首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 952 毫秒
1.
Experiments using V2O5 as a high-temperature solvent have produced compositional reversals defining the miscibility gap between enstatite and diopside on the join Mg2Si2O6-CaMgSi2O6 between 925° and 1,175° C at atmospheric pressure. These experiments locate an equilibrium near 1,000° C among diopside, protoenstatite, and orthoenstatite; they verify the stable coexistence of diopside and protoenstatite above 1,000° C and disprove the hypothesis that orthoenstatite has a stability field which is continuous from temperatures below 1,000° C to the solidus. The phase relations suggest that the orthorhombic low-Ca pyroxene on the solidus in this system (formerly identified as orthoenstatite) is a phase distinct from the orthoenstatite stable with diopside at low subsolidus temperatures. Data locating the orthoenstatite-diopside miscibility gap validate the use at low pressures of symmetric orthopyroxene and asymmetric clinopyroxene solution models in this system.  相似文献   

2.
In the system CaO-MgO-Al2O3-SiO2, the tetrahedron CaMgSi2O6(di)-Mg2SiO4(fo)-SiO2-CaAl2 SiO6(CaTs) forms a simplified basalt tetrahedron, and within this tetrahedron, the plane di-fo-CaAl2Si2O8(an) separates simplified tholeiitic from alkalic basalts. Liquidus phase relations on this join have been studied at 1 atm and at 7, 10, 15, and 20 kbar. The temperature maximum on the 1 atm isobaric quaternary univariant line along which forsterite, diopside, anorthite, and liquid are in equilibrium lies to the SiO2-rich side of the join di-fo-an. The isobaric quaternary invariant point at which forsterite, diopside, anorthite, spinel, and liquid are in equilibrium passes, with increasing pressure, from the silica-poor to the silica-rich side of the join di-fo-an, which causes the piercing points on this join to change from forsterite+diopside+anorthite+liquid and forsterite +spinel+anorthite+liquid below 5 kbar to forsterite +diopside+spinel+liquid and diopside +spinel+anorthite+liquid above 5 kbar. As pressure increases, the forsterite and anorthite fields contract and the diopside and corundum fields expand. The anorthite primary phase field disappears entirely from the join di-fo-an between 15 and 20 kbar. Below about 4 kbar, the join di-fo-an represents, in simplified form, a thermal divide between alkalic and tholeiitic basalts. From about 4 to at least 12 kbar, alkalic basalts can produce tholeiitic basalts by fractional crystallization, and at pressures above about 12 kbar, it is possible for alkalic basalt to be produced from oceanite by crystallization of both olivine and orthopyroxene. If alkalic basalts are primary melts from a lherzolite mantle, they must be produced at high pressures, probably greater than about 12 kbar.Department of Geosciences, University of Texas at Dallas Contribution No. 327. Hawaii Institute of Geophysics Contribution No. 814.  相似文献   

3.
The system CaMgSi2O6CaAl2SiO6CaFeAlSiO6 has been studied in air at 1 atm. The phase assemblage at subsolidus temperatures in the CaMgSi2O6-rich portion is Cpx + An + Mel and that in the CaMgSi2O6-poor portion Cpx + An + Mel + Sp. At subsolidus temperatures the sigle-phase field of clinopyroxene increases with an increase in the CaFeAlSiO6 component of the system. The Al2O3 content of clinopyroxene, however, continues to increase beyond the single-phase field and attains at least 16.04 wt.% Al2O3 with 3.9 wt.% Fe2O3. The stability field of fassaite in the system over a range of pressures and oxygen fugacities has been estimated from data in the literature as well as the present data. The CaFeAlSiO6 content of fassaite is dependent on oxygen fugacity, but is not influenced by pressure. The stability field is strongly influenced by oxygen fugacity at low and high pressure, and decreases with decreasing oxygen fugacity. Clinopyroxenes in both volcanic and metamorphic rocks from various localities, when plotted on the CaMgSi2O6CaAl2SiO6CaFeAlSiO6 triangle, show that there is no compositional gap between diopside and fassaitic pyroxene in metamorphic rocks, and that the fassaitic pyroxene in alkalic rocks becomes richer in both CaAl2SiO6 and CaFeAlSiO5 components as crystallization proceeds. These results agree with those obtained in the experimental study.  相似文献   

