首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The ecological condition and biodiversity values of floodplain wetlands are highly dependent on the hydrological connectivity of wetlands to adjacent rivers. This paper describes a method for quantifying connectivity between floodplain wetlands and the main rivers in a wet tropical catchment of northern Australia. We used a one‐dimensional hydrodynamic model to simulate time‐varying water depths across the stream network (i.e. rivers, streams and man‐made drains). The timing and duration of connectivity of seven wetlands (four natural and three artificial) with the two main rivers in the catchment were then calculated for different hydrological conditions. Location and areal extent of the wetlands and the stream network were identified using high‐resolution laser altimetry, and these data formed key inputs to the hydrodynamic model. The model was calibrated using measured water depths and discharges across the floodplain. An algorithm was developed to identify contiguous water bodies at daily time steps, and this gave the temporal history of connection and disconnection between wetlands and the rivers. Simulation results show that connectivity of individual wetlands to both rivers varies from 26 to 365 days during an average hydrological condition. Location, especially proximity to a main river, and wetland type (natural stream or artificial drain) were identified as key factors influencing these levels of connectivity. Some natural wetlands maintain connection with the river for most or all of the year, whereas the connectivity of some artificial wetlands varies from 26 to 36 days according to their patterns of network connection to adjacent rivers – a result that has important implications for the accessibility of these types of wetland to aquatic biota. Using readily available river gauge data, we also show how connectivity modelling can be used to identify periods when connectivity has fallen below critical thresholds for fish movement. These connectivity patterns within the floodplain network are central to the setting of river flows that will meet environmental requirements for biota that use floodplain wetlands during their life history. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Restoring hydrologic connectivity between channels and floodplains is common practice in stream and river restoration. Floodplain hydrology and hydrogeology impact stream hydraulics, ecology, biogeochemical processing, and pollutant removal, yet rigorous field evaluations of surface water–groundwater exchange within floodplains during overbank floods are rare. We conducted five sets of experimental floods to mimic floodplain reconnection by pumping stream water onto an existing floodplain swale. Floods were conducted throughout the year to capture seasonal variation and each involved two replicate floods on successive days to test the effect of varying antecedent moisture. Water levels and specific conductance were measured in surface water, soil, and groundwater within the floodplain, along with surface flow into and out of the floodplain. Vegetation density varied seasonally and controlled the volume of surface water storage on the floodplain. By contrast, antecedent moisture conditions controlled storage of water in floodplain soils, with drier antecedent moisture conditions leading to increased subsurface storage and slower flood wave propagation across the floodplain surface. The site experienced spatial heterogeneity in vertical connectivity between surface water and groundwater across the floodplain surface, where propagation of hydrostatic pressure, preferential flow, and bulk Darcy flow were all mechanisms that may have occurred during the five floods. Vertical connectivity also increased with time, suggesting higher frequency of floodplain inundation may increase surface water–groundwater exchange across the floodplain surface. Understanding the variability of floodplain impacts on water quality noted in the literature likely requires better accounting for seasonal variations in floodplain vegetation and antecedent moisture as well as heterogeneous exchange flow mechanisms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Controls on the characteristics of floodplain wetlands in drylands are diverse and may include extrinsic factors such as tectonic activity, lithology and climate, and intrinsic thresholds of channel change. Correct analysis of the interplay between these controls is important for assessing possible channel–floodplain responses to changing environmental conditions. Using analysis of aerial imagery, geological maps and field data, this paper investigates floodplain wetland characteristics in the Tshwane and Pienaars catchments, northern South Africa, and combines the findings with previous research to develop a new conceptual model highlighting the influence of variations in aridity on flow, sediment transport, and channel–floodplain morphology. The Tshwane–Pienaars floodplain wetlands have formed in response to a complex interplay between climatic, lithological, and intrinsic controls. In this semi‐arid setting, net aggradation (alluvium >7 m thick) in the wetlands is promoted by marked downstream declines in discharge and stream power that are related to transmission losses and declining downstream gradients. Consideration of the Tshwane–Pienaars wetlands in their broader catchment and regional context highlights the key influence of climate, and demonstrates how floodplain wetland characteristics vary along a subhumid to semi‐arid climatic gradient. Increasing aridity tends to be associated with a reduction in the ability of rivers to maintain through‐going channels and an increase in the propensity for channel breakdown and floodout formation. Understanding the interplay between climate, hydrology and geomorphology may help to anticipate and manage pathways of floodplain wetland development under future drier, more variable climates, both in South African and other drylands. