首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports the results of isotopic investigations of the rocks of the Khalyuta carbonatite complex (carbonatites, comagmatic silicate rocks, fenites, and hydrothermal rocks) and host limestones and granites. Pyroxene, amphibole, magnetite, potassium feldspar, apatite, phlogopite, calcite, dolomite, strontianite, celestite, and barite were investigated. The isotopic compositions of C, O, Sr, and S were analyzed. The character of the distribution of oxygen isotopic composition in minerals (carbonates, silicates, phosphates, and oxides) suggests their equilibrium formation. It was supposed that the evolutionary trend of C and O isotopic compositions is mainly related to the processes of differentiation in the melt-fluid system and indicates the absence of significant contamination by carbon and oxygen from a crustal source during rock formation from the magmatic stage to the hydrothermal stage. The isotopic compositions of S and Sr did not change.  相似文献   

2.
本文对在行山南中生代侵入岩体微量元素地球化学进行了系统研究,成果表明各类侵入岩的稀土配分模式均呈轻稀土富重稀土与亏损,且没有铕异常,认为这是由于岩石中副矿物中的负铕异常与主要矿物长石类矿物中高的正铕异常低消的结果,本文还探讨了岩浆源区的特点,认为为本区岩石多具幔壳混合来源(MC型)部分来自幔源(MC型)。  相似文献   

3.
Four types of apatite have been identified in the Ningwu region.The first type of apatite is widely distributed in the middle dark colored zones(i.e.iron ores) of individual deposits.The assemblage includes magnetite,apatite and actinolite(or diopside).The second type occurs within magnetite-apatite veins in the iron ores.The third type is seen in magnetite-apatite veins and (or) nodules in host rocks(i.e.gabbro-diorite porphyry or gabbro-diorite or pyroxene diorite).The fourth type occurs within apatite-pyrite-quartz veins filling fractures in the Xiangshan Group.Rare earth elements (REE) geochemistry of apatite of the four occurrences in porphyry iron deposits is presented.The REE distribution patterns of apatite are generally similar to those of apatites in the Kiruna-type iron ores,nelsonites.They are enriched in light REE,with pronounced negative Eu anomalies.The similarity of REE distribution patterns in apatites from various deposits in different locations in the world indicates a common process of formation for various ore types,e.g. immiscibility.Early magmatic apatites contain 3031.48-12080×10~(-6) REE.Later hydrothermal apatite contains 1958×10~(-6) REE,indicating that the later hydrothermal ore-forming solution contains lower REE.Although gabbro-diorite porphyry and apatite show similar REE patterns,gabbro-diorite porphyries have no europium anomalies or feeble positive or feeble negative europium anomalies, caused both by reduction environment of mantle source region and by fractionation and crystallization(immiscibility) under a high oxygen fugacity condition.Negative Eu anomalies of apatites were formed possibly due to acquisition of Eu~(2+) by earlier diopsite during ore magma cooling. The apatites in the Aoshan and Taishan iron deposits yield a narrow variation range of ~(87)Sr/~(86)Sr values from 0.7071 to 0.7073,similar to those of the volcanic and subvolcanic rocks,indicating that apatites were formed by liquid immiscibility and differentiation of intermediate and basic magmas.  相似文献   

4.
are-earth (REE) and yttrium abundances were determined, by an ion-exchange-X-ray fluorescence procedure, for whole-rock (14) and mineral (87) samples from the Oka carbonatite complex. Whole-rock and mineral data indicate a trend of total REE + Y enrichment, and relative enrichment in light REE, in the order: ultrafenites < ijolites < okaites. The sövites may show wide variations in total REE + Y concentrations, but relative REE abundance patterns will be similar. The greatest REE and Y concentrations occur in apatite, niocalite, perovskite and pyrochlore. Many of the minerals show europium anomalies (both positive and negative), and these are believed to be the result of closed system competition between the various minerals for divalent Eu. The partition coefficients for mineral pairs are quite variable, indicating that the Oka rocks were emplaced through a wide-range of physicochemical and/or nonequilibrium conditions. A reasonable model for the origin of the complex involves a limited partial melting of mantle material, emplacement of the melt in a magma chamber, crystallization of mafic minerals resulting in a residual liquid which produced ijolite and subsequently okaite, and crystallization of the carbonatites from a volatile-rich, possibly immiscible, phase.  相似文献   