4.
Enthalpies of solution of synthetic clinopyroxenes on the join CaMgSi2O6-Mg2Si2O6 have been measured in a melt of composition Pb2B2O5 at 970 K. Most of the measurements were made on samples crystallized at 1600°–1700°C and 30 kbar pressure, which covered the range 0–78 mole per cent Mg2Si2O6, and whose X-ray patterns could be satisfactorily indexed on the diopside (C2/c) structure. For the reaction: Mg2Si2O6→-Mg2Si2O6 enstatite diopside the present data, in conjunction with previous and new measurements on Mg2Si2O6 enstatite, determine ΔH° ~ 2 kcal and WH (regular solution parameter) ~ 7 kcal. These values are in good agreement with those deduced by Saxena and Nehru (1975) from a study of high temperature, high pressure phase equilibrium data under the assumption that the excess entropy of mixing is small, but, in light of the recent theoretical treatment of Navrotsky and Loucks (1977, Phys. Chem. Min.1, 109–127), the meanings of these parameters may be ambiguous.Heat of solution measurements on Ca-rich binary diopsides made by annealing glasses at 1358°C in air gave slighter higher values than the higher temperature high pressure samples. This may be evidence for some (Ca, Mg) disorder of the sort postulated by Navrotsky and Loucks (1977, Phys. Chem. Min.1, 109–127), although no differences in heat of solution dependent on synthesis temperature in the range 1350°–1700°C could be found in stoichiometric CaMgSi2O6.  相似文献   

5.
The join diopside (CaMgSi2O6) — ureyite (NaCrSi2O6) was studied at pressures of 1 atm, 1 kb, 5 kb, and 20 kb using gel mixtures as starting materials. All runs except those at 1 atm were made under hydrous conditions. The data show that the solubility of ureyite in diopside decreases with increasing pressure. At 20 kb the maximum ureyite content of diopside is 13 weight percent (4.6% Cr2O3) as compared to 24 weight percent at 1 atm. It is predicted that pyroxenes that have equilibrated at depths >140 km will not contain a ureyite component; rather Cr will enter diopside in the form of a CaCr(CrSi)O6 component. Pyroxenes containing this component were found as metastable phases at 20 kb.  相似文献   

6.
The model for the thermodynamic properties of multicomponent pyroxenes (Part I) is calibrated for ortho- and clinopyroxenes in the quadrilateral subsystem defined by the end-member components Mg2Si2O6, CaMgSi2O6, CaFeSi2O6, and Fe2Si2O6. This calibration accounts for: (1) Fe-Mg partitioning relations between orthopyroxenes and augites, and between pigeonites and augites, (2) miscibility gap features along the constituent binary joins CaMgSi2O6-Mg2Si2O6 and CaFeSi2O6-Fe2Si2O6, (3) calorimetric data for CaMgSi2O6-Mg2Si2O6 pyroxenes, and (4) the P-T-X systematics of both the reaction pigeonite=orthopyroxene+augite, and miscibility gap featurs, over the temperature and pressure ranges 800–1500°C and 0–30 kbar. The calibration is achieved with the simplifying assumption that all regular-solution-type parameters are constants independent of temperature. It is predicated on the assumptions that: (1) the Ca-Mg substitution is more nonideal in Pbca pyroxenes than in C2/c pyroxenes, and (2) entropies of about 3 and 6.5 J/K-mol are associated with the change of Ca from 6- to 8-fold coordination in the M2 site in magnesian and iron C2/c pyroxenes, respectively. The model predicts that Fe2+-Mg2+ M1-M2 site preferences in C2/c pyroxenes are highly dependent on Ca and Mg contents, with Fe2+ more strongly preferring M2 sites both in Ca-rich C2/c pyroxenes with a given Fe/(Fe+Mg) ratio, and in magnesian C2/c pyroxenes with intermediate Ca/(Ca+Fe+Mg) ratios.The proposed model is internally consistent with our previous analyses of the solution properties of spinels, rhombohedral oxides, and Fe-Mg olivines and orthpyroxenes. Results of our calibration extend an existing database to include estimates for the thermodynamic properties of the C2/c and Pbca pyroxene end-members clinoenstatite, clinoferrosilite, hedenbergite, orthodiopside, and orthohedenbergite. Phase relations within the quadrilateral and its constitutent subsystems are calculated for temperatures and pressures over the range 800–1700°C and 0–50 kbar and compare favorably with experimental constraints.  相似文献   

