withplagioclase to form retrograde amphiboles. Orthopyroxene had difficulty nucleating during this slow coolingprocess, forming only at widely spaced points in mosaics ofprimary pigeonite grains, and never nucleating within primaryaugite grains. The resulting orthopyroxene grains are much largerthan the original pigeonite grains.  相似文献   

8.
We report on the petrology and geochemistry of the Northwest Africa 2737 (NWA 2737) meteorite that was recovered from the Morrocan Sahara in 2000. It is the second member of the chassignite subclass of the SNC (Shergotitte-Nakhlite-Chassignite) group of meteorites that are thought to have originated on Mars. It consists of black olivine- and spinel-cumulate crystals (89.7 and 4.6 wt%, respectively), with intercumulus pyroxenes (augite 3.1 wt% and pigeonite-orthopyroxene 1.0 wt%), analbite glass (1.6 wt%) and apatite (0.2 wt%). Unlike Chassigny, plagioclase has not been observed in NWA 2737. Olivine crystals are rich in Mg, and highly equilibrated (Fo = 78.7 ± 0.5 mol%). The black color of olivine grains may be related to the strong shock experienced by the meteorite as revealed by the deformation features observed on the macroscopic to the atomic scale. Chromite is zoned from core to rim from Cr83.4Uv3.6Sp13.0 to Cr72.0Uv6.9Sp21.1. Pyroxene compositional trends are similar to those described for Chassigny except that they are richer in Mg. Compositions range from En78.5Wo2.7Fs18.8 to En76.6Wo3.2Fs20.2 for the orthopyroxene, from En73.5Wo8.0Fs18.5 to En64.0Wo22.1Fs13.9for pigeonite, and from En54.6Wo32.8Fs12.6 to En46.7Wo44.1Fs9.2 for augite. Bulk rock oxygen isotope compositions confirm that NWA 2737 is a new member of the martian meteorite clan (Δ17O = 0.305 ± 0.02‰, n = 2). REE abundances measured in NWA 2737 mineral phases are similar to those in Chassigny and suggest a genetic relationship between these two rocks. However, the parent melt of NWA 2737 was less evolved and had a lower Al abundance.  相似文献   

9.
C3(O) chondrites comprise a metamorphic sequence. The following order reflects increasing grade: Kainsaz. Felix. Ornans. Lance. Isna, Warrenton. Assignment of Karoonda to the Ornans subtype is uncertain, but it is certainly of higher petrologic type than C3. Average olivine and pyroxene compositions in the metamorphic sequence change progressively from Fo12. Fs3 to Fo34, Fs11, respectively, and per cent mean deviation decreases. Kamacite and taenite change composition with increasing grade, reflecting higher equilibration temperatures. Blurring of textural features and Fe/Mg exchange between matrix and inclusions are also evident. As in the ordinary chondrites. contents of rare gases and possibly volatiles correlate with degree of metamorphism, but the effects are small. The meteorite Ornans presents an intriguing paradox. Observed chemical enrichment and depletion patterns reflect a higher metamorphic grade than do petrographic properties. The data suggest that abundance patterns of volatile components were not generated by metamorphism, but may represent primary differences. Strong correlations present in other C3(O) chondrites indicate some genetic link between metamorphism and composition, although the relationship is probably not causal. The autometamorphism model of Larimer and Anders (1967) appears to be the most straightforward explanation, but an observed negative correlation between the amount of matrix and content of volatiles suggests a re-examination of the two-component model. The decoupling mechanism required for Ornans is uncertain.  相似文献   