5.
Abstract. Determinations of SO3 and Cl contents of igneous accessory apatite were carried out on Late Cenozoic intermediate to silicic intrusive and volcanic rocks in the Japanese island arcs of the western Pacific rim including the southwestern Kuril arc (eastern Hokkaido), Northeast Japan arc (southwestern Hokkaido through northeastern Honshu to central Honshu), Izu‐Bonin arc, Kyushu‐Palau ridge, Southwest Japan arc (northern Kyushu) and northern Ryukyu arc (southern Kyushu). These were compared to those from the Western Luzon arc, Philippines, to better understand the metallogenesis of porphyry Cu deposits in the western Pacific island arcs. In addition, SO3 and Cl contents of accessory apatite in the Cretaceous magnetite‐series granitic rocks in the Kitakami belt (northeastern Honshu) and the Miocene ilmenite‐series granitic rocks in the Outer Zone of Southwest Japan (southern Kyushu) were also examined. Microphenocrystic apatites in shallow intrusions associated with porphyry Cu deposits in the Western Luzon arc contain >0.1 wt% S as SO3. Such high SO3 contents of microphenocrystic apatite are a common characteristic of hydrous mag‐matism in the Western Luzon arc, from 15 Ma old tonalitic plutonic rocks of the Luzon Central Cordillera to present‐day volcanism at Mount Pinatubo. The accessory apatite in intrusive rocks associated with porphyry Cu deposits, especially those at the Santo Tomas II deposit, show significantly high Cl contents (>2 wt%). The SO3 contents of microphenocrystic apatite in most of the hydrous silicic rocks along the volcanic front, in andesites related to native sulfur deposits, and in Miocene and younger shallow granitic intrusions in northeastern Honshu, are generally <0.1 wt%. On the other hand, the SO3 contents of apatite in such rocks from eastern Hokkaido, southwestern Hokkaido, Izu, northern Kyushu and southern Kyushu are similar to those from the Western Luzon arc. The SO3 contents of accessory apatite in the Cretaceous magnetite‐series granitic rocks in the Kitakami belt are variable, whereas those of the Miocene ilmenite‐series granitic rocks in southern Kyushu are extremely low. The Cl contents of accessory apatite in some rocks of the Northeast Japan arc, Izu‐Bonin arc and Southwest Japan arc are significantly high. In terms of the Cl and SO3 contents of microphenocrystic apatite, Cenozoic Japanese arc magmatism show similarities with arc magmatism associated elsewhere with porphyry Cu mineralization, except for the most of northeastern Honshu of the Northeast Japan arc. Apatite commonly occurs as inclusions in other phenocrystic phases. Thus the variation in SO3 contents of apatite is a feature of early stage magmatic differentiation. The SO3 contents of microphenocrystic apatite are considered to reflect the redox state of the magma source region or fluids encountered during magma generation.  相似文献   

6.
The geological and mineralogical data on the Chailag-Khem F-Ba-Sr-REE occurrence in the Western Sayan Range, Russia, are discussed. The chemical compositions of rocks, ores, and minerals (ICP-MS, Link) are reported. The occurrence is localized in a tectonic crush zone composed of Cambrian quartz-sericite slates intruded by quartz syenite porphyry. Ore mineralization occurs as veins, cement of tectonic breccia, and metasomatic disseminations in host rocks. Massive ore consists of calcite, strontianite, and quartz; impregnations of euhedral fluorite, ankerite, and bastnaesite crystals; and fine-grained barite aggregate. Accessory minerals include parisite, synchysite, barytocelestine, sulfides, rutile, and uraninite. Late metasomatic calcite and strontianite segregations and veinlets are abundant. In genetic, mineralogical, and geochemical features, the Chailag-Khem occurrence is similar to the Late Mesozoic carbonatite deposits of Central Tuva, of which the Karasug Fe-F-Ba-Sr-REE deposit is the largest and best known. All carbonatite deposits and occurrences are located within a longitudinal zone transverse to the major tectonic elements of the region.  相似文献   

