首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Climate change has a significant influence on streamflow variation. The aim of this study is to quantify different sources of uncertainties in future streamflow projections due to climate change. For this purpose, 4 global climate models, 3 greenhouse gas emission scenarios (representative concentration pathways), 6 downscaling models, and a hydrologic model (UBCWM) are used. The assessment work is conducted for 2 different future time periods (2036 to 2065 and 2066 to 2095). Generalized extreme value distribution is used for the analysis of the flow frequency. Strathcona dam in the Campbell River basin, British Columbia, Canada, is used as a case study. The results show that the downscaling models contribute the highest amount of uncertainty to future streamflow predictions when compared to the contributions by global climate models or representative concentration pathways. It is also observed that the summer flows into Strathcona dam will decrease, and winter flows will increase in both future time periods. In addition to these, the flow magnitude becomes more uncertain for higher return periods in the Campbell River system under climate change.  相似文献   

2.
This paper explores the predicted hydrologic responses associated with the compounded error of cascading global circulation model (GCM) uncertainty through hydrologic model uncertainty due to climate change. A coupled groundwater and surface water flow model (GSFLOW) was used within the differential evolution adaptive metropolis (DREAM) uncertainty approach and combined with eight GCMs to investigate uncertainties in hydrologic predictions for three subbasins of varying hydrogeology within the Santiam River basin in Oregon, USA. Predictions of future hydrology in the Santiam River include increases in runoff in the fall and winter months and decreases in runoff for the spring and summer months. One‐year peak flows were predicted to increase whereas 100‐year peak flows were predicted to slightly decrease. The predicted 10‐year 7‐day low flow decreased in two subbasins with little groundwater influences but increased in another subbasin with substantial groundwater influences. Uncertainty in GCMs represented the majority of uncertainty in the analysis, accounting for an average deviation from the median of 66%. The uncertainty associated with use of GSFLOW produced only an 8% increase in the overall uncertainty of predicted responses compared to GCM uncertainty. This analysis demonstrates the value and limitations of cascading uncertainty from GCM use through uncertainty in the hydrologic model, offers insight into the interpretation and use of uncertainty estimates in water resources analysis, and illustrates the need for a fully nonstationary approach with respect to calibrating hydrologic models and transferring parameters across basins and time for climate change analyses. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Robert L. Wilby 《水文研究》2005,19(16):3201-3219
Despite their acknowledged limitations, lumped conceptual models continue to be used widely for climate‐change impact assessments. Therefore, it is important to understand the relative magnitude of uncertainties in water resource projections arising from the choice of model calibration period, model structure, and non‐uniqueness of model parameter sets. In addition, external sources of uncertainty linked to choice of emission scenario, climate model ensemble member, downscaling technique(s), and so on, should be acknowledged. To this end, the CATCHMOD conceptual water balance model was used to project changes in daily flows for the River Thames at Kingston using parameter sets derived from different subsets of training data, including the full record. Monte Carlo sampling was also used to explore parameter stability and identifiability in the context of historic climate variability. Parameters reflecting rainfall acceptance at the soil surface in simpler model structures were found to be highly sensitive to the training period, implying that climatic variability does lead to variability in the hydrologic behaviour of the Thames basin. Non‐uniqueness of parameters for more complex model structures results in relatively small variations in projected annual mean flow quantiles for different training periods compared with the choice of emission scenario. However, this was not the case for subannual flow statistics, where uncertainty in flow changes due to equifinality was higher in winter than summer, and comparable in magnitude to the uncertainty of the emission scenario. Therefore, it is recommended that climate‐change impact assessments using conceptual water balance models should routinely undertake sensitivity analyses to quantify uncertainties due to parameter instability, identifiability and non‐uniqueness. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Hydrologic modelling has been applied to assess the impacts of projected climate change within three study areas in the Peace, Campbell and Columbia River watersheds of British Columbia, Canada. These study areas include interior nival (two sites) and coastal hybrid nival–pluvial (one site) hydro‐climatic regimes. Projections were based on a suite of eight global climate models driven by three emission scenarios to project potential climate responses for the 2050s period (2041–2070). Climate projections were statistically downscaled and used to drive a macro‐scale hydrology model at high spatial resolution. This methodology covers a large range of potential future climates for British Columbia and explicitly addresses both emissions and global climate model uncertainty in the final hydrologic projections. Snow water equivalent is projected to decline throughout the Peace and Campbell and at low elevations within the Columbia. At high elevations within the Columbia, snow water equivalent is projected to increase with increased winter precipitation. Streamflow projections indicate timing shifts in all three watersheds, predominantly because of changes in the dynamics of snow accumulation and melt. The coastal hybrid site shows the largest sensitivity, shifting to more rainfall‐dominated system by mid‐century. The two interior sites are projected to retain the characteristics of a nival regime by mid‐century, although streamflow‐timing shifts result from increased mid‐winter rainfall and snowmelt, and earlier freshet onset. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

