首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bimodal tholeiitic and mildly alkalic basalts occur near Bhir, in the central part of Deccan Volcanic Province (DVP). Major and trace element concentrations show that, of the ten flows, nine are tholeiitic and one is an alkalic basalt. The Bhir basalts have a wide range of chemical composition. Geochemical variations in the stratigraphic section define three distinct phases of evolution (zones 1 to 3). Crystal fractionation of plagioclase, clinopyroxene, olivine and Fe–Ti oxide expanded the compositional range. Low Mg#s (39–55), low concentrations of Ni and Cr and high Zr suggest the evolved nature of the Bhir basalts. Fractionation modeling suggests about 42% fractional crystallization.In spite of the dominant role of fractional crystallization in the evolution of Bhir basalts, some other processes must be sought to explain the chemical variations. Crustal contamination, magma mixing and degree of partial melting are suggested to explain the observed chemical variations. Resorption, reverse zoning and compositional bimodality in plagioclase phenocrysts indicate magma mixing. Samples of flows one and four suspected of being contaminated all have enriched SiO2 and LILE (K, Rb, and Ba) contents and depletion in Ti and P, believed to be due to ‘granitic’ crustal contamination.As compared to tholeiitic basalts, the alkalic basalts are characterized by low SiO2 and high TiO2, Na2O, K2O and P2O5. Alkalic basalts are richer in LILE (Rb and Ba), HFSE (Nb, Zr, and Y) and REE than the tholeiitic basalts. The alkalic basalt occurrence is important from a petrogenetic point of view and also suggests that the sources of alkalic basalt magmas may be of variable ages under different parts of the DVP. Based on major, trace and rare earth element distributions it is suggested that asthenospheric mantle having affinities with the source of OIB was the source material of the magmas and the range in the composition of tholeiitic and alkalic basalts was probably controlled by different degrees of melting and/or inhomogeneities in the mantle source.  相似文献   

2.
A ternary diagram using MnO, TiO2, P2O5 can discriminate between five petrotectonic environments of basaltic rocks (45–54% SiO2). Fields for mid-ocean ridge, island arc tholeiite, island arc calc-alkaline, ocean island tholeiite, and ocean island alkalic rocks were distinguished on the basis of 507 analyses from well-defined environments. Boninites plot within island arc fields. Continental tholeiites, such as the Columbia River basalts, are high in P2O5 relative to MnO and TiO2, and overlap portions of all five oceanic fields.MnO is depleted relative to TiO2 in mid-ocean ridge analyses and may be controlled by early fractionation of olivine and/or clinopyroxene under conditions of lowfO2. In island arc rocks, MnO is enriched relative to TiO2 due to early crystallization of titanomagnetite in a high-fO2 environment. Primitive mid-ocean ridge and arc tholeiites have similar MnO/TiO2/P2O5 ratios which indicate a grossly similar parent magma. Increasingly differentiated basaltic rocks are more easily classified by the diagram. High relative abundances of TiO2 and P2O5 in ocean island rocks are consistent with their derivation from a separate source.Despite the purported high mobility of MnO, the MnO/TiO2/P2O5 discriminant diagram may be applied to unspilitized and moderately spilitized zeolite to greenschist facies greenstones with good agreement between the environment determined by MnO/TiO2/P2O5 and by other means such as trace elements, REE, or field relations.  相似文献   

3.
We describe the mode of occurrence and geochemical characteristics of basalts, in the Khangai–Khentei belt in Mongolia, overlain by Middle Paleozoic radiolarian chert in an extensive accretionary complex. These basalts are greatly enriched in K, Ti, Fe, P, Rb, Ba, Th, and Nb in comparison to the composition of the mid‐ocean ridge basalts, indicative of within‐plate alkaline type. Ti/Y vs Nb/Y and MnO/TiO2/P2O5 ratios of the basalts also suggest within‐plate affinities. Considering the geochemical characteristics as well as the conformable relationship with the overlying radiolarian chert, the alkaline basalts were clearly not continental but formed a pelagic oceanic island. The mode of occurrence and geochemistry of the basalts show that the alkaline basaltic volcanic activity had taken place to form an oceanic island in the Paleozoic pelagic region sufficiently far from continents to allow radiolarian ooze accumulation.  相似文献   