7.
磷灰石广泛分布于火成岩、沉积岩和变质岩中,是一种常见的、包含丰富微量元素的副矿物。磷灰石晶格可容纳丰富的微量元素,且因其形成的物理化学条件不同会表现出差异明显的微量元素特征。利用磷灰石微量元素特征可以追踪物质来源和演化。现在常用的方法是利用磷灰石的微量元素绘制二元判别图解,经典判别图解包括Sr-Y、Sr-Mn、Y-(Eu/Eu^(*))和(Ce/Yb)_(N)-REE图解。随着微区测试技术发展,磷灰石微量元素数据日渐丰富,同时由于磷灰石化学成分的复杂性,传统图解已逐渐无法有效利用这些数据所携带的信息,进而无法准确判别其生成环境。建立能准确判别磷灰石物源的新型判别图解故而迫切。近年来,磷灰石微量元素数据的大量积累,为运用以大数据为依托,准确判别磷灰石物源奠定了数据基础。本研究将大数据技术与地球化学数据相结合,共收集整理了1925个代表性磷灰石测试点的微量元素数据,对富碱性火成岩、超镁铁质岩石、镁铁质火成岩、长英质花岗岩、中-低级变质岩、高级变质岩六种类型中磷灰石微量元素数据进行穷举端元处理,共获得7140个磷灰石物源判别图解端元组合,在轮廓系数限定下,进一步有效筛选并提取出能判别磷灰石物源类型的最优图解端元。本文构建了Eu/Y-Ce磷灰石判别新图解,相较于之前的磷灰石判别图解,其涵盖了更全面的物源类型,可以更准确地判别源区类型。  相似文献   

8.
The accessory minerals apatite and sphene are the main carriers of REE in alkaline rocks.Their chondrite-normalized REE patterns decline sharply to the right as those of the host rocks,In the patterns an obvious negative Eu anomaly and a positive Ce anomaly can be seen in apatite and sphene,respectively.Zircon from alkaline rocks is different in REE pattern,I,e,. a nearly symmetric“V“-shaped pattern with a maximum negative Eu anomaly.Compared with the equivalents from granites,apatite,sphene and zircon from alkaline rocks are all characterized by higher (La/Yb)N ratio and less Eu depletion,As to the relative contents of REE in minerals,apatite,sphene and zircon are enriched in LREE,MREE and HREE respectively,depending on their crystallochemical properties.  相似文献   

9.
Carbonatites of the Jacupiranga alkaline–carbonatite complex in São Paulo State, Brazil, were used to investigate mineral–fluid interaction in a carbonatite magma chamber because apatite showed a marked discontinuity between primary fluid inclusion-rich cores and fluid inclusion-poor rims. Sylvite and burbankite, apatite, pyrite, chalcopyrite and ilmenite are the common phases occurring as trapped solids within primary fluid inclusions and reflect the general assemblage of the carbonatite. The apatite cores had higher Sr and REE concentrations than apatite rims, due to the presence of fluid inclusions into which these elements partitioned. A positive cerium anomaly was observed in both the core and rim of apatite crystals because oxidised Ce4+ partitioned into the magma. The combined evidence from apatite chemistry, fluid inclusion distribution and fluid composition was used to test the hypotheses that the limit of fluid inclusion occurrence within apatite crystals arises from: (1) generation of a separate fluid phase; (2) utilization of all available fluid during the first stage of crystallization; (3) removal of crystals from fluid-rich magma to fluid-poor magma; (4) an increase in the growth rate of apatite; or (5) escape of the fluids from the rim of the apatite after crystallization. The findings are consistent with fractionation and crystal settling of a carbonatite assemblage in a fluid-stratified magma chamber. Secondary fluid inclusions were trapped during a hydrothermal event that precipitated an assemblage of anhedral crystals: strontianite, carbocernaite, barytocalcite, barite and norsethite, pyrophanite, magnesian siderite and baddeleyite, ancylite-(Ce), monazite-(Ce) and allanite. The Sr- and REE-rich nature of the secondary assemblage, and lack of a positive cerium anomaly indicate that hydrothermal fluids have a similar source to the primary magma and are related to a later carbonatite intrusion.  相似文献   

