首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhyolites occur as a subordinate component of the basalt-dominated Eastern Snake River Plain volcanic field. The basalt-dominated volcanic field spatially overlaps and post-dates voluminous late Miocene to Pliocene rhyolites of the Yellowstone–Snake River Plain hotspot track. In some areas the basalt lavas are intruded, interlayered or overlain by ~15 km3 of cryptodomes, domes and flows of high-silica rhyolite. These post-hotspot rhyolites have distinctive A-type geochemical signatures including high whole-rock FeOtot/(FeOtot+MgO), high Rb/Sr, low Sr (0.5–10 ppm) and are either aphyric, or contain an anhydrous phenocryst assemblage of sodic sanidine ± plagioclase + quartz > fayalite + ferroaugite > magnetite > ilmenite + accessory zircon + apatite + chevkinite. Nd- and Sr-isotopic compositions overlap with coeval olivine tholeiites (ɛNd = −4 to −6; 87Sr/86Sri = 0.7080–0.7102) and contrast markedly with isotopically evolved Archean country rocks. In at least two cases, the rhyolite lavas occur as cogenetic parts of compositionally zoned (~55–75% SiO2) shield volcanoes. Both consist dominantly of intermediate composition lavas and have cumulative volumes of several 10’s of km3 each. They exhibit two distinct, systematic and continuous types of compositional trends: (1) At Cedar Butte (0.4 Ma) the volcanic rocks are characterized by prominent curvilinear patterns of whole-rock chemical covariation. Whole-rock compositions correlate systematically with changes in phenocryst compositions and assemblages. (2) At Unnamed Butte (1.4 Ma) the lavas are dominated by linear patterns of whole-rock chemical covariation, disequilibrium phenocryst assemblages, and magmatic enclaves. Intermediate compositions in this group resulted from variable amounts of mixing and hybridization of olivine tholeiite and rhyolite parent magmas. Interestingly, models of rhyolite genesis that involve large degrees of melting of Archean crust or previously consolidated mafic or silicic Tertiary intrusions do not produce observed ranges of Nd- and Sr-isotopes, extreme depletions in Sr-concentration, and cogenetic spectra of intermediate rock compositions for both groups. Instead, least-squares mass-balance, energy-constrained assimilation and fractional crystallization modeling, and mineral thermobarometry can explain rhyolite production by 77% low-pressure fractional crystallization of a basaltic trachyandesite parent magma (~55% SiO2), accompanied by minor (0.03–7%) assimilation of Archean upper crust. We present a physical model that links the rhyolites and parental intermediate magmas to primitive olivine tholeiite by fractional crystallization. Assimilation, recharge, mixing and fractional melting occur to limited degrees, but are not essential parts of the rhyolite formation process. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This paper constitutes part of a special issue dedicated to Bill Bonnichsen on the petrogenesis and volcanology of anorogenic rhyolites.  相似文献   

2.
The extinct Pleistocene volcano Muriah, situated behind the main Pleistocene—Recent Sunda magmatic arc in north-central Java, has erupted at least two contrasted groups of lavas. One group forms a well-defined compositional series (Anhydrous Series) from leucite basanite to tephritic phonolite, with olivine and tschermakitic clinopyroxene the main phenocrysts. The other group, the “Hydrous Series”, includes compositionally variable tephrites and high-K andesites with common plagioclase, biotite and amphibole. Lavas of the Anhydrous Series are much richer in LIL trace elements than the most potassic lavas of neighbouring active volcanoes, but relative HFS element enrichment is less pronounced. REE patterns have almost constant slopes from La (250–600 times chondrites) to Yb (5–10 times chondrites), while those of lavas of active centres are less light-enriched, and show flattening in the heavy REE. Anhydrous Series initial 87Sr/86Sr ratios (0.7043–0.7046) are lower than those of active centres (0.7047–0.7053). Hydrous Series lavas are intermediate in all these geochemical characteristics.The most mafic A-series leucite basanite, with Mg/(Mg + Fe2+) 0.69, 140 ppm Ni and 620 ppm Cr was probably derived from the primary magma for the series by fractionation of only 5 wt.% olivine. Its REE pattern suggests derivation from a garnet-bearing source. Experiments on this basanite, with up to 10% olivine and 20% orthopyroxene added, and in the presence of H2O and H2O/CO2 mixtures, have shown that for all but very high magma water contents, the olivine and garnet liquidus fields are widely separated by fields of phlogopite and clinopyroxene. There is no liquidus field of orthopyroxene. Hence, if magma production involved an equilibrium melting process alone, the most probable sources are of garnet-bearing phlogopite clinopyroxenite type. Alternatively, this magma may represent the end-product of interaction between a low-K basanite magma from a garnet lherzolite source in the asthenosphere and a phlogopite-bearing lherzolite zone in the lower lithosphere. Its production was probably related to crustal doming and extension superimposed on the dominant subduction regime. Hydrous Series magmas may have resulted from mixing between Anhydrous Series magmas and high-K calc-alkaline basaltic to andesitic magmas more directly related to subduction processes.  相似文献   

