首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
The antecedent soil moisture status of a catchment is an important factor in hydrological modelling. Traditional Hortonian infiltration models assume that the initial moisture content is constant across the whole catchment, despite the fact that even in small catchments antecedent soil moisture exhibits tremendous spatial heterogeneity. Spatial patterns of soil water distribution across three transects (two in a burnt area and one in an unburnt area) in a semi‐arid area were studied. At the transect scale, when the factors affecting soil moisture were limited to topographical position or local topography, spatial patterns showed time stability, but when other factors, such as vegetation, were taken into account, the spatial patterns became time unstable. At the point scale, and in the same areas, topographical position was the main factor controlling time stability. Scale dependence of time stability was studied and local topography and vegetation presence were observed to play an important role for the correlation between consecutive measures depending on the scale. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
A simple conceptual hydrological model that explicitly includes the lateral movement of soil water and operates efficiently at the landscape scale is outlined. It is applied to five areas of ecological interest in the UK to provide distributed mean monthly soil moisture on a 50 m grid. As the model's driving variables—daily rainfall and potential evapotranspiration—are assumed constant over each of the tracts of land, the variability in soil moisture is due to different soil types and to topographic effects. Box plots of the mean monthly simulated soil moisture clearly show the spread of values occasioned by modelling the lateral water movement down the hillslope. The general magnitude of the results are compared with published data wherever possible and there is some discussion of the form of the curve used in the model to describe the attenuation of evapotranspiration with decreasing soil moisture. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
Soil moisture is essential for plant growth and terrestrial ecosystems, especially in arid and semi‐arid regions. This study aims to quantify the variation of soil moisture content and its spatial pattern as well as the influencing factors. The experiment is conducted in a small catchment named Yangjuangou in the loess hilly region of China. Soil moisture to a depth of 1 m has been obtained by in situ sampling at 149 sites with different vegetation types before and after the rainy season. Elevation, slope position, slope aspect, slope gradient and vegetation properties are investigated synchronously. With the rainy season coming, soil moisture content increases and then reaches the highest value after the rainy season. Fluctuation range and standard deviation of soil moisture decrease after a 4‐month rainy season. Standard deviation of soil moisture increases with depth before the rainy season; after the rainy season, it decreases within the 0‐ to 40‐cm soil depth but then increases with depths below 40 cm. The stability of the soil moisture pattern at the small catchment scale increases with depth. The geographical position determines the framework of soil moisture pattern. Soil moisture content with different land‐use types is significantly increased after the rainy season, but the variances of land‐use types are significantly different. Landform and land‐use types can explain most of the soil moisture spatial variations. Soil moisture at all sample sites increases after the rainy season, but the spatial patterns of soil moisture are not significantly changed and display temporal stability despite the influence of the rainy season. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
In order to evaluate the relationship between the apparent complexity of hillslope soil moisture and the emergent patterns of catchment hydrological behaviour and water quality, we need fine‐resolution catchment‐wide data on soil moisture characteristics. This study proposes a methodology whereby vegetation patterns obtained from high‐resolution orthorectified aerial photographs are used as an indicator of soil moisture characteristics. This enables us to examine a set of hypotheses regarding what drives the spatial patterns of soil moisture at the catchment scale (material properties or topography). We find that the pattern of Juncus effusus vegetation is controlled largely by topography and mediated by the catchment's material properties. Characterizing topography using the topographic index adds value to the soil moisture predictions relative to slope or upslope contributing area (UCA). However, these predictions depart from the observed soil moisture patterns at very steep slopes or low UCAs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
沈丹丹  包为民  江鹏  张阳  费如君 《湖泊科学》2017,29(6):1510-1519
本文旨在将实时监测得到的土壤墒情转化为流域水文模型可以直接使用的土壤含水量,论证将实时土壤墒情资料用于实时预报的可行性;利用实时监测土壤墒情,改进传统的模型结构,设计基于实测土壤墒情的降雨径流水文预报模型.采用土壤含水量误差抗差估计技术以抵御观测资料粗差的影响,提高系统的稳定性;并在此基础上提出了土壤含水量系统响应修正方法,以提高模型计算精度.将该模型应用于实验流域——宝盖洞流域进行应用检验,洪水模拟合格率达到92.3%,整体模拟精度达到甲级.  相似文献   

6.
Various remote‐sensing methods are available to estimate soil moisture, but few address the fine spatial resolutions (e.g. 30‐m grid cells) and root‐zone depth requirements of agricultural and other similar applications. One approach that has been previously proposed to estimate fine‐resolution soil moisture is to first estimate the evaporative fraction from an energy balance that is inferred from optical and thermal remote‐sensing images [e.g. using the Remote Sensing of Evapotranspiration (ReSET) algorithm] and then estimate soil moisture through an empirical relationship to evaporative fraction. A similar approach has also been proposed to estimate the degree of saturation. The primary objective of this study is to evaluate these methods for estimating soil moisture and degree of saturation, particularly for a semi‐arid grassland with relatively dry conditions. Soil moisture was monitored at 28 field locations in south‐eastern Colorado with herbaceous vegetation during the summer months of 3 years. In situ soil moisture and degree of saturation observations are compared with estimates calculated from Landsat imagery using the ReSET algorithm. The in situ observations suggest that the empirical relationships with evaporative fraction that have been proposed in previous studies typically provide overestimates of soil moisture and degree of saturation in this region. However, calibrated functions produce estimates with an accuracy that may be adequate for various applications. The estimates produced by this approach are more reliable for degree of saturation than for soil moisture, and the method is more successful at identifying temporal variability than spatial variability in degree of saturation for this region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号