4.
Five minor and trace elements, known to be chemically stable during alteration and metamorphism, have been combined in a set of binary diagrams that distinguish fresh tholeiites from alkali basalts. Of the five elements: Ti, P, Zr, Y, Nb, only P shows slight mobility during metamorphism, which is not sufficient to alter greatly the point distribution on the binary diagrams. Using these stable elements altered basaltic rocks: greenstones, spilites and amphibolites may be distinguished in the same way as fresh basalts, and their original magma may be identified as tholeiitic or alkaline basalt. All five elements are readily and rapidly determined, using XRF, thus this method may be applied as a rapid, easy way of discriminating the magma types of altered basaltic rocks. Using this method it can be demonstrated that alkali basalt magma was produced in minor quantities in the Precambrian.  相似文献   

5.
The extensive, complex, continental flood basalt (CFB) province which occurs in Ethiopia and Yemen consists of Oligocene prerift volcanism related to the Africa–Arabia continental break-up. Basalts from the northwestern Ethiopian Plateau exhibit a particularly large range of compositions and, for the first time in the Afro-Arabian CFB province, low-Ti basalts have been encountered. Major and some trace element data have been used to identify distinct geochemical groups and evaluate the role of differentiation processes. Three magma types have been distinguished: two high-Ti groups (HT1 and HT2) and one low-Ti group (LT). The transitional to tholeiitic LT suite exhibits low TiO2 (1–2.6%), Fe2O3* (10.5–14.8%), CaO/Al2O3 (0.4–0.75), Nb/La (0.55–0.85) and high SiO2 (47–51%). In contrast, the HT2 suite exhibits high TiO2 (2.6–5%), Fe2O3* (13.1–14.7%), CaO/Al2O3 (0.9–1.43), Nb/La (1.1–1.4) and low SiO2 (44–48.3%). The HT1 series is intermediate between the LT and HT2 groups. These three groups of lavas originated from different parental magmas. They display distinct differentiation trends, either controlled by the removal of a shallow level gabbroic (Pl+Ol+Cpx) assemblage (LT and HT1 suites) or by deeper Ol+Cpx fractionation (HT2 suite). Most of this thick continental flood lava pile was emplaced over a short time interval (about 1–2 Ma). The three contrasted magma types do not reflect a temporal evolution of their sources but rather a strong spatial control. Indeed, the northwestern Plateau may be subdivided into two different subprovinces as all the low-Ti basalts are located in the northern part of the plateau, and the high-Ti basalts are exposed in the eastern and southern parts. The LT and HT1 basalts display compositional ranges similar to those of the low- and high-Ti groups from other main CFB provinces (e.g. Parana, Deccan, Karoo, Siberia, …). However, the HT2 group exhibits extreme OIB-like compositions. This unusual geochemical signature suggests the involvement of deep mantle in the genesis of the HT2 magmas. The LT compositions rather reflect the participation of the continental lithosphere, through mantle derived melts and/or crustal contamination.  相似文献   

6.
The properties and tectonic significance of the fault bound zone on the northern margin of the Central Tianshan belt are key issues to understand the tectonic framework and evolutionary history of the Tianshan Orogenic Belt. Based on the geological and geochemical studies in the Tianshan orogenic belt, it is suggested that the ophiolitic slices found in the Bingdaban area represent the remaining oceanic crust of the Early Paleozoic ocean between the Hazakstan and Zhungaer blocks. Mainly composed of basalts, gabbros and diabases, the ophiolites were overthrust onto the boundary fault between the Northern Tianshan and Central Tianshan belts. The major element geochemistry is characterized by high TiO2 (1.50%–2.25%) and MgO (6.64%–9.35%), low K2O (0.06%–0.41%) and P2O5 (0.1%–0.2%), and Na2O>K2O as well. Low ΣREE and depletion in LREE indicate that the original magma was derived from a depleted mantle source. Compared with a primitive mantle, the geochemistry of the basalts from the Bingdaban area is featureded by depletion in Th, U, Nb, La, Ce and Pr, and unfractionated in HFS elements. The ratios of Zr/Nb, Nb/La, Hf/Ta, Th/Yb and Hf/Th are similar to those of the typical N-MORB. It can be interpreted that the basalts in the Bingdaban area were derived from a depleted mantle source, and formed in a matured mid-oceanic ridge setting during the matured evolutionary stage of the Northern Tianshan ocean. In comparison with the basalts, the diabases from the Bingdaban area show higher contents of Al2O3, ΣREE and HFS elements as well as unfractionated incompatible elements except Cs, Rb and Ba, and about 10 times the values of the primitive mantle. Thus, the diabases are thought to be derived from a primitive mantle and similar to the typical E-MORB. The diabases also have slight Nb depletion accompanying no apparent Th enrichment compared with N-MORB. From studies of the regional geology and all above evidence, it can be suggested that the diabases from the Bingdaban area were formed in the mid-oceanic ridge of the Northern Tianshan ocean during the initial spreading stage. Supported by the Major State Research Program of PRC (Grant No. 2001CB409801), the National Natural Science Foundation of China (Grant Nos. 40472115 and 40234041) and the State Research Program of China Geological Survey (Grant No. 2001130000-22)  相似文献   