3.
Spinel-lherzolite xenoliths have been found in olivine tholeiite near Andover in the Tasmanian Tertiary volcanic province. They show a high-pressure mineralogy of predominant olivine (Mg90), with aluminous enstatite (Mg90) and lesser aluminous diopside and chrome-bearing spinel, and resemble lherzolite xenoliths commonly found in undersaturated lavas. Such xenoliths are unusual in tholeiitic basalts and the occurrence directly attests to a mantle origin for at least some tholeiitic magmas.The lherzolites are accompanied by doleritic and pyroxenitic xenoliths and by olivine, orthopyroxene, clinopyroxene and plagioclase xenocrysts. If near-liquidus phases are represented amongst the xenocrysts, then the magnesian number of the host basalt and its xenocryst assemblage provisionally suggest a magma derived by more than 15–20% partial melting of mantle peridotite, before commencing xenocryst crystallisation at pressures between 8–13 kbar.With this new record, lherzolite-bearing lavas in Tasmania now cover an extremely wide compositional range, extending from highly undersaturated olivine melilitite to olivine tholeiite. They also include a considerable number of fractionated alkaline rocks that are only sparsely reported in the literature as lherzolite hosts. This latter group contains representatives of a previously suggested but unestablished alkaline fractionation series based on olivine nephelinite, viz. calcic olivine nephelinite → sodic olivine nephelinite → potassi-sodic olivine nephelinite → mafic nepheline benmoreite → mafic phonolite.Lherzolite and megacryst-bearing lavas are relatively more abundant in peripheral parts to the main basalt sequences in Tasmania. This suggests that they developed in fringing zones of less intense mantle melting which enhanced stagnation and fractionation of magmas within the mantle before eruption. Calculated crustal thicknesses under these areas suggest that the magmas were generated at pressures exceeding 6–11 kbar, with the Andover tholeiitic magma exceeding 9 kbar.  相似文献   

4.
Cinder cones at Crater Lake are composed of high-alumina basaltic to andesitic scoria and lavas. The Williams Crater Complex, a basaltic cinder cone with andesitic to dacitic lava flows, stands on the western edge of the caldera, against an andesite flow from Mount Mazama. Bombs erupted from Williams Crater contain cores of banded andesite and dacite, similar to those erupted during the climatic eruption of Mount Mazama.Major- and trace-element variations exhibit an increase in incompatible elements and a decrease in compatible elements, consistent with crystal fractionation of olivine, plagioclase, clinopyroxene, orthopyroxene, and magnetite. LREE patterns in the rocks are irregular; each successive basalt is enriched in LREE relative to the preceding andesite.Compositional variations in the magmas of the cinder cones suggest that three magmatic processes were involved, partial melting, fractional crystallization, and magma mixing. Partial melting of more than one source produced primary basaltic magma(s). Subsequent mixing and fractional crystallization produced the more differentiated basaltic to andesitic magmas.  相似文献   

5.
Shirouma-Oike volcano, a Quaternary composite volcano in central Japan, consists mostly of calc-alkaline andesitic lavas and pyroclastic rocks. Products of the earlier stage of the volcano (older group) are augite-hypersthene andesite. Hornblende crystallized during the later stage of this older group, whereas biotite and quartz crystallized in the younger group.Assemblages of phenocrysts in disequilibrium, such as magnesian olivine(Fo30)/quartz, iron-rich hypersthene(En55)/iron-poor augite(Wo43.5, En42.5, Fs14.0), and two different types of zoning on the rim of clinopyroxene are found in a number of rocks. Detailed microprobe analyses of coexisting minerals reveal that phenocrysts belong to two distinctly different groups; one group includes magnesian olivine + augite which crystallized from a relatively high-temperature (above 1000°C) basaltic magma; the second group, which crystallized from relatively low temperature (about 800°C) dacitic to andesitic magma, includes hypersthene + hornblende + biotite + quartz + plagioclase + titanomagnetite ± ilmenite (in the younger group) and hypersthene + augite + plagioclase + titanomagnetite ± hornblende (in the older group). The temperature difference between the two magmas is clarified by Mg/Fe partition between clinopyroxene and olivine, and Fe-Ti oxides geothermometer. The compositional zoning of minerals, such as normal zoning of olivine and magnesian clinopyroxene, and reverse zoning of orthopyroxene, indicate that the basaltic and dacitic-andesitic magmas were probably mixed in a magma reservoir immediately before eruption. It is suggested that the basaltic magma was supplied intermittently from a deeper part to the shallower magma reservoir, in in which dacitic-andesitic magma had been fractionating.  相似文献   