Reference hydrologic networks (RHNs) can play an important role in monitoring for changes in the hydrological regime related to climate variation and change. Currently, the literature concerning hydrological response to climate variations is complex and confounded by the combinations of many methods of analysis, wide variations in hydrology, and the inclusion of data series that include changes in land use, storage regulation and water use in addition to those of climate. Three case studies that illustrate a variety of approaches to the analysis of data from RHNs are presented and used, together with a summary of studies from the literature, to develop approaches for the investigation of changes in the hydrological regime at a continental or global scale, particularly for international comparison. We present recommendations for an analysis framework and the next steps to advance such an initiative. There is a particular focus on the desirability of establishing standardized procedures and methodologies for both the creation of new national RHNs and the systematic analysis of data derived from a collection of RHNs.

Editor Z.W. Kundzewicz; Associate editor K. Hamed

Citation Burn, D. H., et al., 2012 Whitfield, P.H. 2012. Reference hydrologic networks, I. The status of national reference hydrologic networks for detecting trends and future directions. Hydrological Sciences Journal, 57(8) this issue[Taylor & Francis Online] [Google Scholar]. Reference hydrologic networks II. Using reference hydrologic networks to assess climate-driven changes in streamflow. Hydrological Sciences Journal, 57 (8), 1580–1593.  相似文献   

6.
The uncertainties associated with atmosphere‐ocean General Circulation Models (GCMs) and hydrologic models are assessed by means of multi‐modelling and using the statistically downscaled outputs from eight GCM simulations and two emission scenarios. The statistically downscaled atmospheric forcing is used to drive four hydrologic models, three lumped and one distributed, of differing complexity: the Sacramento Soil Moisture Accounting (SAC‐SMA) model, Conceptual HYdrologic MODel (HYMOD), Thornthwaite‐Mather model (TM) and the Precipitation Runoff Modelling System (PRMS). The models are calibrated based on three objective functions to create more plausible models for the study. The hydrologic model simulations are then combined using the Bayesian Model Averaging (BMA) method according to the performance of each models in the observed period, and the total variance of the models. The study is conducted over the rainfall‐dominated Tualatin River Basin (TRB) in Oregon, USA. This study shows that the hydrologic model uncertainty is considerably smaller than GCM uncertainty, except during the dry season, suggesting that the hydrologic model selection‐combination is critical when assessing the hydrologic climate change impact. The implementation of the BMA in analysing the ensemble results is found to be useful in integrating the projected runoff estimations from different models, while enabling to assess the model structural uncertainty. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Effect of streamflow forecast uncertainty on real-time reservoir operation   总被引:1,自引:0,他引:1  
Various hydrological forecast products have been applied to real-time reservoir operation, including deterministic streamflow forecast (DSF), DSF-based probabilistic streamflow forecast (pseudo-PSF, pPSF), and ensemble or probabilistic streamflow forecast (denoted as real-PSF, rPSF). DSF represents forecast uncertainty in the form of deterministic forecast errors, pPSF a conditional distribution of forecast uncertainty for a given DSF, and rPSF a probabilistic uncertainty distribution. Compared to previous studies that treat the forecast products as ad hoc inputs for reservoir operation models, this paper attempts to model the dynamic evolution of uncertainties involved in the various forecast products and explores their effect on real-time reservoir operation decisions. Through a hypothetical example of a single-objective real-time reservoir operation model, the results illustrate that forecast uncertainty exerts significant effects. Reservoir operation efficiency, as measured by a utility function, decreases as the forecast uncertainty increases but the magnitude depends on the forecast products used. In general, the utility of the reservoir operation with rPSF is nearly as high as the utility obtained with a perfect forecast. Meanwhile, the utilities of DSF and pPSF are similar to each other but not as high as rPSF. Moreover, streamflow variability and reservoir capacity can change the magnitude of the effects of forecast uncertainty, but not the relative merit of DSF, pPSF, and rPSF.  相似文献   

