首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been known for over 50 years that the radio emission from shell supernova remnants (SNRs) indicates the presence of electrons with energies in the GeV range emitting synchrotron radiation. The discovery of nonthermal X-ray emission from supernova remnants is now 30 years old, and its interpretation as the extension of the radio synchrotron spectrum requires electrons with energies of up to 100 TeV. SNRs are now detected at GeV and TeV photon energies as well. Strong suggestions of the presence of energetic ions exist, but conclusive evidence remains elusive. Several arguments suggest that magnetic fields in SNRs are amplified by orders of magnitude from their values in the ambient interstellar medium. Supernova remnants are thus an excellent laboratory in which to study processes taking place in very high Mach-number shocks. I review the observations of high-energy emission from SNRs, and the theoretical framework in which those observations are interpreted.  相似文献   

2.
Jupiter flux at 327 MHz was monitored using the Ooty radio telescope from July 12th to July 29th during the collision of comet Shoemaker-Levi 9 with Jupiter. Flux was found to increase steadily from July 17th to July 26th by ∼ 2–5 Jy, after which it declined to its pre-event value. The comparison of 327 MHz observations with those at 840 MHz and 2240 MHz indicates that the enhancement was mainly due to the increased synchrotron emission and the contribution of thermal emission was very small at metric-decimetric frequencies. The enhancement in radio emission was found to be more at 840 MHz than at 327 or 2240 MHz. The steepening of the spectrum between 327 and 840 MHz as well as between 2240 and 840 MHz was also noted.  相似文献   

3.
Decametric radio observations of Jupiter were made before, during, and after the impacts of the fragments of the comet S-L 9 with the planet, from the University of Florida Radio Observatory, the Maipu Radio Astronomy Observatory of the University of Chile, and the Owens Valley Radio Observatory of the California Institute of Technology. The decametric radiation was monitored at frequencies from 16.7 to 32 MHz. The minimum detectable flux densities were on the order of 30 kJy, except for that of the large 26.3 MHz array in Florida, which was about 1 kJy. There was no significant enhancement or suppression of the decametric L-burst or S-burst emission with respect to normal activity patterns that might be attributed to the fragment entries. However, a burst of left-hand elliptically polarized radiation having a considerably longer duration than an L-burst was observed almost simultaneously with the impact of the large fragment Q2, and another with right-hand elliptical polarization was observed simultaneously with Q1. We consider the possibility that these two bursts were emitted just above the local electron cyclotron frequencies from the southern and northern ends, respectively, of magnetic flux tubes that had been excited in some way by the proximity of fragments Q2 and Q1.In addition to the monitoring of the decametric radiation, a search was conducted for possible comet-enhanced Jovian synchrotron radiation at 45 MHz using a large dipole antenna array at the observatory in Chile. This frequency is above the cutoff of the decametric radiation, but is considerably below the lowest frequency at which the synchrotron emission has previously been detected. The minimum detectable flux density with the 45 MHz antenna was about 5 Jy. No synchrotron emission at all was found before, during, or after the entry of the comet fragments.  相似文献   

4.
Fine structure observations of the frequency spectrum of the S-component in the solar radio emission are described. Measurements were carried out in August 1976 and August 1977 using a 22 m parabolic antenna and a radiospectrograph operating over the frequency range 5.0 to 7.0 GHz, with the resolution 60 MHz. Measurement techniques are described. Fine structures (150–800 MHz) as great as 20% of the local source radiation level were observed in radio emission spectra of a number of these sources. The spectrum structures observed were changed in the process of active region development.  相似文献   

5.
Imke de Pater  David E Dunn 《Icarus》2003,163(2):449-455
We observed Jupiter’s synchrotron radiation at frequencies of 15 and 22 GHz using the VLA (Very Large Array) in its most compact configuration (D-array) in March 1991. The spatial brightness distribution of the emission at these high frequencies appears to be very similar to that seen at lower frequencies (5 GHz down to 330 MHz). We measured a total nonthermal flux density at 15 and 22 GHz of 1.5 ± 0.15 Jy and 1.5 ± 0.4 Jy, respectively (both normalized to a geocentric distance of 4.04 AU). These numbers agree well with model spectra of Jupiter’s synchrotron radiation that were obtained by fitting the planet’s nonthermal radio emission between 74 MHz and 8 GHz and suggest a maximum cutoff in electron energies at ∼100 MeV. The degree of linear polarization observed with the VLA is 21.5 ± 1.9% at 15 GHz.  相似文献   