10.
The data given in the literature for the infra-red identification of carbonate minerals is summarised, and a technique is described which may be used to identify magnesite, smithsonite, dolomite, rhodochrosite, calcite, aragonite, strontianite, cerussite and witherite by means of their infra-red absorption bands. Two quantitative applications of the use of infra-red spectroscopy are considered and techniques are outlined for the determination of calcite-dolomite ratios in carbonate rocks, and calcite-aragonite ratios in shell material.  相似文献   

11.
Apatite is a cumulate phase in the upper parts of some mafic layered intrusions and anorthositic complexes. We investigated the effect of pressure and fluorine on apatite saturation in mafic magmas to better understand under which conditions this mineral crystallizes. Apatite saturation gives information about the formation of silicate rocks, and is of interest in explaining the formation of apatite–oxide-rich rocks (e.g. nelsonites comprising approximately, one-third apatite and two-third Fe–Ti oxide). Two models of formation are proposed for this rock type: crystal fractionation followed by accumulation of apatite and Fe–Ti oxides and liquid immiscibility. New experiments carried out with mafic compositions at 500 MPa confirm that the most important variables on phosphate saturation are SiO2 and CaO. Fluorine addition leads to apatite saturation at lower SiO2 and higher CaO concentrations. Comparison of our results with those of previous experimental studies on liquid–liquid immiscibility at upper-to-mid-crustal conditions allows us to investigate the relative importance of apatite saturation versus liquid–liquid immiscibility in the petrogenesis of nelsonites and similar rocks. The liquid line of descent of three natural examples studied (the Sept-Îles intrusive suite, the anorthositic Complex of the Lac-St-Jean and the Skaergaard layered intrusion) do not cross the liquid–liquid immiscibility field before they reach apatite saturation. Thus, the apatite–oxide-rich rock associated with these three intrusive suites are best explained by crystal fractionation followed by accumulation of apatite and Fe–Ti oxides.  相似文献   

12.
This paper presents abundances of major and trace elements of apatites in granitic rocks associated with different types of ore deposits in Central Kazakhstan on the basis of electron probe microanalysis and laser ablation inductively coupled plasma mass spectrometry. Our results demonstrate that the concentrations and ratios of elements in apatites from different granitoid rocks show distinct features, and are sensitive to magma evolution, petrogenetic and metallogenetic processes. Apatites in the rocks associated with Mo‐W deposits have high content of F and MnO, low content of Cl, which may be indicative of sedimentary sources, while apatites from a Pb‐Zn deposit show relatively high content of Cl and low F content, which possibly suggest a high water content. In these apatites, Sr contents decrease, while Mn and Y contents increase with magma evolution. This relationship reflects that these elements in apatites are related with the degree of magmatic differentiation. Four types of REE patterns in apatites are identified. Type 1 character of highest (La/Yb)N in apatites of Aktogai porphyry Cu‐Mo deposit, Sayak‐I skarn Cu deposit and Akzhal skarn Pb‐Zn depposit is likely produced by the crystallization of heavy REE‐enriched minerals. Type 2 character of upward‐convex light REE in apatite of Aktogai porphyries likely results from La‐enriched mineral crystallization. Type 3 feature of Nd depletion in apatites of East Kounrad and Zhanet deposits both from Mo‐W deposits primarily inherits the character of host‐rock. Type 4 apatites of Aktogai deposit and Akshatau W‐Mo deposit with wide range of REE contents may suggest that apatites crystallize under a wide temperature range. Three types of apatite with distinct redox states are identified based on Eu anomaly. The Aktogai apatite with slight negative Eu anomaly displays the most oxidized state of the magma, and the apatites of other samples at Aktogai, East Kounrad and Akzhal with moderate negative Eu anomaly show moderate oxidizing condition of these rocks, while the remaining apatites with strong En anomaly indicate a moderate reductive state of these rocks.  相似文献   