8.
Heyin Chen 《水文科学杂志》2013,58(10):1739-1758
Abstract

Changes in climate and land cover are among the principal variables affecting watershed hydrology. This paper uses a cell-based model to examine the hydrologic impacts of climate and land-cover changes in the semi-arid Lower Virgin River (LVR) watershed located upstream of Lake Mead, Nevada, USA. The cell-based model is developed by considering direct runoff based on the Soil Conservation Service - Curve Number (SCS-CN) method and surplus runoff based on the Thornthwaite water balance theory. After calibration and validation, the model is used to predict LVR discharge under future climate and land-cover changes. The hydrologic simulation results reveal climate change as the dominant factor and land-cover change as a secondary factor in regulating future river discharge. The combined effects of climate and land-cover changes will slightly increase river discharge in summer but substantially decrease discharge in winter. This impact on water resources deserves attention in climate change adaptation planning.
Editor Z.W. Kundzewicz  相似文献   

9.
Prem B. Parajuli 《水文研究》2010,24(26):3785-3797
The climatic processes such as changes in precipitation, temperature and atmospheric CO2 concentration can intensify the effects on water resources. An assessment of the effects of long‐term climate change on water resources is essential to the development of water quality improvement programs. This study was conducted in the Upper Pearl River Watershed (UPRW) in east‐central Mississippi to assess the effects of long‐term potential future climate change on average mean monthly stream flow from the five spatially distributed U. S. Geological Survey (USGS) gage stations in the UPRW using the Soil and Water Assessment Tool. The model was calibrated (January 1981 to December 1994) and validated (January 1995 to September 2008) using monthly measured stream flow data. The calibrated and validated model determined good to very good performance for stream flow prediction (R2 and E from 0·60 to 0·86) between measured and predicted stream flow values. The root mean square error values (from 14 to 37 m3 s?1) were estimated at similar levels of errors during model calibration and validation. The results showed that long‐term (50 years) average monthly stream flow sensitivity due to climate change effects was found the greatest as a result of percentage change in the precipitation followed by carbon dioxide (CO2) concentration and temperature. The long‐term model simulation scenarios as compared with the base scenario for all five spatially distributed USGS gage stations in the UPRW estimated an average monthly stream flow decrease (from 54 to 67%) and average monthly stream flow increase (from 67 to 79%) depending on the spatial characteristics of the USGS gage stations. Overall, the results indicate that the UPRW hydrology is very sensitive to potential future climate changes and that these changes could stimulate increased streamflow generation from the watershed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
This work examines future flood risk within the context of integrated climate and hydrologic modelling uncertainty. The research questions investigated are (1) whether hydrologic uncertainties are a significant source of uncertainty relative to other sources such as climate variability and change and (2) whether a statistical characterization of uncertainty from a lumped, conceptual hydrologic model is sufficient to account for hydrologic uncertainties in the modelling process. To investigate these questions, an ensemble of climate simulations are propagated through hydrologic models and then through a reservoir simulation model to delimit the range of flood protection under a wide array of climate conditions. Uncertainty in mean climate changes and internal climate variability are framed using a risk‐based methodology and are explored using a stochastic weather generator. To account for hydrologic uncertainty, two hydrologic models are considered, a conceptual, lumped parameter model and a distributed, physically based model. In the conceptual model, parameter and residual error uncertainties are quantified and propagated through the analysis using a Bayesian modelling framework. The approach is demonstrated in a case study for the Coralville Dam on the Iowa River, where recent, intense flooding has raised questions about potential impacts of climate change on flood protection adequacy. Results indicate that the uncertainty surrounding future flood risk from hydrologic modelling and internal climate variability can be of the same order of magnitude as climate change. Furthermore, statistical uncertainty in the conceptual hydrological model can capture the primary structural differences that emerge in flood damage estimates between the two hydrologic models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