6.
Coherent synchrotron emission by particles moving along semi-infinite tracks is discussed, with a specific application to radio emission from air showers induced by high-energy cosmic rays. It is shown that in general, radiation from a particle moving along a semi-infinite orbit consists of usual synchrotron emission and modified impulsive bremsstrahlung. The latter component is due to the instantaneous onset of the curved trajectory of the emitting particle at its creation. Inclusion of the bremsstrahlung leads to broadening of the radiation pattern and a slower decay of the spectrum at the cut-off frequency than the conventional synchrotron emission. Possible implications of these features for air shower radio emission are discussed.  相似文献   

7.
Joe L. Luthey 《Icarus》1973,20(2):125-135
Several synchrotron spectra are computed for a hypothetical Saturnian radiation belt. A monoenergetic distribution of relativistic electrons is assumed to exist in a toroidal volume in a dipole magnetic field aligned with the rotation axis. When synchrotron emission is added to the thermal component implied by observations at wavelengths shorter than 50 cm, the upturn in the total emission spectrum can become gradual to quite sharp depending on the critical wavelength and the number density of radiating electrons. As an example, the ranges of magnetic field intensity, and electron energy and density are tabulated for an estimate of the nonthermal component at the longest decimetric wavelength observation. The present observations are insufficient to determine the critical wavelength; but, for several estimates of the magnetic field loading factor, the minimum surface magnetic field intensity and minimum electron number density are computed.  相似文献   

8.
We present a model which describes the evolution of the energy spectrum of relativistic electrons in supernova remnants, with radiation losses of electrons taken into account. The model can be used to calculate the synchrotron X-ray emission from supernova remnants in the uniform interstellar medium and in the uniform interstellar magnetic field. The importance of various factors in the variations of spatial distributions of nonthermal electrons and their synchrotron emissive capacity is demonstrated. We analyze the errors which arise in the magnetic field strength when it is estimated with the use of the models which ignore the detailed pattern of the evolution of the magnetic field and the electron spectrum behind the shock front in the remnant. The evolution of synchrotron emission spectrum and the ratio between the synchrotron radio and X-ray fluxes from supernova remnants are calculated.  相似文献   

9.
The radio and infrared spectrum of DR 21 is established over a wide range of frequencies (from 102 to 108 MHz). Two physical processes, free-free emission from the ionized hydrogen at radio wavelengths and reradiation at infrared wavelengths of the original stellar ultraviolet radiation by dust grains have to be considered in the explanation of the derived spectrum. Physical parameters of the object deduced from its radio emission are also presented.  相似文献   

10.
We present new results of heliographic observations of quiet‐Sun radio emission fulfilled by the UTR‐2 radio telescope. The solar corona investigations have been made close to the last solar minimum (Cycle 23) in the late August and early September of 2010 by means of the two‐dimensional heliograph within 16.5–33 MHz. Moreover, the UTR‐2 radio telescope was used also as an 1‐D heliograph for one‐dimensional scanning of the Sun at the beginning of September 2010 as well as in short‐time observational campaigns in April and August of 2012. The average values of integral flux density of the undisturbed Sun continuum emission at different frequencies have been found. Using the data, we have determined the spectral index of quiet‐Sun radio emission in the range 16.5–200 MHz. It is equal to –2.1±0.1. The brightness distribution maps of outer solar corona at frequencies 20.0 MHz and 26.0 MHz have been obtained. The angular sizes of radio Sun were estimated. It is found that the solar corona at these frequencies is stretched‐out along equatorial direction. The coefficient of corona ellipticity varies slightly during above period. Its mean magnitudes are equal to ≈ 0.75 and ≈ 0.73 at 20.0 MHz and 26.0 MHz, respectively. The presented results for continuum emission of solar corona conform with being ones at higher frequencies. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The comparatively new field of short time-constant astrophysics is investigated with the aim of checking the statement that there is a maximum amount of electromagnetic energy which can be radiated at a frequencev m by an object whose size isL and during a time Δτ. Such limits are found under the assumptions that the emission is isotropic, thatL?cΔτ, and for the following four radiation mechanisms: incoherent synchrotron radiation, synchrotron maser, antenna radiation and for one simple case of radiation by a turbulent plasma. These limits are compared and found to be consistent with experimental data referring to the Sun, the pulsar NP 0532, the Quasar 3C 273 and the Seyfert galaxy NGC 4151. The main conclusion is that extragalactic radio astronomy at the present sensitivity level of observations is not likely to allow for the detection of pulses lasting less than 0.1 s.  相似文献   