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A key aspect of large river basins partially neglected in large‐scale hydrological models is river hydrodynamics. Large‐scale hydrologic models normally simulate river hydrodynamics using simplified models that do not represent aspects such as backwater effects and flood inundation, key factors for some of the largest rivers of the world, such as the Amazon. In a previous paper, we have described a large‐scale hydrodynamic approach resultant from an improvement of the MGB‐IPH hydrological model. It uses full Saint Venant equations, a simple storage model for flood inundation and GIS‐based algorithms to extract model parameters from digital elevation models. In the present paper, we evaluate this model in the Solimões River basin. Discharge results were validated using 18 stream gauges showing that the model is accurate. It represents the large delay and attenuation of flood waves in the Solimões basin, while simplified models, represented here by Muskingum Cunge, provide hydrographs are wrongly noisy and in advance. Validation against 35 stream gauges shows that the model is able to simulate observed water levels with accuracy, representing their amplitude of variation and timing. The model performs better in large rivers, and errors concentrate in small rivers possibly due to uncertainty in river geometry. The validation of flood extent results using remote sensing estimates also shows that the model accuracy is comparable to other flood inundation modelling studies. Results show that (i) river‐floodplain water exchange and storage, and (ii) backwater effects play an important role for the Amazon River basin hydrodynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
This paper investigates the origin and geomorphic evolution of Stillerust Vlei, a 189 ha wetland located approximately 150 km northwest of Durban in the temperate submontane foothills of the KwaZulu‐Natal Drakensberg Mountains. The investigation confirms the findings of previous research on the arid to semi‐arid South African interior, which established that many floodplain wetlands in eastern South Africa are located upstream of resistant rock barriers (dolerite intrusions) that cross river courses and form stable local base levels. Upstream of these barriers, rivers laterally plane less resistant Karoo sedimentary rocks (sandstones, mudstones), creating broad, low gradient valleys conducive to the formation of floodplain wetlands. In addition, the study examines how local levee and alluvial ridge accretion on the floodplain of Stillerust Vlei has impounded a small tributary valley, and drawing on observations of similar wetlands in the region, the paper explains the origin and geomorphic evolution of wetlands in floodplain‐abutting valleys, and associated streams that commonly become discontinuous toward their confluence with the trunk (floodplain) river. Controls on the origin and geomorphic evolution of Stillerust Vlei are placed within the context of slope‐channel decoupling and (dis)connectivity in sediment delivery, illustrating that wetlands are environments of deposition. As a result of dynamic trunk‐tributary relations, Stillerust Vlei holds a diversity of geomorphic features, and thus provides potential habitat for a diversity of biota. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
This paper investigates particulate phosphorus (PP) and soluble reactive phosphorus (SRP) concentrations at the outlet of a small (5 km²) intensively farmed catchment to identify seasonal variability of sources and transport pathways for these two phosphorus forms. The shape and direction of discharge‐concentration hystereses during floods were related to the hydrological conditions in the catchment during four hydrological periods. Both during flood events and on an annual basis, contrasting export dynamics highlighted a strong decoupling between SRP and PP export. During most flood events, discharge‐concentration hystereses for PP were clockwise, indicating mobilization of a source located within or near the stream channel. Seasonal variability of PP export was linked to the availability of stream sediments and the export capacity of the stream. In contrast, hysteresis shapes for SRP were anticlockwise, which suggests that SRP was transferred to the stream via subsurface flow. Groundwater rise in wetland soils was likely the cause of this transfer, through the hydrological connectivity it created between the stream and P‐rich soil horizons. SRP concentrations were the highest when the relative contribution of deep groundwater from the upland domain was