10.
Lunar sample 76535 is a coarse-grained troctolitic granulite exhibiting a texture indicative of long annealing times. It is composed of homogeneous crystals of plagioclase (58 per cent, An96), olivine (37 per cent, Fo88) and bronzite (4 per cent, En86).Chromian spinel-bronzite-diopside (Wo46En50Fs4) symplectic intergrowths commonly occur along olivine-plagioclase boundaries and as tiny inclusions within olivine grains. These symplectites apparently formed by a reaction of the type:
OI + An + Chromite → Opx + Cpx + Al-Mg-chromite
. The reaction is related to the experimentally determined reaction
OI + An = Opx + Cpx + Sp
of Kushiro and Yoder (1966). The enstatite content of the diopside coexisting with the bronzite indicates equilibration at about 1000°C. Thermodynamic calculations for 1000°C indicate that the symplectites formed at a minimum pressure of about 0.6 kb. Low alumina contents of the pyroxenes indicate equilibration near this minimum pressure.Clusters of the same assemblage found in the symplectic intergrowths, but containing accessory metal, troilite, Ca-phosphates, baddeleyite, plagioclase and/or K-feldspar occur sporadically throughout the rock. These apparent late stage products crystallized in the low temperature-high pressure region discussed above.Phase relations of co-existing metal phases indicate that the rock cooled at a few tens of degrees/my, corresponding to depths of 10–20 km below the lunar surface, in agreement with the above pressure estimate.We infer that 76535 represents an original cumulate deposited at a depth between about 10 and 30 km. The last liquid crystallized in the relatively high pressure-low temperature field opx + cpx + Al-Mg-chromite. Cooling was extremely slow and accompanied by extensive chemical and textural re-equilibration. Reaction to form the symplectites occurred during the late stages of re-equilibration.  相似文献   

11.
Exsolution systems in synthetic pyroxenes were studied by transmission electron microscopy. An iron free sample En80Wo20 was prepared by devitrifying glass at 1300°C. Samples with bulk composition En50Fs30Wo20 and En35Fs38Wo27 were given various but well-defined heat treatments. The exsolution systems observed cannot unambiguously be related to the heat treatment. Periodic lamellar exsolution was observed parallel to (001) and (100) with sharp satellite reflections in the diffraction diagram. In more complex exsolution systems coarse (100) lamellae were found together with fine lamellae parallel to (001) and (100). An unusual phenomenon occurs at a (100) twin boundary where both individuals display exsolution lamellae parallel to (001). Pigeonite lamellae in one twin meet augite lamellae of the other individual at the twin boundary and vice-versa. The precise matching is achieved by a change in width near the boundary. Smoothly curved phase boundaries are developed in the obtuse angle of crosshatched (100) and (001) pigeonite lamellae in augite, whereas the boundaries in the acute angle are straight with sharp edges. This is consistent with elastic energy constraints.  相似文献   

12.
The thermoluminescence properties of nine CO chondrites have been measured. With the exception of Colony and Allan Hills A77307 (ALHA 77307), whose maximum induced TL emission is at approximately 350°C, CO chondrites exhibit two TL peaks, one at 124 ± 7°C (130°C peak) and one at 252 ± 7°C (250°C peak). The 130°C peak shows a 100-fold range in TL sensitivity (0.99 ± 0.21 for Isna to 0.010 ± 0.004 for Colony), and correlates with various metamorphism-related phenomena, such as silicate heterogeneity, metal composition and McSween's metamorphic subtypes. The peak at 250°C does not show these correlations and, Colony excepted, varies little throughout the class (0.3 to 0.07, Colony 0.018 ± 0.004). Mineral separation experiments, and a series of annealing experiments on Isna, suggest that the TL properties for CO chondrites reflect the presence of feldspar in two forms, (1) a form produced during metamorphism, and analogous to the dominant form of feldspar in type 3 ordinary chondrites, and (2) a primary, metamorphism-independent form, perhaps associated with the amoeboid inclusions. If this interpretation is correct, then the CO chondrites have not experienced temperatures above the order/disorder temperature for feldspar (500–600°C) and they cooled more slowly than comparable (i.e. type <3.5) type 3 ordinary chondrites. Colony and ALHA 77307 have atypical TL properties, including very low TL sensitivity, suggesting that phosphors other than feldspar are important. They have apparently experienced less metamorphism than the others, and may have also been aqueously altered.  相似文献   