7.
Melts in the mantle modeled in the system CaO-MgO-SiO2-CO2 at 2.7 GPa   总被引:1,自引:1,他引:0  
The effect of CO2 on mantle peridotites is modeled by experimental data for the system CaO-MgO-SiO2-CO2 at 2.7 GPa. The experiments provide isotherms for the vapor-saturated liquidus surface, bracket piercing points for field boundaries on the surface, and define the positions and compositions of isobaric invariant liquids on the boundaries (eutectics and peritectics). CO2-saturated carbonatitic liquids (>80% carbonate) exist through approximately 200 °C above the solidus, with a transition to silicate liquids (>80% silicate) within ∼75 °C across a plateau on the liquidus. Carbonate-rich magmas cannot cross the silicate-carbonate liquidus field boundary, so the carbonate liquidus field is therefore a forbidden volume for liquid magmas. This confirms the fact that rounded, pure carbonates in mantle xenoliths cannot represent original liquids. A P-T diagram is constructed for the carbonation and melting reactions for mineral assemblages corresponding to lherzolite, harzburgite, websterite and wehrlite, with carbonate, CO2 vapor (V), or both. The changing compositions of liquids in solidus reactions on the P-T diagram are illustrated by the changing compositions of eutectic and peritectic liquids on the liquidus surface. At an invariant point Q (∼2.8 GPa/1230 °C), all peridotite assemblages coexist with a calcite-dolomite solid solution (75 ± 5% CaCO3) and a dolomitic carbonatite melt [57% CaCO3 (CC), 33% MgCO3 (MC), 10% CaMgSi2O6 (Di)], with 63% CC in the carbonate component. At higher pressures, dolomite-lherzolite, dolomite-harzburgite-V, and dolomite-websterite-V melt to yield similar liquids. Magnesian calcite-wehrlite is the only peridotite melting to carbonatitic liquids (more calcic) at pressures below Q (∼70 km). Dolomitic carbonatite magma rising through mantle to the near-isobaric solidus ledge near Q will begin to crystallize, releasing CO2 (enhancing crack propagation), and metasomatizing lherzolite toward wehrlite. Received: 20 March 1998 / Accepted: 7 July 1999  相似文献   