6.
Abstract On the island of Mustique, fresh and propylitized olivine–plagioclase–clinopyroxene basalt, plagioclase–clinopyroxene–orthopyroxene and plagioclase–clinopyroxene–amphibole andesite lavas and minor intrusions are interbedded with Oligocene pyroclastic and epiclastic rocks. Chemical data show that two isotopically identical, but chemically different, suites of lava are present: (i) the OPXS (87Sr/86Sr 0.70403–0.70454; 143Nd/144Nd 0.512952–0.512986; δ18Ocpx 5.49 and 5.61), comprising basalts and orthopyroxene‐bearing andesites; and (ii) the AMPHS (87Sr/86Sr 0.70401–0.70457; 143Nd/144Nd 0.512981–0.513037; δ18Ocpx 5.54), made up of basalts and amphibole‐bearing andesites. The OPXS has higher contents of TiO2, P2O5, light rare earth elements, Sm, Pb, Th, U, Zr, Y and Nb, and higher La/Yb ratios than the AMPHS. The isotopic data suggest that both suites formed from melts derived from the same subduction‐modified depleted mantle source as the volcanic rocks of nearby St Vincent and Bequia, and the northern islands of the Lesser Antilles Arc. The immobile trace element contents, and La/Yb ratios, of the OPXS are indicative of ~10% partial melting of the source, whereas those of the AMPHS are indicative of ~25% partial melting. The within‐suite chemical variation of the OPXS is consistent with ~45% fractional crystallization of its intratelluric mineral assemblages, and that of the AMPHS is consistent with the removal of ~65% of its intratelluric assemblages. Experimental evidence suggests that both suites of basalt crystallized at pressures <8 kbar from melts containing 1–2 wt% water. After extensive fractional crystallization, the andesites crystallized at pressures between approximately 5 and 2 kbar. The OPXS magmas appear to have lost more of their water content than the AMPHS magmas. Thus, the OPXS andesites formed from melts with an estimated water content of 2–3 wt%, whereas the AMPHS andesites formed from melts containing at least 4.5 wt% water.  相似文献   

7.
The numerous Miocene-Recent alkaline volcanic outcrops in the Antarctic Peninsula form a substantial volcanic province, the least well-known part of a major belt of alkaline volcanism that extends between South America and New Zealand. The outcrops consists mainly of aa and pahoehoe lavas and hyaloclastites which locally contain accidental nodules of spinel lherzolite and other mantle-derived lithologies. The province is predominantly basaltic with two major differentiation lineages: (1) a sodic series of olivine and alkali basalt, hawaiite, mugearite, trachy-phonolite and trachyte; and (2) a relatively potassic, highly undersaturated series of basanite, tephrite and phono-tephrite. All the lavas show varying effects of fractionation by crystallization of olivine and clinopyroxene, joined by plagioclase in the hawaiites to trachytes. Fractional crystallization can probably explain most of the chemical variation observed within each outcrop, but variable partial melting is necessary to account for the differences in incompatible element enrichment between the two series, and between the individual outcrops. The degree of partial melting may not have exceeded 3%, as is the case for many other alkaline magmas.The volcanism is an intraplate phenomenon but there is no correlation in timing between the cessation of subduction and the inception of alkaline volcanism. The activity cannot be related to the passage of the coupled Pacific-Antarctic plate over a stationary mantle hot-spot. Although the precise causal relationship with tectonic setting is unknown, regional extension was a prerequisite for giving the magmas rapid access to the surface.  相似文献   

8.
The Rallier-du-Baty Peninsula forms the southwestern part of the Kerguelen Archipelago (Indian Ocean), whose magmatic activity is related to the long-lived 115-Ma Kerguelen plume. The peninsula is mostly made of alkaline rocks constituting two well-defined ring complexes. This paper focuses on the northern ring complex, which is not yet known. Recent field studies have revealed seven discrete syenitic ring dykes ranging in age from 6.2 to 4.9 Ma, and two later volcanic systems. 40Ar/39Ar dating of a trachytic ignimbrite linked to the Dôme Carva volcano complex yields an age of 26±3 Ka. This represents the last major eruptive event on the Kerguelen Archipelago. The volcanism is bimodal with trachybasalts and trachyandesites constituting the mafic lavas and trachytes and rhyolites constituting the felsic lavas. The volume of erupted felsic magma is by far the larger, and is represented by abundant pyroclastic deposits and lava flows. Boulders of plutonic rocks are found to the northwest of Dôme Carva, and represent intermediate rocks (i.e. monzogabbros and monzonites) that are not present at the surface. Basic rocks are mostly trachybasalts and trachyandesites, while true basalts are scarce. Their mineralogy consists chiefly of plagioclase, olivine, diopside and oxides. Sieve-textured plagioclase is common, as well as corroded olivine and diopside phenocrysts. Peralkaline commenditic trachytes are the most abundant type of acid volcanic rocks. They consist of abundant sanidine, augite and magnetite phenocrysts and interstitial quartz, aegerinic pyroxenes and Na-amphiboles. Ring dykes of quartz-poor alkali feldspar syenites display the same mineralogy, except hornblende is common and replaces diopside. Hornblende is particularly abundant in intermediate monzogabbros. Major and trace element variations of volcanic rocks emphasise the predominant role of fractional crystallisation with a general decrease of MgO, CaO, P2O5, TiO2, FeO, Ba, Sr and Ni from basic to felsic rocks. However, the scattering of the data from the basic rocks indicates that other processes have operated. The overall evolution from trachyte to rhyolite is in agreement with the fractionation of sanidine as the major control. An increase of incompatible elements from trachyte to rhyolite is observed. The felsic lavas display an increase of 87Sr/86Sr(i) without any significant variations in the Nd isotopic composition. The genesis of the basic rocks is complex and reflects concomitant processes of fractional crystallisation, mixing between different basic magmas and probable assimilation of Ba-rich oceanic crust. Major and trace element modelling confirms the possibility of producing the trachytes through continuous differentiation from a basaltic alkaline parent. Discrepancies observed for some trace elements can be explained by the crystallisation of amphibole at an intermediate stage of magma evolution. The overall evolution from trachyte to rhyolite is thought to be controlled by crystal fractionation. High 87Sr/86Sr(i) of the trachytes is interpreted to reflect interaction with an ocean-derived component, probably during assimilation of hydrothermally altered oceanic crust. Boulders of amphibole-bearing monzonites and monzogabbros found to the northwest of Dôme Carva are thought to represent intermediate magma composition that formed at depths but did not erupt.  相似文献   