13.
Lunar meteorite Northwest Africa 773 (herein referred to as NWA773) is a breccia composed predominantly of mafic volcanic components, including a prominent igneous clast lithology. The clast lithology is an olivine-gabbro cumulate, which, on the basis of mineral and bulk compositions, is a hypabyssal igneous rock related compositionally to volcanic components in the meteorite. The olivine-gabbro lithology exhibits cumulus textures and, in our largest section of it, includes some 48% olivine (Fo64 to Fo70, average Fo67), 27% pigeonite (En60Fs24Wo16 to En67Fs27Wo6), 11% augite (En50Fs17Wo33 to En47Fs13Wo40), 2% orthopyroxene (En70Fs26Wo4), 11% plagioclase (An80 to An94), and trace barian K-feldspar, ilmenite, Cr-spinel, RE-merrillite, troilite, and Fe-Ni metal. The Mg/Fe ratios of the mafic silicates indicate equilibration of Fe and Mg; however, the silicates retain compositional variations in minor and trace elements that are consistent with intercumulus crystallization. Accessory mineralogy reflects crystallization of late-stage residual melt. Both lithologies (breccia and olivine cumulate) of the meteorite have very-low-Ti (VLT) major-element compositions, but with an unusual trace-element signature compared to most lunar VLT volcanic compositions, i.e., relative enrichment in light REE and large-ion-lithophile elements, and greater depletion in Eu than almost all other known lunar volcanic rocks. The calculated composition of the melt that was in equilibrium with pyroxene and plagioclase of the cumulate lithology exhibits a KREEP-like REE pattern, but at lower concentrations. Melt of a composition calculated to have been in equilibrium with the cumulate assemblage, plus excess olivine, yields a major-element composition that is similar to known green volcanic glasses. One volcanic glass type from Apollo 14 in particular, green glass B, type 1, has a very low Ti concentration and REE characteristics, including extremely low Eu concentration, that make it a candidate parent melt for the olivine-gabbro cumulate. We infer an origin for the parent melt of NWA773 volcanic components by assimilation of a trace-element-rich partial or residual melt by a magnesian, VLT magma deep in the lunar crust or in the mantle prior to transportation to the near-surface, accumulation of olivine and pyroxene in a shallow chamber, eruption onto a volcanic surface, and incorporation of components into local, predominantly volcanic regolith, prior to impact mixing of the volcanic terrain and related hypabyssal setting, and ejection from the surface of the Moon. Volcanic components such as these probably occur in the Oceanus Procellarum region near the site of origin of the green volcanic glasses found in the Apollo 14 regolith.  相似文献   

14.
A unique clinopyroxene (En19Fs78Wo3), clinoeulite, space group P21/c, $${\text{(Fe}}_{{\text{1}}{\text{.48}}} {\text{Mg}}_{{\text{0}}{\text{.37}}} {\text{Mn}}_{{\text{0}}{\text{.08}}}^{{\text{2 + }}} {\text{Ca}}_{{\text{0}}{\text{.05}}} {\text{Al}}_{{\text{0}}{\text{.01}}} {\text{)}}_{{\text{1}}{\text{.99}}} {\text{ [Si}}_{{\text{2}}{\text{.01}}} {\text{O6],}}$$ contains sharp exsolution lamellae of ferroaugite (En17Fs43Wo40) from which the former presence of a ferropigeonite near En17Fs70Wo13 can be calculated. This two-pyroxene intergrowth is the main component of a eulysite containing also magnetite, olivine (Fo9Fa86Te5), quartz, oligoclase-K feldspar inter-growth, and retrograde cummingtonite with about 76 % grunerite end member. The occurrence of this most unusual rock type in the center of the Vredefort structure is attributed to a period of high-temperature metamorphism (at least 800 °–850 °C) which was followed by hot deformation of the rock during the Vredefort event thus probably preventing the common formation of orthopyroxene through pigeonite exsolution and inversion upon cooling. After this tectonic deformation, the rock recrystallized within the low-temperature stability range of clinoeulite to yield fine annealing textures. Late-stage equilibria at temperatures well below 500 °C include the complete unmixing of a former high-temperature anorthoclase, a Mg/Fe redistribution in the clinoeulite and olivine and, with the introduction of water, the partial formation of cummingtonite through reaction of clinoeulite, olivine, and quartz. During weathering the olivine was transformed to a nearly opaque, anhydrous ferrisilicate which, except for the change of Fe2+ to Fe3+ and the oxygen introduction, largely retained its original chemistry.  相似文献   