8.
New experimental data in CaO-MgO-SiO2-CO2 at 1 GPa define the vapor-saturated silicate-carbonate liquidus field boundary involving primary minerals calcite, forsterite and diopside. The eutectic reaction for melting of model calcite (1% MC)-wehrlite at 1 GPa is at 1100 °C, with liquid composition (by weight) 72% CaCO3 (CC), 9% MgCO3 (MC), and 18% CaMgSi2O6 (Di). These data combined with previous results permit construction of the isotherm-contoured vapor-saturated liquidus surface for the calcite/dolomite field, and part of the adjacent forsterite and diopside fields. Nearly pure calcite crystals in mantle xenoliths cannot represent equilibrium liquids. We recently determined the complete vapor-saturated liquidus surface between carbonates and model peridotites at 2.7 GPa; the peritectic reaction for dolomite (25% MC)-wehrlite at 2.7 GPa occurs at 1300 °C, with liquid composition 60% CC, 29% MC, and 11% Di. The liquidus field boundaries on these two surfaces provide the road-map for interpretation of magmatic processes in various peridotite-CO2 systems at depths between the Moho and about 100 km. Relationships among kimberlites, melilitites, carbonatites and the liquidus phase boundaries are discussed. Experimental data for carbonatite liquid protected by metasomatic wehrlite have been reported. The liquid trends directly from dolomitic towards CaCO3 with decreasing pressure. The 1.5 GPa liquid contains 87% CC and 4% Di, much lower in silicate components than our phase boundary. However, the liquids contain approximately the same CaCO3 (90 ± 1 wt%) in terms of only carbonate components. For CO2-bearing mantle, all magmas at depth must pass through initial dolomitic compositions. Rising dolomitic carbonatite melt will vesiculate and may erupt as primary magmas through cracks from about ˜70 km. If it percolates through metasomatic wehrlite from 70 km toward the Moho at 35–40 km, primary calcic siliceous carbonatite magma can be generated with silicate content at least 11–18% (70–40 km) on the silicate-carbonate boundary. Received: 22 June 1998 / Accepted: 7 July 1999  相似文献   

9.
Experiments up to water pressures of 21 kbar have been undertaken to bracket the reactions chlorite + quartz = talc + kyanite + H2O, chlorite + quartz = talc + cordierite + H2O, and talc + kyanite + quartz = cordierite ± H2O by reversed runs in the system MgO-Al2O3-SiO2-H2O (MASH). These reaction curves intersect at an invariant point (IP1) at PH2O = 6.4 ± 0.2 kbar and a temperature of 624 ± 4°C. The curve of the chlorite + quartz breakdown to talc + kyanite + H2O at water pressures above 6.4 kbar shows a negative dP/dT, with the slope decreasing with rising pressure, whereas the slope of the breakdown curve to talc + cordierite + H2O at water pressures is clearly positive. The composition of the chlorite solid solution reacting with quartz has been estimated to be approximately Mg4.85Al1.15[Al1.15Si2.85O10](OH)8 over the entire pressure range investigated. The composition of the talc solid solution forming by the breakdown of chlorite + quartz appears to be Mg2.94Al0.06[Al0.06Si3.94O10](OH)2 at PH2O = 2kbar. With increasing pressure, the Al content of talc decreases, reaching a value of about 0.06 atoms per formula unit at P,H2O = 21 kbar. As a consequence of the new experimental data, the existing phase topologies of the MASH-system and K2O-MASH-system have been revised. For example, the invariant point IP1 and the univariant reaction curve kyanite + talc + H2O = chlorite + cordierite are stable. For this reason, the development of medium- to high-temperature metamorphic rocks compositionally approximating the MASH-system must be reconsidered. The whiteschists from Sar e Sang, Afghanistan, are treated as an example. The application of the present experimental data to metamorphic rocks of more normal composition requires the examination of the influence of further components. This leads to the conclusion that the introduction of Fe2+ into magnesian chlorite extends its stability field in the presence of quartz by 10°-15°C in comparison with pure Mg-chlorite.  相似文献   

10.
The stability of merwinite (Mw) and its equivalent assemblages, akermanite (Ak)+calcite (Cc), diopside (Di)+calcite, and wollastonite (Wo)+monticellite (Mc)+calcite was determined at T=500–900° C and P f=0.5–2.0 kbar under H2O–CO2 fluid conditions with X CO 2=0.5, 0.1, 0.05, and 0.02. Merwinite is stable at P f=0.5 kbar with T>700° C and X CO 2<0.1. At P f=2.0 kbar, the assemblage Di+Cc replaces merwinite at all T and X CO 2 conditions. At intermediate P f=1 kbar, the assemblage Ak+Cc is stable above 707° C and Wo+Mc+Cc is stable below 707° C. The univariant curve for the reaction Di+Cc=Wo+Mc+CO2 is almost parallel to the T axis and shifts to low P f with increasing X CO 2, with the assemblage Di+Cc on the high-P f side. The implications of the experimental results in regard to contact metamorphism of limestone are discussed using the aureole at Crestmore, California as an example.  相似文献   