13.
Summary ?Orangeite occurring as a complex series of dikes at Swartruggens (South Africa), is host to a diversity of accessory minerals, the most common of which are apatite, barite and calcite. Less common, but important phases are perovskite, wadeite, an unidentified Ca–Ti–Fe-silicate, strontianite, unidentified Ca-REE phosphate, zircon, rutile, titaniferous magnetite, quartz and diverse sulphides. The accessory minerals show wide variations in their mode in different segments of the dike suite as a consequence of crystal sorting during flow differentiation. Compositional data are given for apatite, barite, calcite, perovskite, wadeite and the unidentified Ca–Ti–Fe-silicate. The accessory mineral suite is similar to that found in lamproites but is sufficiently distinct in composition and paragenesis to preclude inclusion with that clan. Differences include the common presence of groundmass calcite, barite and serpentine in the orangeite and the absence of typomorphic minerals (leucite, sanidine, richterite) of the lamproite clan. Received January 15, 2001; revised version accepted October 15, 2001  相似文献   

14.
In the bottom part of the tongue-shaped, layered granitoid intrusion, exposed in the Western Tatra Mts., apatite-rich granitic rocks occur as pseudo-layers and pockets between I-type hybrid mafic precursors and homogeneous S-type felsic granitoids. The apatite-rich rocks are peraluminous (ASI?=?1.12–1.61), with P2O5 contents ranging from 0.05 to 3.41 wt.% (<7.5 vol.% apatite), shoshonitic to high-K calc-alkaline. Apatite is present as long-prismatic zoned crystals (Ap1) and as large xenomorphic unzoned crystals (Ap2). Ap1 apatite and biotite represent an early cumulate. Feldspar and Ap2 textural relations may reflect the interaction of the crystal faces of both minerals and support a model based on local saturation of (P, Ca, F) versus (K, Na, Al, Si, Ba) in the border zones. Chondrite-normalized REE patterns for the apatite rocks and for pure apatite suggest apatite was a main REE carrier in these rocks. Minerals characteristics and the whole rock chemistry suggest both reduced S-type and I-type magma influenced the apatite-rich rocks. The field observations, mineral and rock chemistry as well as mass-balance calculations point out that the presence of apatite-rich rocks may be linked to the continuous mixing of felsic and mafic magmas, creating unique phosphorus- and aluminium-rich magma portions. Formation of these rocks was initially dominated by the complex flowage-controlled and to some extent also gravity-driven separation of early-formed zoned minerals and, subsequently, by local saturation in the border zones of growing feldspar and apatite crystals. Slow diffusion in the phosphorus-rich magma pockets favoured the local saturation and simultaneous crystallization of apatite and feldspars in a crystal-ladden melt.  相似文献   

15.
青海刚察泉吉地区中酸性侵入岩发育,为了进一步查明侵入岩的特征、侵入时代和形成环境,对其进行了地质学、岩石地球化学及年代学研究。LA-ICP-MS锆石U-Pb定年结果表明,研究区中酸性侵入岩侵位年龄主要集中在430~455 Ma,指示岩体为晚奥陶世—早志留世,指示两个期次岩浆产物,侵位于巴龙贡噶尔组的花岗闪长岩测年结果显示锆石206Pb/238U值为444±11 Ma,指示该花岗闪长岩体的侵位时代属晚奥陶世,因此限定了巴龙贡噶尔组(Sb)时代上限应该早于晚奥陶世。从岩石地球化学特征来看,花岗岩类表现为富钾、准铝—过铝质,富集大离子亲石元素Rb、K和Ba,亏损高场强元素Nb、Ti和P,具弱铕负异常;闪长岩类表现为富钾、准铝质、铕负异常特征不明显。从形成环境来看,研究区中酸性侵入岩均具有大陆碰撞环境的特征。结合区域地质构造环境及前人研究成果,研究区侵入岩是俯冲—碰撞环境下晚奥陶世-早志留世的加里东期产物。  相似文献   