15.
Exsolved augite pyroxenes from the ferromonzonite border facies of the ferrosyenite in the Laramie Anorthosite Complex have been studied with the transmission electron microscope and the electron microprobe to determine their exsolution histories. The Lindsley and Andersen (1983) geothermometer gives initial crystallization temperatures of 1000° C for the bulk augite crystal (Wo32 En22 Fs46). Exsolved lamellae are predominantly pigeonites with very low calcium contents (Wo1–3 En23–24 Fs71–74) and have formation temperatures estimated to be in the range of 600 to 975° C. The uniform compositions of lamellae and hosts, despite the range in lamellar size and orientation, suggest that either 1) the ferromonzonite experienced an extended plateau in cooling or a reheating event at 600 to 650° C or 2) the pyroxenes recorded a blocking temperature. Two-feldspar geothermometry on exsolved feldspars also records 600° C and suggests that these low temperatures are not blocking temperatures.  相似文献   

16.
We report a new occurrence of incipient charnockite from Mavadi in the Trivandrum Granulite Block (TGB), southern India, and discuss the petrogenesis of granulite formation in an arrested stage on the basis of petrography, geothermobarometry, and mineral equilibrium modeling. In Mavadi, patches and lenses of charnockite (Kfs?+?Qtz?+?Pl?+?Bt?+?Grt?+?Opx?+?Ilm?+?Mag) of about 30 to 220 cm in length occur within Opx-free Grt-Bt gneiss (Kfs?+?Qtz?+?Pl?+?Bt?+?Grt?+?Ilm). The application of mineral equilibrium modeling on the charnockite assemblage in the NCKFMASHTO system to constrain the conditions of charnockitization defines a PT range of 800 °C at 4.5 kbar to 850 °C at 8.5 kbar, which is broadly consistent with the results from the conventional geothermobarometry (810–880 °C at 7.7–8.0 kbar) on these rocks. The PT conditions are lower than the peak metamorphic conditions reported for the ultrahigh-temperature granulites from this area (T?>?900 °C). The heterogeneity in peak PT conditions within the same crustal block might be related to local buffering of metamorphic temperatures by the Opx-Bt-Kfs-Qtz assemblage. The result of T versus mole H2O (M(H2O)) modeling demonstrated that the Opx-free assemblage in the Grt-Bt gneiss is stable at M(H2O)?=?0.3 to 1.5 mol%, and orthopyroxene occurs as a stable mineral at M(H2O) <0.3 mol%, which is consistent with the petrogenetic model of incipient charnockite related to the lowering of the water activity and stabilization of orthopyroxene through the breakdown of biotite by dehydration caused by the infiltration of CO2-rich fluid from external sources. We also propose a possible alternative mechanism to form charnockite from Grt-Bt gneiss through slight variations in bulk-rock chemistry (particularly for the K- and Fe-rich portion of Grt-Bt gneiss) that can enhance the stability of orthopyroxene rather than that of biotite, with K-metasomatism playing a possible role.  相似文献   

17.
A high-grade metamorphic complex is exposed in Filchnerfjella (6–8°E), central Dronning Maud Land. The metamorphic evolution of the complex has been recovered through a study of textural relationships, conventional geothermobarometry and pseudosection modelling. Relicts of an early, high-P assemblage are preserved within low-strain mafic pods. Subsequent granulite facies metamorphism resulted in formation of orthopyroxene in rocks of mafic, intermediate to felsic compositions, whereas spinel + quartz were part of the peak assemblage in pelitic gneisses. Peak conditions were attained at temperatures between 850–885 °C and 0.55–0.70 GPa. Reaction textures, including the replacement of amphibole and garnet by symplectites of orthopyroxene + plagioclase and partial replacement of garnet + sillimanite + spinel bearing assemblages by cordierite, indicate that the granulite facies metamorphism was accompanied and followed by decompression. The observed assemblages define a clock-wise P-T path including near-isothermal decompression. During decompression, localized melting led to formation of post-kinematic cordierite-melt assemblages, whereas mafic rocks contain melt patches with euhedral orthopyroxene. The granulite facies metamorphism, decompression and partial crustal melting occurred during the Cambrian Pan-African tectonothermal event.  相似文献   