9.
Volcanism in the Taupo Volcanic Zone (TVZ) and the Kermadec arc-Havre Trough (KAHT) is related to westward subduction of the Pacific Plate beneath the Indo-Australian Plate. The tectonic setting of the TVZ is continental whereas in KAHT it is oceanic and in these two settings the relative volumes of basalt differ markedly. In TVZ, basalts form a minor proportion (< 1%) of a dominant rhyolite (97%)-andesite association while in KAHT, basalts and basaltic andesites are the major rock types. Neither the convergence rate between the Pacific and Indo-Australian Plates nor the extension rates in the back-arc region or the dip of the Pacific Plate Wadati-Benioff zone differ appreciably between the oceanic and continental segments. The distance between the volcanic front and the axis of the back-arc basin decreases from the Kermadec arc to TVZ and the distance between trench and volcanic front increases from around 200 km in the Kermadec arc to 280 km in TVZ. These factors may prove significant in determining the extent to which arc and backarc volcanism in subduction settings are coupled.All basalts from the Kermadec arc are porphyritic (up to 60% phenocrysts) with assemblages generally dominated by plagioclase but with olivine, clinopyroxene and orthopyroxene. A single dredge sample from the Havre Trough back arc contains olivine and plagioclase microphenocrysts in glassy pillow rind and is mildly alkaline (< 1% normative nepheline) contrasting with the tholeiitic nature of the other basalts. Basalts from the TVZ contain phenocryst assemblages of olivine + plagioclase ± clinopyroxene; orthopyroxene phenocrysts occur only in the most evolved basalts and basaltic andesites from both TVZ and the Kermadec Arc.Sparsely porphyritic primitive compositions (Mg/(Mg+Fe2) > 70) are high in Al2O3 (>16.5%), and project in the olivine volume of the basalt tetrahedron. They contain olivine (Fo87) phenocrysts and plagioclase (> An60) microphenocrysts. These magmas have ratios of CaO/Al2O3, A12O3/TiO2 and CaO/TiO2 in the range of MORB and MORB picrites and can evolve to the low-pressure MORB cotectic by crystallisation of olivine±plagiociase. Such rocks may be the parents of other magmas whose evolutionary pathways are complicated by interaction of crystal fractionation, crystal accumulation and mixing processes and the filtering action of crust of variable density and thickness. The interplay of these processes likely accounts for the scatter of data about the cotectic. More evolved rocks from both TVZ and KAHT contain clinopyroxene and orthopyroxene phenocrysts and their compositions merge with basaltic andesites and andesites. Stepwise least-squares modelling using phenocryst assemblages in proportions observed in the rocks suggest that crystal fractionation and accumulation processes can account for much of the diversity observed in the major-element compositions of all lavas.We conclude that the parental basaltic magmas for volcanism in the TVZ and KAHT segments are similar thereby implying grossly similar source mineralogy. We attribute the diversity to secondary processes influencing liquids as they ascended through complex plumbing systems in the sub arc mantle and cross.  相似文献   

10.
The 1973 eruption of Eldfell volcano, Iceland, appears to have been a short, simple event, but textural and geochemical evidence suggest that it may have had three different magmatic components. The first-erupted fissure magmas were chemically evolved, rich in plagioclase (∼ 18%) and had shallow, straight crystal size distribution (CSD) curves. The early lavas were less evolved chemically, had lower plagioclase contents (∼ 13%) and steeper, slightly concave up CSDs. The late lavas were chemically similar to the early lavas, but even richer in plagioclase than the initial magmas (∼ 24%) and had the steepest CSDs. There was no chemical evidence for plagioclase fractionation, but compositional diversity could be produced by clinopyroxene fractionation which must have occurred at depth. We propose that the eruption started with old, coarsened (Ostwald ripened) magma left over from a previous eruption, possibly that which produced Surtsey Island ten years earlier. The early flows may be mixtures of small amounts of this old magma with a new, low crystallinity, uncoarsened magma or a completely new magma. The late flows are another new magma from depth, chemically similar to the early flows, but which has grown plagioclase under increasing saturation (undercooling) perhaps during its ascent. All three magmatic components may have originated from the same parent, but had varying degrees of clinopyroxene fractionation, plagioclase nucleation and growth, and coarsening.  相似文献   