low compared with wetland groundwater. Hence, soils from non‐fertilized riparian wetlands seemed to be the main source of SRP in the catchment. This conceptual model of P transfer with distinct hydrological controls for PP and SRP was valid throughout the year, except during spring storm events, during which PP and SRP exports were synchronized as a consequence of overland flow and erosion on hillslopes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The rise in stream stage during high flow events (floods) can induce losing stream conditions, even along stream reaches that are gaining during baseflow conditions. The aquifer response to flood events can affect the geochemical composition of both near‐stream groundwater and post‐event streamflow, but the amount and persistence of recharged floodwater may differ as a function of local hydrogeologic forcings. As a result, this study focuses on how vertical flood recharge varies under different hydrogeologic forcings and the significance that recharge processes can have on groundwater and streamflow composition after floods. River and shallow groundwater samples were collected along three reaches of the Upper San Pedro River (Arizona, USA) before, during and after the 2009 and 2010 summer monsoon seasons. Tracer data from these samples indicate that subsurface floodwater propagation and residence times are strongly controlled by the direction and magnitude of the dominant stream–aquifer gradient. A reach that is typically strongly gaining shows minimal floodwater retention shortly after large events, whereas the moderately gaining and losing reaches can retain recharged floodwater from smaller events for longer periods. The moderately gaining reach likely returned flood recharge to the river as flow declined. These results indicate that reach‐scale differences in hydrogeologic forcing can control (i) the amount of local flood recharge during events and (ii) the duration of its subsurface retention and possible return to the stream during low‐flow periods. Our observations also suggest that the presence of floodwater in year‐round baseflow is not due to long‐term storage beneath the streambed along predominantly gaining reaches, so three alternative mechanisms are suggested: (i) repeated flooding that drives lateral redistribution of previously recharged floodwater, (ii) vertical recharge on the floodplain during overbank flow events and (iii) temporal variability in the stream–aquifer gradient due to seasonally varying water demands of riparian vegetation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
For large‐scale sites, difficulties for applying coupled one‐dimensional (1D)/2D models for simulating floodplain inundation may be encountered related to data scarcity, complexity for establishing channel–floodplain connections, computational cost, long duration of floods and the need to represent precipitation and evapotranspiration processes. This paper presents a hydrologic simulation system, named SIRIPLAN, developed to accomplish this aim. This system is composed by a 1D hydrodynamic model coupled to a 2D raster‐based model, and by two modules to compute the vertical water balance over floodplain and the water exchanges between channel and floodplain. Results are presented for the Upper Paraguay River Basin (UPRB), including the Pantanal, one of the world's largest wetlands. A total of 3965 km of river channels and 140 000 km2 of floodplains are simulated for a period of 11 years. Comparison of observed and calculated hydrographs at 15 gauging stations showed that the model was capable to simulate distinct, complex flow regimes along main channels, including channel‐floodplain interactions. The proposed system was also able to reproduce the Pantanal seasonal flood pulse, with estimated inundated areas ranging from 35 000 km2 (dry period) to more than 120 000 km2 (wet period). Floodplain inundation maps obtained with SIRIPLAN were consistent with previous knowledge of Pantanal dynamics, but comparison with inundation extent provided by a previous satellite‐based study indicates that permanently flooded areas may have been underestimated. The results obtained are promising, and further work will focus on improving vertical processes representation over floodplains and analysing model sensitivity to floodplain parameters, time step and precipitation estimates uncertainty. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
In this research, variability of spring (from 1 March to 30 May) and flash (from 1 June to 30 November) floods in rivers of different regions was analysed. The territory of Lithuania is divided into three regions according to hydrological regime of the rivers: Western, Central, and Southeastern. The maximum river discharge data of spring and flash floods [a total of 31 water gauging stations (WGS)] were analysed. Comparison of the data of four periods (1922–2013, 1941–2013, 1961–2013, and 1991–2013) with the data of the reference period (1961–1990) was performed. Analysis included the longest discharge data set of the Nemunas River at Smalininkai WGS (1812–2013) as well. Mixed patterns of flood changes in Lithuanian rivers were detected. The analysis of flood discharges of the Nemunas River indicated that both spring and flash floods in Lithuania were getting smaller.  相似文献   

11.