18.
Ten spinel-lherzolite inclusions and one olivine-websterite inclusion, which were collected from Fujian, Jiangsu, Hebei and Yunnan Provinces, consist of olivine (FΦ87.7–91.2), enstatite (En87.3–89.7), Cr-diopside and spinel. According to the Mg/(Mg+Fe2+) ratios in the rocks and their mineralogies, they are designated to the Cr-diopside type. The websterite is composed of bronzite (En71.9) and augite, while the gabbro-norite consists of hypersthene (En68.9) and augite, belonging to the Al-augite type. The geothermos of spinel-lherzolites were calculated with four geothermometric methods, giving a temperature range of 925°–1,072°C. However, according to P. R. A. Wells' method, temperatures range from 845δ to 1,014°C, and by D. H. Lindsly's approach, from 716°–974°C. Pressures range from 15.1 to 19.8 kb. Genetically, Spinel-lherzolites and olivine-websterite are thought to have been derived from residual mantle material by partial melting at approximately 1,000°C and at a depth of about 50–70 km. Websterite and gabbro-norite may be products of the crystallization-differentiation of alkali basaltic magma.  相似文献   

19.
Northwest Africa (NWA) 12379 is a new metal-rich chondrite with unique characteristics distinguishing it from all previously described meteorites. It contains high Fe,Ni-metal content (∼ 70 vol.%) and completely lacks interchondrule matrix; these characteristics are typical only for metal-rich carbonaceous (CH and CB) and G chondrites. However, chondrule sizes (60 to 1200 μm; mean = 370 μm), their predominantly porphyritic textures, nearly equilibrated chemical compositions of chondrule olivines (Fa18.1–28.3, average Fa24.9±3.2, PMD = 12.8; Cr2O3 = 0.03 ± 0.02 wt.%; FeO/MnO = 53.2 ± 6.5 (wt.-ratio); n = 28), less equilibrated compositions of low-Ca pyroxenes (Fs3.2–18.7Wo0.2–4.5; average Fs14.7±3.7Wo1.4±1.3; n = 20), oxygen-isotope compositions of chondrule olivine phenocrysts (Δ17O ∼ 0.2–1.4‰, average ∼ 0.8‰), and the presence of coarse-grained Ti-bearing chromite, Cl-apatite, and merrillite, all indicate affinity of NWA 12379 to unequilibrated (type 3.8) ordinary chondrites (OCs). Like most OCs, NWA 12379 experienced fluid-assisted thermal metamorphism that resulted in formation of secondary ferroan olivine (Fa27) that replaces low-Ca pyroxene grains in chondrules and in inclusions in Fe,Ni-metal grains. Δ17O of the ferroan olivine (∼ 4‰) is similar to those of aqueously-formed fayalite in type 3 OCs, but its δ18O is significantly higher (15–19‰, average = 17‰ vs. 3―12‰, average = 8‰, respectively). We suggest classifying NWA 12379 as the ungrouped metal-rich chondrite with affinities of its non-metal fraction to unequilibrated OCs and speculate that it may have formed by a collision between an OC-like body and a metal-rich body and subsequently experienced fluid-assisted thermal metamorphism. Trace siderophile element abundances and isotopic compositions (e.g., Mo, Ni, Fe) of the NWA 12379 metal could help to constrain its origin.  相似文献   

20.
Wood-and-Banno temperatures for the coexisting pyroxenes of equilibrated metamorphic rocks in the hornblende granulite subfaoies fall in the range 780–860° C. Minimum temperature estimates for granulites include 760–790 °C, from the dehydration of hornblende to an orthopyroxene assemblage, and about 800 °C, from other evidence. The pyroxene temperatures are generally consistent with these temperature estimates, and are certainly not too low or more than 50 ° too high. Pyroxene temperatures for the three subzones of Broken Hill granulites increase away from the orthopyroxene isograd and are sufficiently precise that the difference between the lowest and intermediate gubzones is statistically significant. Temperatures for pyroxenes in pyroxene-granulite subfacies rocks are greater than 860 °C. The internal consistency, precision and apparent accuracy of the Wood-and-Banno pyroxene geothermometer in the metamorphic temperature range make it an important tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号