11.
 Melting relations on the enstatite−diopside (En, Mg2Si2O6−Di, CaMgSi2O6) join, including the compositions of crystalline phases and melts coexisting along the solidi, were experimentally determined in the pressure range 70–224 kbar with a split-sphere anvil apparatus (USSA-2000). Melting is peritectic in enstatite-rich compositions at 70–124 kbar (1840–2100° C) and eutectic at higher pressures, while the diopside-rich clinopyroxene melts azeotropically at 70–165 kbar and up to 300° C lower temperatures than the eutectic. Orthopyroxene is replaced with enstatite-rich clinopyroxene at 120 kbar and 2090°C. First garnet with 17 mol% Di forms on the solidus at 158 kbar and 2100° C. Two garnets coexist on the solidus at 165–183 kbar and 2100° C, garnet coexists with CaSiO3 perovskite at 183–224 kbar (2100–2230° C) and two coexisting perovskites are stable at higher pressures. The melting curve of diopside was determined at 80–170 kbar; the slope becomes negative at 140 kbar and 2155° C. At 170 kbar and 2100° C, diopside with 96% Di breaks down to garnet with 89% Di and CaSiO3 perovskite. The new data were used to calculate an improved temperature-pressure phase diagram for the CMAS system, which can be useful for estimating the mineralogy of the Earth's upper mantle. Received: 15 October 1994 / Accepted: 15 October 1995  相似文献   

12.
Abstract Phase relations and mineral chemistry for garnet (Grt), orthopyroxene (Opx), sapphirine (Spr), water-undersaturated cordierite (Crd), osumilite (Osu), sillimanite (Sil), K-feldspar (Kfs), quartz (Qtz) and a water-undersaturated liquid (Liq) have been determined experimentally in the system KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O) under low PH2O and fO2 conditions. Four compositions have been studied with 100 [Mg/(Mg + Fe)] ranging from 65.6 to 89.7. Based on our experimental data, a P-T grid is derived for the KFMASH system in the presence of quartz, orthopyroxene and liquid. Osumilite has been found in various mineral assemblages from 950 to 1100°C and 7.5 to 11 kbar. In the temperature range 1000-1100°C, the pair Os-Grt is stable over a pressure range of about 3kbar. The divariant reaction Os + Opx = Grt + Kfs + Qtz runs to the right with increasing pressure. Because osumilite is the most magnesian phase it is restricted to Mg-rich compositions at high pressure. The reaction defining the upper pressure stability limit of Os-Grt is located around 11 kbar with a nearly flat dP/dT slope over the temperature range 950–100°C. Over the entire temperature range investigated osumilite is not stable beyond 12 kbar. The data imply a restricted pressure range between 11 and 12 kbar for the stability of the assemblage Os-Opx-Sil-Kfs-Qtz. At 1050°C and above, osumilite occurs in various mineral assemblages together with the high-T pair Spr-Qtz. When coexisting with garnet, orthopyroxene or sapphirine, osumilite is always the most magnesian phase. At 1050 and 1100°C, liquid is invariably the most Fe-rich phase in the run product. Our data support a theoretical P-T grid for the KFMAS system in which osumilite is stable outside the field of the high-T assemblage Spr-Qtz. Moreover, our grid indicates that Os-Opx-Sil-Kfs-Qtz has a more restricted pressure and compositional stability domain than Os-Grt, in agreement with natural occurrences. Osumilite is stable over a large pressure range, such that in Mg-rich rocks, and at high temperature, it can occur at any depth in normal thickness continental crust.  相似文献   