7.
The TiO2–K2O–P2O5 ternary diagram is proposed as a method of discriminating between oceanic and non-oceanic (continental) basalts. This diagram is effective for non-alkaline “primitive” basalts: fractionated rocks cannot be adequately discriminated. Suitable analyses are those which have total alkalies ≤ 20% in an (Fe2O3 + FeO)–MgO–(Na2O + K2O) diagram. The proposed dividing line separates 93% of 222 ocean-floor and ocean-ridge basalts into the oceanic field and > 80% of continental basalt analyses into the non-oceanic field. Two exceptions are the Tertiary basalts of Greenland and the Deccan Traps which have oceanic affinities. “Continental” suites displaying an oceanic affinity in the TiO2–K2O–P2O5 diagram may be a result of abortive attempts to generate new sea floor. Preliminary results for dike swarms and Archean basalts suggest preponderant oceanic affinities. Alteration and metamorphism of oceanic basalts generally occasion enrichment of K2O relative to TiO2 and P2O5.  相似文献   

8.
Major and trace element (Rb, Sr, Ba, Zr, Y, Nb, Ni, Co, V, Cr) data are presented for 11 spinifex-textured peridotites (STP) and a number of high-magnesian and low-magnesian tholeiitic basalts. The STP, representing high-magnesian liquids, come from the Yilgarn Block of Western Australia, Munro Township in the Abitibi Belt of Canada and one sample from the Barberton area of South Africa. All of the basaltic samples come from the Yilgarn Block.The STP and high-magnesian rocks are considered to belong to the komatiite suite (1, 2) despite their low CaO/Al2O3 ratios. It is argued that the high values (about 1.5) reported for this ratio from the Barberton area can be explained by a combination of factors, viz. garnet separation, Al loss or Ca addition during metamorphism. The processes can be evaluated using CaO/TiO2, Al2O3/TiO2 ratios, the REE group and trace elements (e.g. Y, Sc). It would appear that most STP from other Archaean belts do not have abnormal CaO/Al2O3 ratios.The STP display close to chondritic ratios for Ti/Zr, Zr/Nb, Zr/Y, and TiO2/Al2O3 and are considered to represent liquids produced by large amounts of partial melting of the Archaean mantle. The data suggest that virtually all phases other than olivine were removed by melting during the production of STP liquids. In the STP, Ti/V, Ti/P ratios are non-chondritic, suggesting original depletion and/or incorporation into the core.For lower levels of partial melting, including mid-ocean ridge basalts (MORB) non-chondritic ratios are exhibited by Zr/Y, TiO2/Al2O3, TiO2/CaO, suggesting controlling phases in the residue for Y, Ca, Al. It is apparent that for STP, Cr is not being controlled, indicating the absence of chromite in the residual. However, at about 15% MgO the data suggest that chromite becomes a residual phase.The transition metals, with the exception of Mn, have higher abundances in Archaean basaltic rocks than in MORB. This is interpreted as being mainly due to more extensive partial melting of the mantle in the Archaean, as a result of higher temperatures.It is suggested that the generation of STP liquids with about 32% MgO is due to upwelling mantle diapirs which probably originated at depths greater than 400 km and at temperatures in excess of 1900°C.Modern equivalents to Archaean greenstone sequences are lacking. The closest tectonic analogue would be the development of oceanic crust within a rifted continental block.  相似文献   