16.
安徽铜陵地区大规模铜、金矿床与晚中生代侵入岩密切相关.本文选取铜陵地区4个代表性成矿侵入岩体(金口岭花岗闪长岩、铜官山和冬瓜山石英二长闪长岩、朝山辉石二长闪长岩)进行了磷灰石原位地球化学研究,探讨其对成岩成矿的指示.铜陵侵入岩磷灰石有较高的Sr/Y值(平均值3. 19)和低Y含量,指示其为埃达克质岩. 4个岩体磷灰石F含量为2. 63%~4. 02%,属氟磷灰石.磷灰石样品有较高的REE含量(825×10-6~5 853×10-6)、中等的δEu值(0. 37~0. 88)、高log fO2值(-12. 3~-9. 86)、较高的Cl含量(多> 0. 2%)和Cl/F值,暗示铜陵侵入岩起源于高氧逸度的壳幔岩浆混合源区.研究结果表明,铜陵地区铜、金成矿作用可能与由板块而来的富Cl流体、氧化环境和壳幔混合作用密切相关.  相似文献   

17.
In order to better constrain the evolution and petrogenesis of pegmatite, geochemical analysis was conducted on a suite of apatite crystals from the Altay Koktokay No. 3 pegmatite, Xinjiang, China and from the granitic and amphibolitic wall rocks. Apatite samples derived from pegmatite zones show convex tetrad effects in their REE patterns, extremely negative Eu anomalies and non-chondritic Y/Ho ratios. In contrast, chondritic Y/Ho ratios and convex tetrad effects are observed in the muscovite granite suggesting that different processes caused non-chondritic Y/Ho ratios and lanthanide tetrad effects. Based on the occurrence of convex tetrad effects in the host rocks and their associated minerals, we propose that the tetrad effects are likely produced from immiscible fluoride and silicate melts. This is in contrast to previous explanations of the tetrad effect; i.e. surface weathering, fractional crystallization and/or fluid-rock interaction. Additionally, we put forward that extreme negative Eu and non-chondritic Y/Ho in apatite are likely caused by the large amount of hydrothermal fluid exsolved from the pegmatite melts. Evolution of melt composition was found to be the primary cause of inter and intra-crystal major and trace element variations in apatite. Mn entering into apatite via substitution of Ca is supported by the positive correlation between CaO and MnO. Different evolution trends in apatite composition imply different crystallization environments between wall rocks and pegmatite zones. Based on the geochemistry of apatite samples, it is likely that there is a genetic relationship between the source of muscovite granite and the source of the pegmatite.  相似文献   

18.
The concentrations of trace elements in apatite from granitoid rocks of the Mt Isa Inlier have been investigated using the laser‐ablation inductively coupled plasma‐mass spectrometry (ICP‐MS) microprobe. The results indicate that the distribution of trace elements (especially rare‐earth elements (REE), Sr, Y, Mn and Th) in apatite strongly reflects the chemical characteristics of the parental rock. The variations in the trace‐element concentrations of apatite are correlated with parameters such as the SiO2 content, oxidation state of iron, total alkalis and the aluminium saturation index (ASI). The relative enrichment of Y, HREE and Mn and the relative depletion of Sr in the apatites studied reflect the degree of fractionation of the host granite. Apatites from strongly oxidised plutons tend to have higher concentrations of LREE relative to MREE. Manganese concentrations are higher in apatite from reduced granitoids because Mn2+substitutes directly for Ca2+. The La/Ce ratio of apatite is well‐correlated with the whole‐rock K2O and Na2O contents, as well as with the oxidation state and ASI. Because apatite trace‐element composition reflects the chemistry of the whole rock, it can be a useful indicator mineral for the recognition of mineralised granite suites, where particular mineralisation styles are associated with granitoids that have specific geochemical fingerprints.  相似文献   