11.
Major, minor and trace element abundances were determined in seven Angra dos Reis samples including whole rocks, fassaite (clinopyroxene), olivine and whitlockite separates via sequential instrumental neutron activation analysis. The chondritic normalized rare earth element (REE) abundance pattern for the Angra dos Reis clinopyroxene separates shows a concave downward shape with a small negative Eu anomaly. The strong fractionation between the light and the heavy REE in olivine separates could be attributed to the presence of islands of kirschsteinite in the olivines. The large-ion lithophile trace elements were highly enriched in the whitlockite separate as expected (e.g. La ≈ 370 ppm). The lower Hf and Sc abundances in whitlockite compared to that in the equilibrium “magma” could be the result of favorable partitioning of Hf and Sc in baddeleyite, which may have crystallized prior to or with whitlockite in the interstitial liquid. Comparison of whole rock with mineral separate data shows the presence of ~3% olivine, ~2.6% spinel and small amounts of metallic Ni-Fe and troilite in the whole rock.The trace element abundances in the derivative magma from which the Angra dos Reis clinopyroxene crystallized were estimated from the clinopyroxene data and the clinopyroxene mineral-liquid partition coefficients. From the derivative magma, the trace element abundances in the possible parent magmas were calculated by assuming that these parent magmas have undergone different degrees of clinopyroxene fractional crystallization to yield the Angra dos Reis derivative magma. Using the trace element abundances in these possible parent magmas, a two-stage crystal-liquid fractionation model with source material containing olivine, orthopyroxene and clinopyroxene is presented for the genesis of Angra dos Reis. Possible combinations of the degree of equilibrium non-modal partial melting, the source mineral composition and the initial element abundances required to generate possible Angra dos Reis parent magmas are calculated by the multilinear regression analysis method. Favorable solutions for this two-stage crystal-liquid fractionation model could be that Angra dos Reis crystallized at ~70% fractional crystallization of clinopyroxene from magmas generated by reasonable degrees of equilibrium partial melting (~7–10%) of deep-seated primitive source materials (olivine ~54–30%, orthopyroxene ~33–53%, and clinopyroxene ~13–17%) with trace element (Ba, Sr, REE and Sc) abundances ~3.5–4.7 × chondrites. These calculated REE abundances in the Angra dos Reis parent body are very similar to those suggested for the primordial moon (~3–5 × chondrites).Possible genetic relationships between Angra dos Reis and other achondrites, especially cumulate eucrites and nakhlites, are studied. Apparently, the unique Angra dos Reis could not be related to those achondrites by crystal-liquid fractionation of the same parent body.  相似文献   

12.
This paper addresses formation of felsic magmas in an intra‐oceanic magmatic arc. New bathymetric, petrologic, geochemical, and isotopic data for Zealandia Bank and two related volcanoes in the south‐central Mariana arc is presented and interpreted. These three volcanoes are remnants of an older andesitic volcano that evolved for some time and became dormant long enough for a carbonate platform to grow on its summit before reawakening as a rhyodacitic volcano. Zealandia lavas are transitional between low‐ and medium‐K and tholeiitic and calc‐alkaline suites. They define a bimodal suite with a gap of 56–58 wt% SiO2; this suggests that mafic and felsic magmas have different origins. The magmatic system is powered by mantle‐derived basalts having low Zr/Y and flat rare earth element patterns. Two‐pyroxene thermometry yields equilibration temperatures of 1000–1100 °C for andesites and 900–1000 °C for dacites. Porphyritic basalts and andesites show textures expected for fractionating magmas but mostly fine‐grained felsic lavas do not. All lavas show trace element signatures expected for mantle and crustal sources that were strongly melt‐depleted and enriched by subduction‐related fluids and sediment melts. Sr and Nd isotopic compositions fall in the normal range of Mariana arc lavas. Felsic lavas show petrographic evidence of mixing with mafic magma. Zealandia Bank felsic magmatism supports the idea that a large mid‐ to lower‐crustal felsic magma body exists beneath the south‐central Mariana arc, indicating that MASH (mixing, assimilation, storage, and homogenization) zones can form beneath intra‐oceanic as well as continental arcs.  相似文献   