13.
High pressure phase transformations for all the mineral phases along the joins Mg2SiO4-Ca2-SiO4 and MgO-CaSiO3 in the system MgO-CaO-SiO2 were investigated in the pressure range between 100 and 300 kbar at about 1,000 °C, by means of the technique involving a diamond-anvil press coupled with laser heating. In addition to the four end-members, there are three stable intermediate mineral components in these two joins. Phase behaviour of all the end-member components at high pressure have been reported earlier and are reviewed here. Results of this study reveal that the three intermediate components are all unstable relative to the end-members at pressures greater than 200 kbar. Ultimately, monticellite (CaMgSiO4) decomposes into CaSiO3 (perovskite-type)+MgO; merwinite (Ca3MgSi2O8) decomposes into Ca2SiO4(K2NiF4-type)+CaSiO3 (perovskite-type)+MgO; and akermanite (Ca2MgSi2O7) decomposes into CaSiO3 (perovskite-type)+MgO. Note that the decomposition reactions of all phases studied here result in the formation of MgO. Intermediate Ca-Mg silicates transform to pure Ca-silicates plus MgO, while pure Mg2SiO4 transforms to MgSiO3+MgO.  相似文献   

14.
The solvus in the system CO2-H2O-2.6 wt% NaCl-equivalent was determined by measuring temperature of homogenization in fluid inclusions which contained variable CO2H2O but the same amount of salt dissolved in the aqueous phase at room temperature. The critical point of the solvus is at 340 ± 5°C, at pressures between 1 and 2 kbar; this is about 65°C higher than for the pure CO2-H2O system. The solvus is assymetrical, with a steeper H2O-rich limb and with the critical point at mole fraction of water between 0.65 and 0.8.  相似文献   

15.
Beginning of melting and subsolidus relationships in the system K2O-CaO-Al2O3-SiO2-H2O have been experimentally investigated at pressures up to 20 kbars. The equilibria discussed involve the phases anorthite, sanidine, zoisite, muscovite, quartz, kyanite, gas, and melt and two invariant points: Point [Ky] with the phases An, Or, Zo, Ms, Qz, Vapor, and Melt; point [Or] with An, Zo, Ms, Ky, Qz, Vapor, and Melt.The invariant point [Ky] at 675° C and 8.7 kbars marks the lowest solidus temperature of the system investigated. At pressures above this point the hydrated phases zoisite and muscovite are liquidus phases and the solidus temperatures increase with increasing pressure. At 20 kbars beginning of melting occurs at 740 °C. The solidus temperatures of the quinary system K2O-CaO-Al2O3-SiO2-H2O are almost 60° C (at 20 kbars) and 170° C (at 2kbars) below those of the limiting quaternary system CaO-Al2O3-SiO2-H2O.The maximum water pressure at which anorthite is stable is lowered from 14 to 8.7 kbars in the presence of sanidine. The stability limits of anorthite+ vapor and anorthite+sanidine+vapor at temperatures below 700° C are almost parallel and do not intersect. In the wide temperature — pressure range at pressures above the reaction An+Or+Vapor = Zo+Ms+Qz and temperatures below the melting curve of Zo+Ms+Ky+Qz+Vapor, the feldspar assemblage anorthite+sanidine is replaced by the hydrated phases zoisite and muscovite plus quartz. CaO-Al2O3-SiO2-H2O. Knowledge of the melting relationships involving the minerals zoisite and muscovite contributes to our understanding of the melting processes occuring in the deeper parts of the crust. Beginning of melting in granites and granodiorites depends on the composition of plagioclase. The solidus temperatures of all granites and granodiorites containing plagioclases of intermediate composition are higher than those of the Ca-free alkali feldspar granite system and below those of the Na-free system discussed in this paper.The investigated system also provides information about the width of the P-T field in which zoisite can be stable together with an Al2SiO5 polymorph plus quartz and in which zoisite plus muscovite and quartz can be formed at the expense of anorthite and potassium feldspar. Addition of sodium will shift the boundaries of these fields to higher pressures (at given temperatures), because the pressure stability of albite is almost 10kbars above that of anorthite. Assemblages with zoisite+muscovite or zoisite+kyanite are often considered to be products of secondary or retrograde reactions. The P-T range in which hydration of granitic compositions may occur in nature is of special interest. The present paper documents the highest temperatures at which this hydration can occur in the earth's crust.  相似文献   