19.
Summary The apatite in various igneous rocks (from quartzmonzonitic to gabbroic composition) in one and the same area of differentiation was geochemically examined. The samples were taken from 24 different localities in the Odenwald (Germany) and the thin sections were determined petrographically with a point counter. 25 kg of each sample were dressed and the apatite separated from the heavy mineral concentrates. The pure apatite was analysed quantitative chemically. The variable components of the apatite are represented diagrammatically as functions of the rockchemistry, the physical- and the X-ray constants and their relationships are discussed. The following relations were established: The F-content of magmatic apatites increases in the acidic rocks without showing a stringent lawfulness to the rockchemistry. F remains in all apatites, compared with Cl, OR and 0, alwavs in predominance.With increase in the content of F the refractive index, as well as the lattice constants of the apatites, decrease.The Cl-content of magmatic apatites increases towards the basic rocks, but here too it remains much less than the amount of F. Further more all other statements refering to F can be applied to Cl, but with opposite meaning.A comparison of the chemical analyses of apatites from the newer literature and these of the author reveals in all probability that there is only a limited miscibility between F- and Cl-apatites. The limit being 20 atom per cent Cl. The relation of F : Cl as 1:1 in some apatites might be attributed to an orderly arranged state of the F- and Cl-apatites.OH behaves in a similar manner as Cl, except that the results have wider dispersion effect.According to the chemical equivalence calculations there is generally a small excess of cations. This means that Oxygen must fill up free halogen-places in the lattice.The content of SiO2 of the apatites shows an increasing tendency towards in the basic rocks and the content of P2O5 a decreasing one.The contents of the rare earths of magmatic apatites increase in acidic rocks and only those ones with even numbers (with the exception of La) appear.Only apatites from rocks with metamorphic characteristics had an amount of SO3.By means of a comparison between the exploit of apatite and P2O5-contents of the rocks can be supposed with probability that the principal quantity of the P2O5 in the magmatic rocks is not bound to the apatite but to the silicates. This supposition will shortly be further examined.The relative increasing of the intensity of the line (0002) and (0004) in the X-ray-graphs (X-ray-goniometer) in the F-rich apatites suggests a better (0001)-cleavage as in the Cl-rich apatites. This observation can be explained easily with the different structures of the F- and the Cl-apatites.  相似文献   

20.
陈伟  赵太平  魏庆国  徐勇航 《岩石学报》2008,24(10):2301-2312
铁钛磷灰岩仅由磷灰石和铁钛氧化物组成,常赋存于岩体型斜长岩中,成因上有不混溶和分异堆晶两种不同的认识。本文从磷灰石角度讨论河北大庙铁钛磷灰岩的形成机制。大庙铁钛磷灰岩常产出于浸染状Fe—P矿体内部,有时与块状铁矿石交互出现形成韵律条带状矿石,为岩浆结晶分异的产物。铁钛磷灰岩中磷灰石呈浑圆状,含量变化于15%-34%。铁钛磷灰岩的全岩和磷灰石微量元素分析显示,磷灰石比全岩相对富集稀土元素达2.96—6.93倍,但两者的配分型式基本平行。质量平衡计算(Rocl/F)的结果表明,铁钛磷灰岩中几乎100%的稀土元素赋存于磷灰石中。综合上述特征,反映磷灰石为结晶分离的堆晶矿物,铁钛磷灰岩应为堆晶成因。因为如果磷灰石结晶于铁钛磷灰岩不混溶熔体,它的稀土元素分配系数也不会变化达2.3倍(变化于2.96—6.93)。计算出该磷灰石的母岩浆稀土元素组成,与浸染状Fe.P矿石最为相似,结合它与铁钛磷灰岩之间紧密共生的野外特征以及相似的全岩及磷灰石稀土元素配分型式,认为磷灰石最可能是在浸染状Fe.P矿浆中,经结晶分离作用形成铁钛磷灰岩。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号