9.
Garnets crystallized experimentally from within the anhydrous melting ranges of an olivine tholeiite, a tholeiitic andesite and an augite leucitite at pressures between 18 and 45 kbars contain up to 0.4% Na2O and 0.6% P2O5. The Na and P are thought to form a substitution couple, replacing Ca and Si in the garnet structure; representing limited solid solution between grossular (Ca3Al2Si3O12) and the phosphate Na3Al2P3O12. This substitution is enhanced by increasing pressure and by falling temperature (increasing degree of crystallization) at constant pressure.Current knowledge of the crystalline site of P in the upper mantle is hampered by lack of data on the stability of apatite and other phosphates at appropriate pressures and temperatures. If all samples of garnetiferous upper mantle brought to the surface by magmatic processes have been depleted to some extent by previous escape of a partial-melt fraction, P2O5 concentrations below 0.1% in their garnets could nevertheless signify that this phase was the sole predepletion host for P in the upper mantle, at the depths from which such inclusions are derived. If garnet and apatite are the principal minerals containing P in the upper mantle, it may be possible to use covariances between P and rare-earth elements in mafic liquids to detect which of these phases was the dominant host for P at the site of magma genesis. This approach confirms the widely-held opinion that strongly alkalic mafic magmas are products of upper-mantle partial fusion in the presence of residual garnet. It also leads to a contrasting proposal that mid-ocean ridge basalts may be generated by upper-mantle partial fusion at comparatively small depths, in the presence of residual apatite.  相似文献   

10.
The Hasan Dagi volcano is one of the two large Plio-Quaternary volcanoes in Cappadocia (Central Anatolia, Turkey). Three stages of edifice construction have been identified for this volcano: Paleovolcano, Mesovolcano and Neovolcano. Most samples from Hasan Dagi volcano are calc-alkaline and define an almost complete trend from basaltic andesite to rhyolite. However, the more recent (Neovolcano) mafic samples are alkaline basalts. The mineralogical and geochemical characteristics of the oldest lavas (Keçikalesi (13 Ma) and Paleo-Hasan Dagi (7 Ma)) are significantly different from those of the younger lavas (Meso- and Neo-Hasan Dagi (<1 Ma)). Calcic plagioclase and pigeonite are typically observed in these older lavas. The Paleovolcano basalts are depleted in alkalis and display a tholeiitic tendency whereas the differentiated lavas are depleted in Na2O but enriched in K2O compared to younger lavas. There is an evolution through time towards higher TiO2, Fe2O3*, MgO, Na2O and K2O and lower Al2O3 and SiO2 which is reflected in the basalt compositions. All the basalts display multi-element patterns typical of continental margin magmas with a significant enrichment in LILE (K, Rb, Ba and Th) and LREE and strong (Paleovolcano) to moderate (Meso- and Neovolcano) negative Nb, Zr and Ti anomalies. However, the younger basalts are the most enriched in incompatible elements, in agreement with their alkaline affinities and do not systematically display negative HFSE anomalies. REE data suggest an hydrous amphibole-bearing crystallization history for both Meso- and Neovolcano lavas. The distinction between the older and younger lavas is also apparent in trace element ratios such as Nb/Y, Ti/Y and Th/Y. These ratios indicate the role of a subducted component±crustal contamination in the genesis of the Hasan Dagi lavas, particularly for the oldest lavas (Keçikalesi and Paleo-Hasan Dagi). The decreasing influence of this component through time, over the last 6–7 m.y., has been accompanied by an increasing contribution of melt-enriched lithosphere. Although the range of variation of Sr, Nd and Pb isotopic ratios is small (0.70457–0.70515; 0.51262–0.51273; 18.80–18.94; 15.64–15.69; 38.87–39.10), it also reflects the evolution of the magma sources through time. Indeed, the youngest (Neovolcano) and most primitive basalts display significantly lower 87Sr/86Sr than the Paleo- and Mesovolcano basalts, whereas the Mesovolcano basalts display more radiogenic Pb than Paleovolcano samples. Magma mixing processes between initially heterogeneous and/or variably contaminated magmas may account for the genesis of the less differentiated and intermediate lavas (48–57% SiO2). Meso- and Neovolcano differentiated lavas (60–68% SiO2) are either derived from the analyzed basalts or from more primitive and more depleted magmas by fractional crystallization±some crustal contamination (AFC). Furthermore, the highly differentiated samples (72–75% SiO2) are not strongly contaminated. The strong calc-alkaline character of Hasan Dagi lavas, in the absence of contemporaneous subduction, must reflect the heritage of the early subduction of the Afro–Arabian plate under the Eurasian plate. The evolution towards alkaline compositions through time is clearly related to the development of extensional tectonics in Central Anatolia in the Late Miocene.  相似文献   