We investigated, through hydrologic modelling, the impact of the extent and density of canopy cover on streamflow timing and on the magnitude of peak and late summer flows in the upper Tuolumne basin (2600–4000 m) of the Sierra Nevada, California, under current and warmer temperatures. We used the Distributed Hydrology Soil Vegetation Model for the hydrologic modelling of the basin, assuming four vegetation scenarios: current forest (partial cover, 80% density), all forest (uniform coverage, 80% density), all barren (no forest) and thinned forest (partial cover, 40% density) for a medium‐high emissions scenario causing a 3.9 °C warming over a 100‐year period (2001–2100). Significant advances in streamflow timing, quantified as the centre of mass (COM) of over 1 month were projected for all vegetation scenarios. However, the COM advances faster with increased forest coverage. For example, when forest covered the entire area, the COM occurred on average 12 days earlier compared with the current forest coverage, with the rate of advance higher by about 0.06 days year?1 over 100 years and with peak and late summer flows lower by about 20% and 27%, respectively. Examination of modelled changes in energy balance components at forested and barren sites as temperatures rise indicated that increases in net longwave radiation are higher in the forest case and have a higher contribution to melting earlier in the calendar year when shortwave radiation is a smaller fraction of the energy budget. These increases contributed to increased midwinter melt under the forest at temperatures above freezing, causing decreases in total accumulation and higher winter and early spring melt rates. These results highlight the importance of carefully considering the combined impacts of changing forest cover and climate on downstream water supply and mountain ecosystems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The change of hydrological regimes may cause impacts on human and natural system. Therefore, investigation of hydrologic alteration induced by climate change is essential for preparing timely proper adaptation to the changes. This study employed 24 climate projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) under Representative Concentration Pathway (RCP) 4.5 scenario. The climate projections were downscaled at a station‐spacing for seven Korean catchments by a statistical downscaling method that preserves a long‐term trend in climate projections. Using an ensemble of future hydrologic projections simulated by three conceptual rainfall‐runoff models (GR4J, IHACRES, and Sacramento models), we calculated Hydrologic Alteration Factors (HAFs) to investigate degrees of variations in Indicators of Hydrologic Alteration (IHAs) derived from the hydrologic projections. The results showed that the seven catchments had similar trend in terms of the HAFs for the 24 IHAs. Given that more frequent severe floods and droughts were projected over Korean catchments, sound water supply strategies are definitely required to adapt to the alteration of streamflow. A wide range of HAFs between rainfall‐runoff models for each catchment was detected by large variations in the magnitude of HAFs with the hydrologic models and the difference could be the hydrologic prediction uncertainty. There were no‐consistent tendency in the order of HAFs between the hydrologic models. In addition, we found that the alterations of hydrologic regimes by climate change are smaller as the size of catchment is larger. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Most natural disasters are caused by water‐/climate‐related hazards, such as floods, droughts, typhoons, and landslides. In the last few years, great attention has been paid to climate change, and especially the impact of climate change on water resources and the natural disasters that have been an important issue in many countries. As climate change increases the frequency and intensity of extreme rainfall, the number of water‐related disasters is expected to rise. In this regard, this study intends to analyse the changes in extreme weather events and the associated flow regime in both the past and the future. Given trend analysis, spatially coherent and statistically significant changes in the extreme events of temperature and rainfall were identified. A weather generator based on the non‐stationary Markov chain model was applied to produce a daily climate change scenario for the Han River basin for a period of 2001–2090. The weather generator mainly utilizes the climate change SRES A2 scenario driven by input from the regional climate model. Following this, the SLURP model, which is a semi‐distributed hydrological model, was applied to produce a long‐term daily runoff ensemble series. Finally, the indicator of hydrologic alteration was applied to carry out a quantitative analysis and assessment of the impact of climate change on runoff, the river flow regime, and the aquatic ecosystem. It was found that the runoff is expected to decrease in May and July, while no significant changes occur in June. In comparison with historical evidence, the runoff is expected to increase from August to April. A remarkable increase, which is about 40%, in