12.
We calculate the broad-band radio–X-ray spectra predicted by microblazar and microquasar models for ultraluminous X-ray sources (ULXs), exploring the possibility that their dominant power-law component is produced by a relativistic jet, even at near-Eddington mass accretion rates. We do this by first constructing a generalized disc–jet theoretical framework in which some fraction of the total accretion power, P a, is efficiently removed from the accretion disc by a magnetic torque responsible for jet formation. Thus, for different black hole masses, mass accretion rates and magnetic coupling strength, we self-consistently calculate the relative importance of the modified disc spectrum, as well as the overall jet emission due to synchrotron and Compton processes. In general, transferring accretion power to a jet makes the disc fainter and cooler than a standard disc at the same mass accretion rate; this may explain why the soft spectral component appears less prominent than the dominant power-law component in most bright ULXs. We show that the apparent X-ray luminosity and spectrum predicted by the microquasar model are consistent with the observed properties of most ULXs. We predict that the radio synchrotron jet emission is too faint to be detected at the typical threshold of radio surveys to date. This is consistent with the high rate of non-detections over detections in radio counterpart searches. Conversely, we conclude that the observed radio emission found associated with a few ULXs cannot be due to beamed synchrotron emission from a relativistic jet.  相似文献   

13.
We present observations of the X-ray transient XTE J1118+480 during its low/hard X-ray state outburst in 2000, at radio and submillimetre wavelengths with the VLA, Ryle Telescope, MERLIN and JCMT. The high-resolution MERLIN observations reveal all the radio emission (at 5 GHz) to come from a compact core with physical dimensions smaller than 65 d (kpc) au. The combined radio data reveal a persistent and inverted radio spectrum, with spectral index ∼ +0.5. The source is also detected at 350 GHz, on an extrapolation of the radio spectrum. Flat or inverted radio spectra are now known to be typical of the low/hard X-ray state, and are believed to arise in synchrotron emission from a partially self-absorbed jet. Comparison of the radio and submillimetre data with reported near-infrared observations suggest that the synchrotron emission from the jet extends to the near-infrared, or possibly even optical regimes. In this case the ratio of jet power to total X-ray luminosity is likely to be P J L X≫0.01, depending on the radiative efficiency and relativistic Doppler factor of the jet. Based on these arguments we conclude that during the period of our observations XTE J1118+480 was producing a powerful outflow which extracted a large fraction of the total accretion power.  相似文献   

14.
Deep 1–49 cm surveys of the circumzenithal sky area performed using the RATAN-600 radio telescope allowed the spectral index of Galactic synchrotron emission in the 7.6–49 cm wavelength interval to be refined. The data obtained are inconsistent with the model of synchrotron emission adopted to interpret the results of the first year of the WMAP mission, which led to the hypothesis of the early secondary ionization of the Universe at redshifts Z > 10–30. New observations made with the RATAN-600 demonstrated the possibility of deep studies of the intensity and polarization of the microwave background (the E component) in ground-based experiments at short centimeter wavelengths. Galactic synchrotron emission may as well limit the possibilities of space- and ground-based studies of the polarization of cosmic microwave background radiation arising as a result of scattering induced by relic gravitational waves (the B component). The sky area studied with the RATAN-600 is intended to be used to interpret the PLANCK mission data in order to ensure a more detailed account of the role of the Galactic synchrotron emission.  相似文献   

15.
High sensitivity observations of radio halos in galaxy clusters at frequencies ν ≤ 330 MHz are still relatively rare, and very little is known compared to the classical 1.4 GHz images. The few radio halos imaged down to 150–240 MHz show a considerable spread in size, morphology and spectral properties. All clusters belonging to the GMRT Radio Halo Survey with detected or candidate cluster-scale diffuse emission have been imaged at 325 MHz with the GMRT. Few of them were also observed with the GMRT at 240 MHz and 150 MHz. For A 1682, imaging is particularly challenging due to the presence of strong and extended radio galaxies at the center. Our data analysis suggests that thew radio galaxies are superposed to very low surface brightness radio emission extended on the cluster scale, which we present here.  相似文献   