16.
The system KAlSiO4-Mg2SiO4-SiO2-H2O includes model representatives of (1) hydrous siliceous magma from subducted oceanic crust — the eutectic liquid in KAlSi3O8-SiO2-H2O, and (2) the overlying mantle peridotite — the assemblage forsterite+enstatite (Fo+En). In a series of partly schematic isobaric isothermal sections, the products of hybridization between the model materials at pressures between 20 and 30 kbar have been determined. The liquid dissolves peridotite components with little change in composition. Hybridization is not a simple mixing process, because of the incongruent melting of peridotitic assemblages with phlogopite (Ph). Hybridization causes solidification of the liquid, with products a sequence of three mineral assemblages: Ph, Ph+quartz (Qz), and Ph+En. The products represent an absolute geochemical separation and local concentration of all potassium from the liquid. Hybridization is accompanied by H2O-saturation of melts, and evolution of aqueous fluid. Although there are significant differences between the melt composition and that of the magma rising from subducted oceanic slab, and between Fo+En and the mantle rock, extrapolation of the results suggests that the conclusions can probably be extended to mantle conditions with sodium in the melt, and jadeitic clinopyroxene included in the hybrid products.  相似文献   

17.
We report results of anhydrous 1 atm and piston-cylinder experiments on ID16, an Aleutian high-magnesia basalt (HMB), designed to investigate potential petrogenetic links between arc high-alumina basalts (HABs) and less common HMBs. ID16 is multiply saturated with a plagioclase/spinel iherzolite mineral assemblage (olivine, plagioclase, clinopyroxene, orthopyroxene, spinel) immediately beneath the 12 kbar liquidus. Derivative liquids produced at high temperatures in the 10–20 kbar melting interval of ID16 have compositions resembling those published of many moderate-CaO HABs, although lower-temperature liquids are poorer in CaO and richer in alkalies than are typical HABs. Isomolar pseudoternary projections and numerical mass-balance modeling suggest that derivative melts of ID16 enter into a complex reaction relationship with olivine at 10 kbar and 1,200° C–1,150° C. We sought to test such a mechanism to explain the lack of liquidus olivine in anhydrous experiments on mafic high-alumina basalts such as SSS. 1.4 (Johnston 1986). These derivative liquids, however, do not resemble typical arc high-alumina basalts, suggesting that olivine-liquid reaction does not account for Johnston's (1986) observations. Instead, we suggest that olivine can be brought onto the liquidus of such compositions only through the involvement of H2O, which will affect the influence of bulk CaO, MgO, and Al2O3 contents on the identity of HAB liquidus phases (olivine or plagioclase) at pressures less than 12 kbar.  相似文献   