13.
Tholeiitic basalt glasses from the FAMOUS area of the Mid-Atlantic Ridge are among the most primitive basaltic liquids reported from the ocean basins. One of the more primitive of these[Mg/(Mg+Fe2+) = 0.68;Ni= 232ppm;TiO2 = 0.61] glasses (572-1-1) was selected for an experimental investigation. This study found olivine to be the liquidus phase from 1 atm to 10.5 kbar where it is replaced by clinopyroxene. The sequence of appearance of phases at 1 atm pressure is olivine (1268°C), plagioclase (1235°C) and clinopyroxene (1135°C). The sample is multiply saturated at 10.5 kbar with olivine (Fo88), clinopyroxene (Wo32En60Fs9), and orthopyroxene (Wo5En83Fs12). From the 1-atm data we have measured (FeO/MgO) olivine/(FeO*/MgO) liquid (K′D) for olivine-melt pairs equilibrated at 12 temperatures in the range 1268–1205°C.K′D varies from 0.30 at 1205°C to 0.27 at 1268°C. Analysis of high-pressure olivine melt pairs indicates a systematic increase inK′D with pressure.Evaluation of the 1-atm experiments reveals that fractionation of olivine followed by olivine + plagioclase can generate much of the variation in major element chemistry observed in the FAMOUS basalt glasses. However, it cannot account for the entire spectrum of glass compositions — particularly with respect to TiO2 and Na2O. The variations in these components are such as to require different primary liquids.Comparison of clinopyroxene microphenocrysts/xenocrysts found in oceanic tholeiites with experimental clinopyroxenes reveal that the majority of those in the tholeiites may have crystallized from the magma at pressures greater than ~ 10 kbar and are not accidental xenocrysts. Clinopyroxene fractionation at high pressures may be a viable mechanism for fractionating basaltic magmas.The major and minor element mineral/meltK′d's from our experiments have been used to model the source region residual mineralogy for given percentages of partial melting. These data suggest that ~20% partial melting of a lherzolite source containing 0–10% clinopyroxene can generate the major and minor element concentrations in the parental magmas of the Project FAMOUS basalt glasses.  相似文献   

14.
Extensive lava flows were erupted during the Upper Cretaceous in the Wadi Natash of southern Egypt. The lavas are mainly of alkaline (sodium dominated) composition and include alkali olivine basalt (AOB), hawaiite, mugearite, and benmoreite that intruded with acidic volcanics of trachytic to rhyolitic composition. Abundances of major oxides and trace elements including the REE vary systematically through this compositional spectrum. The gradual decrease of CaO with decreasing MgO is consistent with the dominance of phenocrysts of labradoritic plagioclase (An75–62) and Mg-rich olivine (Fo84–80) in the AOB and hawaiite. Olivine phenocrysts are normally zoned with cores consistent with crystallization from a magma having the bulk-rock composition. The sharp decrease of alkalis at low MgO contents (∼0.4% MgO) indicates significant alkali feldspar fractionation during the evolution of trachytes and rhyolites. All Natash lavas show steep chondrite-normalized REE patterns with considerable LREE/HREE fractionation and a regular decrease in La/Lu ratios from the least to the most evolved lavas (La/Lun=12.5−9.5). The low absolute abundances of HREE in basic members reflects residual garnet in the source. The basic lavas have experienced compositional modifications after they segregated from the source as evidenced by lower averages of Mg# (51), Ni (134) and Cr (229) in the AOB. Much of this variation can be explained by variable degrees of polybaric fractional crystallization. Petrographic and geochemical data supported by quantitative modelling suggest the evolution of the Natash Lavas from a common AOB parent in multiple, short-lived magma chambers. In agreement with the phenocryst mineralogy of the Natash lavas, the geochemical models suggest that with increasing degree of differentiation, Mg-rich olivine, calcic plagioclase, and augite are joined and progressively substituted by ferrohedenbergite, alkali feldspars and magnetite. The OIB (ocean island basalt)-like nature of the AOB and hawaiite lavas suggests that the volumetrically dominant source component is the asthenospheric mantle. A mantle-plume source is suggested for the Natash basaltic lavas, with the lavas being generated by partial melting of a garnet peridotite in the asthenosphere.  相似文献   

15.
The Sintra igneous complex, Portugal was an important centre of activity in late Cretaceous times. The great proportion of thealkaline rocks are felsic and include five large quartz syenite intrusions and trachyandesite, trachyte and alkali rhyolite lavas and dykes, most of which are oversaturated. Mafic rocks are sparse, but vary widely from alkaline and highly undersaturated types containing high K2O, TiO2 and Ba, similar to the contemporaneous Lisbon lavas, to hypersthene normative trachybasalts and one hypersthene normative basalt. The various magma types are intimately associated and a well-developed netveined complex of alkali gabbro, monzonite and syenite is recognised at Cabo da Roca. A study of the dyke distributions, intersections and orientations suggest a close propinquity of both oversaturated and undersaturated and of both felsic and matic magmas. The basic magmas of Sintra and Lisbon show a continuous range in undersaturation (0 to 16% normative nepheline) and rare hypersthene normative basalts. Derivation of the hypersthene normative and mildly undersaturated basalts from the more undersaturated melts by low pressure fractionation or contamination by siliceous crust is shown to be unlikely. High pressure eclogite fractionation of a hypersthene normative basalt or variations in the percentage partial melting of a mantle under conditions where titanphlogopite is a low melting fraction are both processes compatible with the variations in undersaturation and proportions of TiO2, K2O and Ba. The quartz syenites and over satured felsic lavas of Sintra are thought to be derived from hypersthene nor mative parents.  相似文献   