11.
Jin  Zhang  Hong-fu  Zhang  Ji-feng  Ying  Yan-jie  Tang  Li-feng  Niu 《Island Arc》2008,17(2):231-241
Abstract The occurrence of the Pishikou mafic dike in the Qingdao region, China provides important constraints on the origin of Late Cretaceous (86–78 Ma) mafic magmatism on the eastern North China craton. The Pishikou mafic dike is distributed in the Cretaceous Laoshan granitoid body, Qingdao region and contains peridotitic and granulitic xenoliths, xenocrysts, and megacrysts. Rocks from the Pishikou mafic dike are basanites and have low SiO2 (< 42 wt%) and Al2O3 (12.5 wt%) contents, and high MgO (> 8 wt%), total alkalis (Na2O + K2O > 4.8 wt%, Na2O/K2O > 1), TiO2 (> 2.5 wt%), CaO (> 9 wt%) and P2O5 (> 1 wt%). In trace element abundances, they are highly enriched in large ion lithophile elements (LILEs) and light rare‐earth elements (LREEs) (ΣREE = 339–403 ppm, (La/Yb)N = 39–42) without high field strength element (HFSE) depletion. These rocks have radiogenic Sr and Pb, and less radiogenic Nd isotopic compositions [(87Sr/86Sr)i > 0.7059, εNd ≈ 2.7–3.8 (206Pb/204Pb)i ≈ 18.0 ± 0.1]. The diagnostic elemental ratios, such as Nb/La, Nb/U, and Nb/Th, are compatible with those of mid‐oceanic ridge basalts (MORBs) and oceanic island basalts (OIBs). Therefore, the Pishikou mafic dike has a geochemical feature completely different from those of the Early Cretaceous mafic dikes from the Qingdao region, but similar to those of back‐arc basalts from the Japan Sea. This geochemical feature suggests that the Pishikou mafic dike was derived from an asthenosphere source, but contaminated by materials from the subducted Pacific slab. The discovery of this mafic dike thus provides a petrological evidence for the contribution of subducted Pacific slab to the Late Cretaceous magmatism in the Qingdao region of the eastern North China craton.  相似文献   

12.
Analyses for Ti, Zr, Y, Nb and Sr in over 200 basaltic rocks from different tectonic settings have been used to construct diagrams in which these settings can usually be identified. Basalts erupted within plates (ocean island and continental basalts) can be identified using a Ti-Zr-Y diagram, ocean-floor basalts, and low-potassium tholeiites and calc-alkali basalts from island arcs can be identified using a Ti-Zr diagram (for altered samples) and a Ti-Zr-Sr diagram (for fresh samples). Y/Nb is suggested as a parameter for indicating whether a basalt is of tholeiitic or alkalic nature. Analyses of dykes and pillow lavas from the Troodos Massif of Cyprus are plotted on these diagrams and appear to the tholeiitic ocean-floor rocks.  相似文献   