runoff was identified in September. The amount of the minimum discharge over various durations tended to increase when compared to the present hydrological condition. A detailed comparison for discharge and its associated characteristics was discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Climate change would significantly affect many hydrologic systems, which in turn would affect the water availability, runoff, and the flow in rivers. This study evaluates the impacts of possible future climate change scenarios on the hydrology of the catchment area of the Tunga–Bhadra River, upstream of the Tungabhadra dam. The Hydrologic Engineering Center's Hydrologic Modeling System version 3.4 (HEC‐HMS 3.4) is used for the hydrological modelling of the study area. Linear‐regression‐based Statistical DownScaling Model version 4.2 (SDSM 4.2) is used to downscale the daily maximum and minimum temperature, and daily precipitation in the four sub‐basins of the study area. The large‐scale climate variables for the A2 and B2 scenarios obtained from the Hadley Centre Coupled Model version 3 are used. After model calibration and testing of the downscaling procedure, the hydrological model is run for the three future periods: 2011–2040, 2041–2070, and 2071–2099. The impacts of climate change on the basin hydrology are assessed by comparing the present and future streamflow and the evapotranspiration estimates. Results of the water balance study suggest increasing precipitation and runoff and decreasing actual evapotranspiration losses over the sub‐basins in the study area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Hydro‐climatic impacts in water resources systems are typically assessed by forcing a hydrologic model with outputs from general circulation models (GCMs) or regional climate models. The challenges of this approach include maintaining a consistent energy budget between climate and hydrologic models and also properly calibrating and verifying the hydrologic models. Subjective choices of loss, flow routing, snowmelt and evapotranspiration computation methods also increase watershed modelling uncertainty and thus complicate impact assessment. An alternative approach, particularly appealing for ungauged basins or locations where record lengths are short, is to predict selected streamflow quantiles directly from meteorological variable output from climate models using regional regression models that also include physical basin characteristics. In this study, regional regression models are developed for the western Great Lakes states using ordinary least squares and weighted least squares techniques applied to selected Great Lakes watersheds. Model inputs include readily available downscaled GCM outputs from the Coupled Model Intercomparison Project Phase 3. The model results provide insights to potential model weaknesses, including comparatively low runoff predictions from continuous simulation models that estimate potential evapotranspiration using temperature proxy information and comparatively high runoff projections from regression models that do not include temperature as an explanatory variable. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Forecast ensembles of hydrological and hydrometeorologial variables are prone to various uncertainties arising from climatology, model structure and parameters, and initial conditions at the forecast date. Post‐processing methods are usually applied to adjust the mean and variance of the ensemble without any knowledge about the uncertainty sources. This study initially addresses the drawbacks of a commonly used statistical technique, quantile mapping (QM), in bias correction of hydrologic forecasts. Then, an auxiliary variable, the failure index (γ), is proposed to estimate the ineffectiveness of the post‐processing method based on the agreement of adjusted forecasts with corresponding observations during an analysis period prior to the forecast date. An alternative post‐processor based on copula functions is then introduced such that marginal distributions of observations and model simulations are combined to create a multivariate joint distribution. A set of 2500 hypothetical forecast ensembles with parametric marginal distributions of simulated and observed variables are post‐processed with both QM and the proposed multivariate post‐processor. Deterministic forecast skills show that the proposed copula‐based post‐processing is more effective than the QM method in improving the forecasts. It is found that the performance of QM is highly correlated with the failure index, unlike the multivariate post‐processor. In probabilistic metrics, the proposed multivariate post‐processor generally outperforms QM. Further evaluation of techniques is conducted for river flow forecast of Sprague River basin in southern Oregon. Results show that the multivariate post‐processor performs better than the QM technique; it reduces the ensemble spread and is a more reliable approach for improving the forecast. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
ABSTRACT