16.
The nature, origin, and tectonic significance of shoshonitic volcanism is currently the subject of widely differing views. In the type locality in the Absaroka Range, the rocks consist of a diverse group of lavas, all of Mid-Eocene age. High in the volcanic pile are subordinate volumes of absarokite and shoshonite flows, both of which contain calcic plagioclase and sanidine coexisting in the groundmass. Shoshonites contain plagioclase, olivine, and pyroxene phenocrysts; absarokites contain only olivine and pyroxene phenocrysts. A few absarokites contain modal leucite. A chemical study was made of six shoshonites and three absarokites from this area.Although resorption and zoning indicate disequilibrium in both types of rocks, there is no geochemical evidence of magmatic contamination. Calculated crystal/liquid distribution coefficients are in close agreement with previously determined values for basalts. Decrease in pressure during ascent is a likely cause for the observed disequilibrium.Mass balance calculations show that it would be possible to form a shoshonite by fractionation of olivine and pyroxene from an absarokitic magma. Trace element abundances are consistent with this relationship. Petrographic evidence suggests, however, that fractionation of plagioclase played a role in the formation of shoshonites.A high-pressure origin is consistent with rare earth compositions, and a high magmatic temperature is indicated by the composition of the plagioclase. A calculation of ln aKliquid2O for a reaction involving eclogite and a reaction involving a tested rock (Marsh and Carmichael, 1974) suggests a high-pressure origin for a latitude underlying the shoshonites and absarokites. This calculation is subject to large variances because of its sensitivity to estimated equilibrium temperatures.Comparison with lavas of similar composition indicates that shoshonites and absarokites of the Absaroka Range are influenced by their continental setting. There is little evidence for the generation of these magmas in a subduction environment.  相似文献   

17.
Chausudake Volcano is representative of the active volcanoes in northeastern Japan, and has a record of many historical eruptions. Because its 16-ky eruptive history is well documented, Chausudake is well-suited for examining the temporal change of magma chamber processes and for assessing potential hazards. The activity of the Chausudake Volcano can be divided into six magmatic units (CH1-CH6). Most of its products have similar characteristics, but those from unit CH1 show wider variation. Most rocks are andesite and have plagioclase, clinopyroxene, orthopyroxene, and Fe-Ti oxides as phenocrysts, with or without olivine or quartz. Mafic inclusions, which are observed in most products, are basaltic andesites that have various combinations of the same phenocryst species. Petrographic features observed in host rocks and mafic inclusions, such as disequilibrium phenocrysts and resorbed textures, suggest magma mixing/co-mingling. Whole rock compositions of both host rocks and mafic inclusions show linear trends in variation diagrams, which suggest that the rocks are derived from the mixing/co-mingling between mafic and felsic end members. Bulk silica content of the mafic end-member magma is estimated to be ca. 52%, and contains Mg-rich olivine and An-rich plagioclase. The temperature of this end member is estimated to have been higher than 1,100 °C. Bulk silica content of the felsic end-member magma is estimated to be ~66%, and contains Mg-poor pyroxenes, An-poor plagioclase, and quartz phenocrysts, with a temperature of between 800 and 900 °C. Trace element compositions show that the end members have different origins, but have changed little over the entire 16-ky of activity. The mafic end-member magmas might come from a lower-crustal homogeneous, large magma chamber, whereas the felsic end-member magmas may be partial melts of crustal materials produced by the heat of the mafic end member. Felsic end-member magma may have accumulated in the middle crust before CH1 activity. The mixing ratio of the felsic to mafic end members was 0.5:0.5 to 0.4:0.6 for the CH1 unit, and ca. 0.4:0.6 for the other units. Considering that ca. 75% of the total volume of the eruptive products form the first unit, its wider compositional variation is attributed to more heterogeneous mixing ratios.  相似文献   