In 1820, the lower Canadian River meandered through a densely forested floodplain. By 1898, most of the floodplain had been cleared for agriculture and changes in channel geometry and specific stream power followed, particularly channel widening and straightening with a lower potential specific stream power. In 1964, a large upstream hydropower dam was constructed, which changed the flow regime in the lower Canadian River and consequently the channel geometry. Without destructive overbank floods, the channel narrowed rapidly and considerably due to encroachment by floodplain vegetation. The lower Canadian River, which was once a highly dynamic floodplain‐river system, has now been transformed into a relatively static river channel. These changes over the past 200 years have not been linear or independent. In this article, we use a variety of data sources to assess these historical changes along the lower Canadian River floodplain and identify feedbacks among floodplain cultivation, dam construction, specific stream power, and channel width, slope, and sinuosity. Finally, we combine the results of our study with others in the region to present a biogeomorphic response model for large Great Plains rivers that characterizes channel width changes in response to climate variability and anthropogenic disturbances. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Floodplain stratigraphy is used as a new method for reconstructing ice jam flood histories of northern rivers. The method, based on reconstruction of the sedimentary record of vertically‐accreting floodplains, relies on stratigraphic logging and interpretation of floodplain sediments, which result from successive ice jam floods, and radiocarbon dating of inter‐flood organic material for chronology. In a case study along a reach of the Yukon River that straddles the Yukon–Alaska border, the method is used to develop a record of ice jam flooding for the last 2000 years. Detailed chronostratigraphic logs from three sites along the Yukon River indicates that the long‐term recurrence interval varies depending on location, but ranges from approximately once in 25 years to once in 38 years (or a probability of ca 3–4% in any given year). This is broadly similar to the 4·5% probability of recurrence calculated from archival and gauged data at Dawson City, Yukon Territory, for the period 1898–2006. Two of the three study locations, with sufficient chronology, suggest a decrease in flood frequency in the last several hundred years relative to the preceding period at each site, broadly corresponding to the Little Ice Age, suggesting climate exerts some control over long‐term ice jam flood frequency. This study demonstrates that the floodplain sedimentary record offers the potential to extend records of ice jam flooding in remote, ungauged northern rivers and provides a broader temporal context for assessing the frequency and variability of ice jam flooding. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
We analyzed variation of channel–floodplain suspended sediment exchange along a 140 km reach of the lower Amazon River for two decades (1995–2014). Daily sediment fluxes were determined by combining measured and estimated surface sediment concentrations with river–floodplain water exchanges computed with a two‐dimensional hydraulic model. The average annual inflow to the floodplain was 4088 ± 2017 Gg yr?1 and the outflow was 2251 ± 471 Gg yr?1, respectively. Prediction of average sediment accretion rate was twice the estimate from a previous study of this same reach and more than an order of magnitude lower than an estimate from an earlier regional scale study. The amount of water routed through the floodplain, which is sensitive to levee topography and increases exponentially with river discharge, was the main factor controlling the variation in total annual sediment inflow. Besides floodplain routing, the total annual sediment export depended on the increase in sediment concentration in lakes during floodplain drainage. The recent increasing amplitude of the Amazon River annual flood over two decades has caused a substantial shift in water and sediment river–floodplain exchanges. In the second decade (2005–2014), as the frequency of extreme floods increased, annual sediment inflow increased by 81% and net storage increased by 317% in relation to the previous decade (1995–2004). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