Uncertainty in climate change impacts on river discharge in the Upper Awash Basin, Ethiopia, is assessed using five MIKE SHE hydrological models, six CMIP5 general circulation models (GCMs) and two representative concentration pathways (RCP) scenarios for the period 2071–2100. Hydrological models vary in their spatial distribution and process representations of unsaturated and saturated zones. Very good performance is achieved for 1975–1999 (NSE: 0.65–0.8; r: 0.79–0.93). GCM-related uncertainty dominates variability in projections of high and mean discharges (mean: –34% to +55% for RCP4.5, – 2% to +195% for RCP8.5). Although GCMs dominate uncertainty in projected low flows, inter-hydrological model uncertainty is considerable (RCP4.5: –60% to +228%, RCP8.5: –86% to +337%). Analysis of variance uncertainty attribution reveals that GCM-related uncertainty occupies, on average, 68% of total uncertainty for median and high flows and hydrological models no more than 1%. For low flows, hydrological model uncertainty occupies, on average, 18% of total uncertainty; GCM-related uncertainty remains substantial (average: 28%).  相似文献   

18.
Understanding how rivers respond to changes in land cover, climate, and subsurface conditions is critical for sustainably managing water resources and ecosystems. In this study, long‐term hydrologic, climate, and satellite data (1973–2012) from the Upper Tahe River watershed (2359 km2) in the Da Hinggan Mountains of northeast China were analysed to quantify the relative hydrologic effects of climate variability (system input) and the combined influences of forest cover change and permafrost thaw (system characteristics) on average annual streamflow (system response) using 2 methods: the sensitivity‐based method and the Kendall–Theil robust line method. The study period was subdivided into a forest harvesting period (1973–1987), a forest stability period (1988–2001), and a forest recovery period (2002–2012). The results indicated that the combined effects of forest harvesting and permafrost thaw on streamflow (+ 47.0 mm) from the forest harvesting period to the forest stability period was approximately twice as large as the effect associated with climate variability (+20.2 mm). Similarly, from the forest stability period to the forest recovery period, the decrease in average annual streamflow attributed to the combined effects of forest recovery and permafrost thaw (?38.0 mm) was much greater than the decrease due to climate variability (?22.2 mm). A simple method was used to separate the distinct impacts of forest cover change and permafrost thaw, but distinguishing these influences is difficult due to changes in surface and subsurface hydrologic connectivity associated with permafrost thaw. The results highlight the need to consider multiple streamflow drivers in future watershed and aquatic ecosystem management. Due to the ecological and hydrological susceptibility to disturbances in the Da Hinggan Mountains, forest harvesting will likely negatively impact ecohydrological processes in this region, and the effects of forest species transition in the forest recovery process should be further investigated.  相似文献   

19.
I. W. Jung  D. H. Bae  B. J. Lee 《水文研究》2013,27(7):1033-1045
Seasonality in hydrology is closely related to regional water management and planning. There is a strong consensus that global warming will likely increase streamflow seasonality in snow‐dominated regions due to decreasing snowfall and earlier snowmelt, resulting in wetter winters and drier summers. However, impacts to seasonality remain unclear in rain‐dominated regions with extreme seasonality in streamflow, including South Korea. This study investigated potential changes in seasonal streamflow due to climate change and associated uncertainties based on multi‐model projections. Seasonal flow changes were projected using the combination of 13 atmosphere–ocean general circulation model simulations and three semi‐distributed hydrologic models under three different future greenhouse gas emission scenarios for two future periods (2020s and 2080s). Our results show that streamflow seasonality is likely to be aggravated due to increases in wet season flow (July through September) and decreases in dry season flow (October through March). In South Korea, dry season flow supports water supply and ecosystem services, and wet season flow is related to flood risk. Therefore, these potential changes in streamflow seasonality could bring water management challenges to the Korean water resources system, especially decreases in water availability and increases in flood risk. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
It is a common practice to employ hydrologic models for assessing present and future states of watersheds and assess the degree of alterations for a range of hydrologic indicators. Previous studies indicate that the hydrologic model may not be able to replicate some of the indicators of interest, which raises questions on the reliability of model simulated changes. Hence, we initiated a study to evaluate the replicability of the streamflow changes by employing the widely used variable infiltration capacity hydrologic model for sub‐basins and mainstem of the Fraser River Basin, Canada. Given that the hydrologic regime of the region is known to be influenced by teleconnections to the Pacific Decadal Oscillation (PDO) and El Niño–Southern Oscillation (ENSO), we used hydrologic responses to the PDO and ENSO states as analogues for evaluating the model's ability to simulate climate‐induced changes. The results revealed that the qualitative patterns of response, such as lower flows for the warm PDO state compared to the cool state, and progressively higher flows for the warm, neutral and cool ENSO states, were generally well reproduced for most hydrologic indicators. Additionally, while the directions of change between the different PDO and ENSO states were mostly well replicated, the magnitude of change for some of the indicators showed considerable differences. Hence, replicability of both magnitude and direction of change need to be carefully examined before using the simulated indicators for assessing future hydrologic changes, and a reliable replication increases the confidence of projected changes. Copyright © 2016 Her Majesty the Queen in Right of Canada. Hydrological Processes. © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号