13.
New rare earth element (REE) data for Archaean basalts and spinifex-textured peridotites (STP) show a range of La/Sm ratios (chondrite-normalized) from 0.36 to 3.5, with the bulk of the data in the range 0.7–1.3. This supports the hypothesis, based on Sr isotope initial ratios, that the Archaean mantle was chemically heterogeneous. We suggest that the bulk mantle source for Archaean basaltic magmas was close to an undepleted earth material. An average chemical composition of the Archaean mantle is estimated using chemical regularities observed in Archaean STP and high-magnesian basalts. TiO2 and MgO data show an inverse correlation which intersects the MgO axis at about 50% MgO (Fo92). TiO2 abundance in the mantle source is measured on this plot by assigning anMgO= 38% for the mantle. Concentrations of other elements are also estimated and these data are then used to obtain a composition for the bulk earth. We suggest an earth model with about 1.35 times ordinary chondrite abundances of refractory lithophile elements and about 0.2 times carbonaceous type 1 chondrite abundances of moderately volatile elements (such as Na, Rb, K, Mn). P shows severe depletion in the model earth relative to carbonaceous chondrites, a feature either due to volatilization or core formation (preferred). Our data support the hypothesis of Ringwood that the source material for the earth is a carbonaceous chondrite-like material.The generation of mid-ocean ridge basalts (MORB) is examined in the light of the model earth composition and Al2O3/TiO2, CaO/TiO2 ratios. It is suggested that for primitive basalts, these values can be used to predict the residual phases in their source. Comparison of chemical characteristics of inferred sources for 2.7-b.y. Archaean basalts and modern “normal” MORB indicates that the MORB source is severely depleted in highly incompatible elements such as Cs, Ba, Rb, U, Th, K, La and Nb, but has comparable abundances of less incompatible elements such as Ti, Zr, Y, Yb. The cause of the depletion in the MORB source is examined in terms of crust formation and extraction of silica-undersaturated melts. The latter seems to be a more likely explanation, since the degree of enrichment of highly incompatible elements in the crust only accounts for up to 40% of their abundances in the bulk earth and cannot match the depletion pattern in normal MORB. A large volume of material, less depleted than the source for normal MORB must therefore exist in the mantle and can serve as the source for the ocean island basalts and “normal” MORB.Three different mantle evolution models are examined and each suggests that the mantle is stratified with respect to abundances of incompatible trace elements. We suggest that no satisfactory model is available to fully explain the spectrum of geochemical and geophysical data. In particular the Pb and Sr isotope data on oceanic basalts, the depletion patterns of MORB and the balance between lithophile abundances in the crust and mantle, are important geochemical constraints to mantle models. Further modelling of the mantle evolution will be dependent on firmer information on the role of subduction, mantle convection pattern, and basalt production through geologic time together with a better understanding of the nature of Archaean crustal genesis.  相似文献   

14.
Five representative cumulative samples of basal flows were chemically analysed. Normative composition (CIPW),DI, FI, MI, SI, f (norms) and ‘S’ indices have been calculated therefrom. It is concluded that the Linga flows are tholeiitic in nature with slightly more FeO, MgO and Al2O3 than most tholeiitic basalts. They represent eariy-middle stage basalts with DI less than 30. Thef-norms put these flows in the pyroxene field indicating an early fractionation of pyroxenes causing relative iron enrichment. Textural evidences, also, support a late fractionation of feldspar with overlapping periods of crystallisation of pyroxene and feldspar. The similarity in composition of the lower flows is more apparent than true. The trend of differentiation is characteristically tholeiitic. Oxygen and vapour fugacity may have been responsible for a shift in the general trend of differentiation. Explosive eruption of the magma, which was well mixed and which cooled rapidly, is borne by the features exhibited by these flows.  相似文献   

15.
Dong  YunPeng  Zhang  GuoWei  Yang  Zhao  Zhao  Xia  Ma  HaiYong  Yao  AnPing 《中国科学:地球科学(英文版)》2007,50(2):234-245

The mafic-ultramafic assemblages, which thrustthrust into the Wushan-Tangzang boundary fault as some blocks and outcropped in the Yuanyangzhen, Lijiahe, Lubangou and Gaojiahe area, consist mainly of meta-peridotites, gabbros and basalts. The meta-peridotites are characterized by high SiO2 and MgO contents, low ΣREE, as well as their chondrite-normalized rare earth element patterns show some similarities to that of middle oceanic meta-peridotite. The basalts from the Yuanyangzhen, Lijiahe and Lubangou area are characterized by relatively high TiO2 content, low Al2O3 content and Na2O>>K2O. Above all, it is the slight enrichment or flat REE distribution patterns and the unfractionated in HFS elements in the primitive-normalized trace elements distribution patterns that indicate these basalts are similar to that of the typical E-MORB. In comparison, the basalts from the Gaojiahe section are featured by depletion in Nb and Ta contents and enrichment in Th content which show that these were derived from an island-arc setting. From studies of the regional geology, petrology, geochemistry, geo-chronology and all above evidence, it can be suggested that the mafic-ultramafic rocks from the Wushan area are mainly dismembered E-MORB type ophiolite, which represent the fragments of the lithosphere of the Early-Paleozoic Qinling ocean. It is preferred that these rocks were formed in an initial mid-ocean ridge setting during the beginning stage of the oceanic basin spreading. This ophiolite together with the Gaojiahe island-arc basalts shows that there exists an ophiolitic mélange along the Wushan-Tangzang boundary fault, and marks the suture zone after the closure of the Qinling ocean in early Paleozoic.