18.
Magma plumbing system of the 2000 eruption of Miyakejima Volcano, Japan   总被引:1,自引:0,他引:1  
During the 2000 eruption at Miyakejima Volcano, two magmas with different compositions erupted successively from different craters. Magma erupted as spatter from the submarine craters on 27 June is aphyric basaltic andesite (<5 vol% phenocrysts, 51.4–52.2 wt% SiO2), whereas magma issued as volcanic bombs from the summit caldera on 18 August is plagioclase-phyric basalt (20 vol% phenocrysts, 50.8–51.3 wt% SiO2). The submarine spatter contains two types of crystal-clots, A-type and A-type (andesitic type). The phenocryst assemblages (plagioclase, pyroxenes and magnetite) and compositions of clinopyroxene in these clots are nearly the same, but only A-type clots contain Ca-poor plagioclase (An < 70). We consider that the A-type clots could have crystallized from a more differentiated andesitic magma than the A-type clots, because FeO*/MgO is not strongly influenced during shallow andesitic differentiation. The summit bombs contain only B-type (basaltic type) crystal-clots of Ca-rich plagioclase, olivine and clinopyroxene. The A-type and B-type clots have often coexisted in Miyakejima lavas of the period 1469–1983, suggesting that the magma storage system consists of independent batches of andesitic and basaltic magmas. According to the temporal variations of mineral compositions in crystal-clots, the andesitic magma became less evolved, and the basaltic magma more evolved, over the past 500 years. We conclude that gradually differentiating basaltic magma has been repeatedly injected into the shallower andesitic magma over this period, causing the andesitic magma to become less evolved with time. The mineral chemistries in crystal-clots of the submarine spatter and 18 August summit bombs of the 2000 eruption fall on the evolution trends of the A-type and B-type clots respectively, suggesting that the shallow andesitic and deeper basaltic magmas existing since 1469 had successively erupted from different craters. The 2000 summit collapse occurred due to drainage of the andesitic magma from the shallower chamber; as the collapse occurred, it may have caused disruption of crustal cumulates which then contaminated the ascending, deeper basalt. Thus, porphyritic basaltic magma could erupt alone without mixing with the andesitic magma from the summit caldera. The historical magma plumbing system of Miyakejima was probably destroyed during the 2000 eruption, and a new one may now form.Editorial responsibility: S Nakada, T Druitt  相似文献   

19.
Highly vesicular, microporphyritic basaltic rocks have been dredged from the slow-spreading Spiess Ridge segment of the Southwest Indian Ridge. All the samples recovered are hyalocrystalline with plagioclase, clinopyroxene and olivine as phenocryst and microphenocryst phases. Titanomagnetite occurs as euhedral microphenocrysts in some of the more evolved samples. In terms of bulk rock and quench glass chemistry the lavas are characterised by highly evolved compositions(e.g. FeO*=10.3−14.2%;TiO2=2.0−3.4%;K2O=0.50−1.1%;MgO=6.0−3.5%;Zr=160−274ppm;Nb=14−32ppm) and can be classified as ferrobasalts. Isotopic and incompatible element ratios of the lavas(e.g.87Sr/86Sr=0.70325−0.70333;Zr/Nb=8.4−11.3;Y/Nb=2.3−1.4) indicate their strongly “enriched” nature (see also Dickey et al. [6]).

Quantitative major and trace element modelling indicates that most of the compositional variations observed can be attributed to low-pressure fractional crystallisation of plagioclase, clinopyroxene and minor olivine and titanomagnetite. The range in composition can be accounted for by up to 65% fractional crystallisation.

We suggest that the extreme differentiation of the Spiess Ridge lavas is related not to spreading rate, but to rate of magma supply. The basaltic melts appear to have evolved in a newly established zone of magmatic activity, associated with the most recent northward jump of the Bouvet triple junction, where they were effectively isolated from significant admixture of primitive magmas.  相似文献   


20.
Late Cenozoic alkali basalts in the Ganseong area of South Korea contain abundant ultramafic xenoliths and clinopyroxene megacrysts. Anhydrous clinopyroxene‐rich wehrlite–clinopyroxenites make up the majority of the xenolith population and range from wehrlite through olivine clinopyroxenite to clinopyroxenite. This study investigates the petrogenesis of wehrlite–clinopyroxenite xenoliths and clinopyroxene megacrysts on the basis of petrography and mineral and whole‐rock chemistry. Observations such as an absence of carbonate or apatite, high Ti/Eu ratio, and clinopyroxene‐dominated mineralogy lead us to rule out peridotite–melt reactions as the origin of the Ganseong wehrlites– olivine clinopyroxenites. The whole‐rock compositions (e.g. high abundance of CaO at a given MgO content and low abundance of incompatible elements, such as U, K, P, and Ti compared with mafic melts) indicate that the pyroxenites do not represent crystallized magma itself, but are rather cumulates with a small amount of residual liquid. Anhydrous and orthopyroxene‐free mineral assemblages, crystallization sequence of olivine→clinopyroxene→plagioclase, and mineral chemistries (e.g. low Cr# and high TiO2 abundances in spinels and high TiO2 and Na2O abundances in clinopyroxenes at a given Mg#) suggest that relatively anhydrous intraplate alkaline basalt is the most likely candidate for the parent magma. Texture and compositions of the clinopyroxene megacrysts preclude a cognate origin via high‐pressure crystallization of the host magma. The clinopyroxene megacrysts occupy the Fe‐rich end of the compositional trends defined by wehrlite–pyroxenite clinopyroxenes. Progressive decreases in Mg# and an absence of significant compositional gaps between pyroxenite xenoliths and clinopyroxene megacrysts indicate fractionation and differentiation of a similar parental magma. We suggest that the clinopyroxene megacrysts represent fragments of pegmatitic clinopyroxenites crystallized from more advanced fractionation stages of the evolution of a series of magmatic liquids formed Ganseong wehrlite–clinopyroxenites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号