18.
The pressure-temperature stability field of Mg-staurolite, ideally Mg4Al18Si8O46(OH)2, was bracketed for six possible breakdown reactions in the system MgO-Al2O3-SiO2-H2O (MASH). Mg-staurolite is stable at water pressures between 12 and 66 kbar and temperatures of 608–918 °C, requiring linear geotherms between 3 and 18 °C/km. This phase occurs in rocks that were metamorphosed at high-pressure, low-temperature conditions, e.g. in subducted crustal material, provided they are of appropriate chemical composition. Mg-staurolite is formed from the assemblage chlorite + kyanite + corundum at pressures <24 kbar, whereas at pressures up to 27 kbar staurolite becomes stable by the breakdown of the assemblage Mg-chloritoid + kyanite + corundum. Beyond 27 kbar the reaction Mg-chloritoid + kyanite + diaspore = Mg-staurolite + vapour limits the staurolite field on its low-temperature side. The upper pressure limit of Mg-staurolite is marked by alternative assemblages containing pyrope + topaz-OH with either corundum or diaspore. At higher temperatures Mg-staurolite breaks down by complete dehydration to pyrope + kyanite + corundum and at pressures below 14 kbar to enstatite + kyanite + corundum. The reaction curve Mg-staurolite = talc + kyanite + corundum marks the low-pressure stability of staurolite at 12 kbar. Mg-staurolite does not coexist with quartz because alternative assemblages such as chlorite-kyanite, enstatite-kyanite, talc-kyanite, pyrope-kyanite, and MgMgAl-pumpellyite-kyanite are stable over the entire field of Mg-staurolite. Received: 16 April 1997 / Accepted: 24 September 1997  相似文献   

19.
One petrogenetic grid for plagioclase-, spinel- and garnet-lherzolite analogues in the system CaO-MgO-Al2O3-SiO2 is presented from 1 bar to 30 kbar and 400 to 1500°C. Another grid for olivine-gabbro, spinel-gabbro and garnet-pyroxenite analogues in the same system is presented from 1 bar to 25 kbar and 500 to 1500°C. Both grids show the distribution of the mineral assemblages and the variations in the composition of clinopyroxene with temperature and pressure. They were developed by applying simple thermodynamic mixing models of clinopyroxene to experimentally determined clino-pyroxene compositions.Calcium tschermak's pyroxene (CaAl2SiO6) in complex CaMgSi2O6-CaAl2SiO6-Mg2Si2O6 clinopyroxenes is best represented by a local charge balance mixing model where aCaAl2SiO6? (XCaM2)(XAlM1) Enthalpy and entropy changes of subsolidus reactions involving variations in the CaAl2SiO6 and Mg2Si2O6 content of clinopyroxene are interdependent due to nonideal mixing of these two end-members. CaAl2SiO6 can strongly reduce the mutual solubility of clinopyroxene and orthopyroxene at moderate pressures and high temperatures. Failure to take this into account can result in temperature underestimates (up to 150°C) of spinel-lherzolites, garnet-pyroxenites, low pressure garnet-lherzolites, spinel-gabbros, and high pressure plagioclase-lherzolites and olivine-gabbros. However, at temperatures and pressures where the Al2O3 content of clinopyroxene is low (e.g. garnet-lherzolite nodules in kimberlite), the mutual solubility is adequantely represented by experimental results in the system CaO-MgO-SiO2.  相似文献   

20.
Speciation of aqueous calcium chloride and the solubility of wollastonite represented by the reaction wollastonite + 2HCl° → CaCl2° + quartz + H2O were experimentally investigated at 1 and 2 kbar in the range 425–600°C using rapid-quench hydrothermal techniques and a modified Ag + AgCl buffer technique (Frantz and Popp, 1979). Variation in the measured concentration in HCl° as a function of total dissolved calcium was used to identify associated aqueous CaCl2° as the predominant calcium species in the fluid at temperatures above 500°C at 2 kbar. The data were used to calculate the equilibrium constant for the above reaction as a function of temperature and pressure, from which the difference in Gibbs free energy of formation between CaCl2° and HCl° at 1 and 2 kbar, 450°–600°C was calculated. Solubility constants for minerals in the system MgO-CaO-SiO2-H2O-HCl-CO2 were calculated using the data from this study and from Frantz and Popp (1979). Calculated mineral solubilities were used to calculate the solution compositions and solid alteration products resulting from interactions of a Ca-Mg silicate mineral (diopside) with hydrothermal solutions containing a range of different total chloride concentrations. High total chloride (2.0 m) in the solution results in Si-Mg enrichment in the solids and Ca enrichment in the fluid, whereas low total chloride (0.008 m) results in Mg enrichment in the solids and Ca-Si enrichment in the fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号