  相似文献   

16.
Selected basalts from a suite of dredged and drilled samples (IPOD sites 525, 527, 528 and 530) from the Walvis Ridge have been analysed to determine their rare earth element (REE) contents in order to investigate the origin and evolution of this major structural feature in the South Atlantic Ocean. All of the samples show a high degree of light rare earth element (LREE) enrichment, quite unlike the flat or depleted patterns normally observed for normal mid-ocean ridge basalts (MORBs). Basalts from Sites 527, 528 and 530 show REE patterns characterised by an arcuate shape and relatively low (Ce/Yb)N ratios (1.46–5.22), and the ratios show a positive linear relationship to Nb content. A different trend is exhibited by the dredged basalts and the basalts from Site 525, and their REE patterns have a fairly constant slope, and higher (Ce/Yb)N ratios (4.31–8.50).These differences are further reflected in the ratios of incompatible trace elements, which also indicate considerable variations within the groups. Mixing hyperbolae for these ratios suggest that simple magma mixing between a “hot spot” type of magma, similar to present-day volcanics of Tristan da Cunha, and a depleted source, possibly similar to that for magmas being erupted at the Mid-Atlantic Ridge, was an important process in the origin of parts of the Walvis Ridge, as exemplified by Sites 527, 528 and 530. Site 525 and dredged basalts cannot be explained by this mixing process, and their incompatible element ratios suggest either a mantle source of a different composition or some complexity to the mixing process. In addition, the occurrence of different types of basalt at the same location suggests there is vertical zonation within the volcanic pile, with the later erupted basalts becoming more alkaline and more enriched in incompatible elements.The model proposed for the origin and evolution of the Walvis Ridge involves an initial stage of eruption in which the magma was essentially a mixture of enriched and depleted end-member sources, with the N-MORB component being small. The dredged basalts and Site 525, which represent either later-stage eruptives or those close to the hot spot plume, probably result from mixing of the enriched mantle source with variable amounts and variable low degrees of partial melting of the depleted mantle source. As the volcano leaves the hot spot, these late-stage eruptives continue for some time. The change from tholeiitic to alkalic volcanism is probably related either to evolution in the plumbing system and magma chamber of the individual volcano, or to changes in the depth of origin of the enriched mantle source melt, similar to processes in Hawaiian volcanoes.  相似文献   

17.
The Fe/Mg+Fe) ratios (XFe) of the Quaternary basalts (SiO2 < 53 wt.%) in the Japanese arcs were examined. The XXFe of relatively magnesian basalts decreases from the volcanic front toward the Japan Sea across the arcs. Based on the partition coefficient of Mg-Fe2+ between olivine and liquid, it is suggested that all the basalts near the volcanic front, which are mostly tholeiitic basalts, are significantly fractionated, whereas many basalts near the Japan Sea, which are mostly alkali basalts, are little fractionated. The K2 O content in the primary basalt magmas increases toward the Japan Sea. Combining the XFe and K2 O data, it is suggested that relatively large amounts of tholeiitic magmas are produced near the volcanic front, but they fractionate during their ascent, whereas smaller amounts of alkali basalt magmas are formed near the Japan Sea, but they can ascend with less fractionation. The density of primary tholeiite magma is significantly larger than that of primary alkali basalt magmas. It is most likely that primary tholeiite magmas cannot ascend beyond the upper crust and would fractionate to produce less dense tholeiitic magmas near the volcanic front, whereas primary alkali basalt magmas can ascend through the upper crust without fractionation, as far as buoyancy is the principal ascending force. In the Japanese arcs, the stress field may be less compressional near the Japan Sea than near the volcanic front, so that magmas can ascend more rapidly in the latter region than in the former. These two factors may be responsible for the above mentioned chemical variations of basalt magmas across the arcs. The variation in volume of the Quaternary volcanic rocks across the arcs can be explained by the presence of a melt-rich zone above but nearly parallel to the subducted slab.  相似文献   