Dissolved organic matter (DOM) is integral to fluvial biogeochemical functions, and wetlands are broadly recognized as substantial sources of aromatic DOM to fluvial networks. Yet how land use change alters biogeochemical connectivity of upland wetlands to streams remains unclear. We studied depressional geographically isolated wetlands on the Delmarva Peninsula (USA) that are seasonally connected to downstream perennial waters via temporary channels. Composition and quantity of DOM from 4 forested, 4 agricultural, and 4 restored wetlands were assessed. Twenty perennial streams with watersheds containing wetlands were also sampled for DOM during times when surface connections were present versus absent. Perennial watersheds had varying amounts of forested wetland (0.4–82%) and agricultural (1–89%) cover. DOM was analysed with ultraviolet–visible spectroscopy, fluorescence spectroscopy, dissolved organic carbon (DOC) concentration, and bioassays. Forested wetlands exported more DOM that was more aromatic‐rich compared with agricultural and restored wetlands. DOM from the latter two could not be distinguished suggesting limited recovery of restored wetlands; DOM from both was more protein‐like than forested wetland DOM. Perennial streams with the highest wetland watershed cover had the highest DOC levels during all seasons; however, in fall and winter when temporary streams connect forested wetlands to perennial channels, perennial DOC concentrations peaked, and composition was linked to forested wetlands. In summer, when temporary stream connections were dry, perennial DOC concentrations were the lowest and protein‐like DOM levels the highest. Overall, DOC levels in perennial streams were linked to total wetland land cover, but the timing of peak fluxes of DOM was driven by wetland connectivity to perennial streams. Bioassays showed that DOM linked to wetlands was less available for microbial use than protein‐like DOM linked to agricultural land use. Together, this evidence indicates that geographically isolated wetlands have a significant impact on downstream water quality and ecosystem function mediated by temporary stream surface connections.  相似文献   

15.
Flow regulation and water diversion for irrigation have considerably impacted the exchange of surface water between the Murray River and its floodplains. However, the way in which river regulation has impacted groundwater–surface water interactions is not completely understood, especially in regards to the salinization and accompanying vegetation dieback currently occurring in many of the floodplains. Groundwater–surface water interactions were studied over a 2 year period in the riparian area of a large floodplain (Hattah–Kulkyne, Victoria) using a combination of piezometric surface monitoring and environmental tracers (Cl, δ2H, and δ18O). Despite being located in a local and regional groundwater discharge zone, the Murray River is a losing stream under low flow conditions at Hattah–Kulkyne. The discharge zone for local groundwater, regional groundwater and bank recharge is in the floodplain within ∼1 km of the river and is probably driven by high rates of transpiration by the riparian Eucalyptus camaldulensis woodland. Environmental tracers data suggest that the origin of groundwater is principally bank recharge in the riparian zone and a combination of diffuse rainfall recharge and localized floodwater recharge elsewhere in the floodplain. Although the Murray River was losing under low flows, bank discharge occurred during some flood recession periods. The way in which the water table responded to changes in river level was a function of the type of stream bank present, with point bars providing a better connection to the alluvial aquifer than the more common clay‐lined banks. Understanding the spatial variability in the hydraulic connection with the river channel and in vertical recharge following inundations will be critical to design effective salinity remediation strategies for large semi‐arid floodplains. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
基于长江中下游一、二维耦合水动力学模型,以1954和1998年洪水为典型,模拟了三峡水库调蓄前后洞庭湖区的洪水过程,定量分析了三峡水库对洞庭湖区防洪的贡献.结果表明:在长江发生1954和1998年全流域大洪水期间,三峡水库实施兼顾对城陵矶河段的防洪补偿调度,可有效缓解荆南三口河系及湖区的防洪压力,减少荆南三口 1.58...  相似文献   

17.