16.
The 21 centimeter (21 cm) line emission from neutral hydrogen in the inter-galactic medium (IGM) at high redshifts is strongly contaminated by foreground sources such as the diffuse Galactic synchrotron emission and free-free emission from the Galaxy, as well as emission from extragalactic radio sources, thus making its observation very complicated. However, the 21 cm signal can be recovered through its structure in fre-quency space, as the power spectrum of the foreground contamination is expected to be smooth over a wide band in frequency space while the 21 cm fluctuations vary signifi-cantly. We use a simple polynomial fitting to reconstruct the 21 cm signal around four frequencies 50, 100, 150 and 200 MHz with an especially small channel width of 20 kHz. Our calculations show that this multifrequency fitting approach can effectively recover the 21 cm signal in the frequency range 100 ~ 200 MHz. However, this method doesn't work well around 50 MHz because of the low intensity of the 21 cm signal at this frequency. We also show that the fluctuation of detector noise can be suppressed to a very low level by taking long integration times, which means that we can reach a sensitivity of ≈ 10 mK at 150 MHz with 40 antennas in 120 hours of observations.  相似文献   

17.
We calculate the expected flux of γ-ray and radio emission from the LMC due to neutralino annihilation. Using rotation curve data to probe the density profile and assuming a minimum disk, we describe the dark matter halo of the LMC using models predicted by N-body simulations. We consider a range of density profiles including the NFW profile, a modified NFW profile proposed by Hayashi et al. (2003) to account for the effects of tidal stripping, and an isothermal sphere with a core. We find that the γ-ray flux expected from these models may be detectable by GLAST for a significant part of the neutralino parameter space. The prospects for existing and upcoming Atmospheric Cherenkov Telescopes (ACTs) are less optimistic, as unrealistically long exposures are required for detection. However, the effects of adiabatic compression due to the baryonic component may improve the chances for detection by ACTs. The maximum flux we predict is well below EGRET's measurements and thus EGRET does not constrain the parameter space. The expected synchrotron emission generally lies below the observed radio emission from the LMC in the frequency range of 19.7–8550 MHz. As long as σv<2×10−26 cm3 s−1 for a neutralino mass of 50 GeV, the observed radio emission is not primarily due to neutralinos and is consistent with the assumption that the main source is cosmic rays. We find that the predicted fluxes, obtained by integrating over the entire LMC, are not very strongly dependent on the inner slope of the halo profile, varying by less than an order of magnitude for the range of profiles we considered.  相似文献   

18.
19.
We report the first detection of an inverse Compton X-ray emission, spatially correlated with a very steep spectrum radio source (VSSRS), 0038-096, without any detected optical counterpart, in cluster Abell 85. The ROSAT PSPC data and its multiscale wavelet analysis reveal a large-scale (linear diameter of the order of 500 h −150 kpc), diffuse X-ray component, in addition to the thermal bremsstrahlung, overlapping an equally large-scale VSSRS. The primeval 3 K background photons, scattering off the relativistic electrons, can produce the X-rays at the detected level. The inverse Compton flux is estimated to be (6.5 ± 0.5) × 10−13 erg s−1 cm−2 in the 0.5–2.4 keV X-ray band. A new 327-MHz radio map is presented for the cluster field. The synchrotron emission flux is estimated to be (6.6 ± 0.90) × 10−14 erg s−1 cm−2 in the 10–100 MHz radio band. The positive detection of both radio and X-ray emission from a common ensemble of relativistic electrons leads to an estimate of (0.95 ± 0.10) × 10−6 G for the cluster-scale magnetic field strength. The estimated field is free of the 'equipartition' conjecture, the distance, and the emission volume. Further, the radiative fluxes and the estimated magnetic field imply the presence of 'relic' (radiative lifetime ≳ 109 yr) relativistic electrons with Lorentz factors γ ≈ 700–1700; this would be a significant source of radio emission in the hitherto unexplored frequency range ν ≈ 2–10 MHz.  相似文献   

20.
The result of the search for, and the observations of radio emission from two groups of isolated neutron stars: AXP 1E 2259+586 and XDINS 1RXS J1308.6+212708 and 1RXS J214303.7+065419 are reported. The observations were carried out on two sensitive transit radio telescopes at a few frequencies in the range 42–112 MHz. The flux densities, mean pulse profiles, as well as, the estimation of the dispersion measures, distances and integrated radio luminosities of all objects are presented. Comparison with X-ray data shows large differences in the mean pulse widths and luminosities.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号