18.
The Oligocene alkaline basalts of Toveireh area (southwest of Jandaq, Central Iran) exhibit northwest–southeast to west–east exposure in northwest of the central‐east Iranian microcontinent (CEIM). These basalts are composed of olivine (Fo70–90), clinopyroxene (diopside, augite), plagioclase (labradorite), spinel, and titanomagnetite as primary minerals and serpentine and zeolite as secondary ones. They are enriched in alkalis, TiO2 and light rare earth elements (La/Yb = 9.64–12.68) and are characterized by enrichment in large ion lithophile elements (Cs, Rb, Ba) and high field strength elements (Nb, Ta). The geochemical features of the rocks suggest that the Toveireh alkaline basalts are derived from a moderate degree partial melting (10–20%) of a previously enriched garnet lherzolite of asthenospheric mantle. Subduction of the CEIM confining oceanic crust from the Triassic to Eocene is the reason of mantle enrichment. The studied basalts contain mafic‐ultramafic and aluminous granulitic xenoliths. The rock‐forming minerals of the mafic‐ultramafic xenoliths are Cr‐free/poor spinel, olivine, Al‐rich pyroxene, and feldspar. The aluminous granulitic xenoliths consist of an assemblage of hercynitic spinel + plagioclase (andesine–labradorite) ± corundum ± sillimanite. They show interstitial texture, which is consistent with granulite facies. They are enriched in high field strength elements (Ti, Nb and Ta), light rare earth elements (La/Yb = 37–193) and exhibit a positive Eu anomaly. These granulitic xenoliths may be Al‐saturated but Si‐undersaturated feldspar bearing restitic materials of the lower crust. The Oligocene Toveireh basaltic magma passed and entrained these xenoliths from the lower crust to the surface.  相似文献   

19.
Ar–Ar dating, major and trace element analyses, and Sr–Nd–Pb isotope results of two groups of Lower Cretaceous (erupted at 126 and 119 Ma, respectively) intermediate–felsic lava from the northeastern North China Block (NCB) suggest their derivation from melting of mixtures between the heterogeneous lower crust and underplated basalts. Both groups exhibit high‐K calc‐alkaline to shoshonitic affinities, characterized by light rare earth element (LREE) and large ion lithophile element (LILE) enrichment and variable high field strength element (HFSE, e.g. Nb, Ta and Ti) depletion, and moderately radiogenic Sr and unradiogenic Nd and Pb isotopic compositions. Compared with Group 2, Group 1 rocks have relatively higher K2O and Al2O3/(CaO + K2O + Na2O) in molar ratio, higher HFSE concentrations and lower Nb/Ta ratios, and higher Sr–Nd–Pb isotope ratios. Group 1 rocks were derived from a mixture of an enriched mantle‐derived magma and a lower crust that has developed radiogenic Sr and unradiogenic Nd and Pb isotopic compositions, whereas the Group 2 magmas were melts of another mixture between the same mantle‐derived component and another type of lower crust having even lower Sr, Nd, and Pb isotopic ratios. Shift in source region from Group 1 to Group 2 coincided with a change in melting conditions: hydrous melting of both the underplated basalt and the lower crust produced the earlier high‐Nb and low‐Nb/Ta melts with little or no residual Ti‐rich phases; while the younger low‐Nb and high‐Nb/Ta magmas were melted under a water‐deficient system, in which Ti‐rich phases were retained in the source. Generation of the two groups of intermediate–felsic volcanic rocks was genetically linked with the contemporaneous magma underplating event as a result of lithospheric thinning in the eastern NCB.  相似文献   

20.
Pyroxenes from the Layered Series (LS), Upper Border Series (UBS), and Marginal Border Series (MBS) of the Skaergaard intrusion were analyzed using electron microprobe and mineral separation techniques to examine geochemical variations. In general, pyroxenes from all three series show similar trends in major elements vs % crystallization: SiO2, MgO, Al2O3, and TiO2 progressively decrease, FeO and MnO progressively increase, and CaO, Fe2O3, and P2O5 do not change systematically with differentiation. Pyroxenes in the LS and MBS follow a trend similar to that reported by Wager and Brown. The estimated crystallization temperatures closely follow the general trends of published temperature estimates. Major element variation in Skaergaard pyroxenes shows smooth variations with increasing differentiation, indicating that there was no volumetrically significant injection of new magma into the chamber after the initial emplacement. These results strongly support the idea that the Skaergaard intrusion represents in situ crystallization under a closed system magma chamber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号