Wetlands play a significant role on the hydrological cycle, reducing flood peaks through water storage functions and sustaining low flows through slow water release ability. However, their impacts on water resources availability and flood control are mainly driven by wetland type (e.g. isolated wetland—IW—and riparian wetland—RW) and location within a watershed. Consequently, assessing the qualitative and quantitative impact of wetlands on hydrological regimes has become a relevant issue for scientists as well as stakeholders and decision‐makers. In this study, the distributed hydrological model, HYDROTEL, was used to investigate the role and impact of the geographic distribution of isolated and RWs on stream flows of the Becancour River watershed of the St Lawrence Lowlands, Quebec, Canada. The model was set up and calibrated using available datasets (i.e. DEM, soil, wetland distribution, climate, land cover, and hydrometeorological data for the 1969–2010 period). Different wetland theoretical location tests (WTLT) were simulated. Results were used to determine whether stream flow parameters, related to peak flows and low flows, were related to: (i) geographic location of wetlands, (ii) typology of wetlands, and (iii) seasonality. The contribution of a particular wetland was assessed using intrinsic characteristics (e.g. surface area, typology) and extrinsic factors (e.g. location in the watershed landscape and seasonality). Through these investigations, the results suggest, to some extent, that both IWs and RWs impact landscape hydrology. The more IWs are located in the upper part of the watershed, the greater their effect on both on high flow damping and low flow support seems to be. The more RWs are connected to a main stream, the greater their effect is. Our modelling results indicate that local landscape conditions may influence the wetland effect; promoting or limiting their efficiency, and thus their impacts on stream flows depend on a combined effect of wetland and landscape attributes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
ABSTRACT

Stream gauge-based information is the foundation for many hydrological applications in a river basin including the aquatic-habitat conservation. A simple two-parameter model for routing streamflow depth (alternatively, stream–stage) hydrographs and estimating corresponding discharge hydrographs in river channels is proposed using the multilinear approach, based on Nash-type discrete-cascade model. The applicability of this model is investigated by extending its framework to the realm of compound cross-section trapezoidal channels for both in-bank and overbank flows by using 20 flood events of the Tiber River in the Umbria region of Central Italy, and subsequently comparing the simulated results with the corresponding simulations of the HEC-RAS (Hydrologic Engineering Center – River Analysis System) hydrodynamic model and observed flow depth hydrographs. The field application, comparative study, and uncertainty and sensitivity analysis of the results demonstrate that the proposed multilinear discrete Nash-cascade stage-hydrograph (MDNS) routing model has the potential for routing floods in real-world rivers and canal irrigation systems, especially in operational mode.  相似文献   

19.
Geographically isolated wetlands, those entirely surrounded by uplands, provide numerous landscape‐scale ecological functions, many of which are dependent on the degree to which they are hydrologically connected to nearby waters. There is a growing need for field‐validated, landscape‐scale approaches for classifying wetlands on the basis of their expected degree of hydrologic connectivity with stream networks. This study quantified seasonal variability in surface hydrologic connectivity (SHC) patterns between forested Delmarva bay wetland complexes and perennial/intermittent streams at 23 sites over a full‐water year (2014–2015). Field data were used to develop metrics to predict SHC using hypothesized landscape drivers of connectivity duration and timing. Connection duration was most strongly related to the number and area of wetlands within wetland complexes as well as the channel width of the temporary stream connecting the wetland complex to a perennial/intermittent stream. Timing of SHC onset was related to the topographic wetness index and drainage density within the catchment. Stepwise regression modelling found that landscape metrics could be used to predict SHC duration as a function of wetland complex catchment area, wetland area, wetland number, and soil available water storage (adj‐R2 = 0.74, p < .0001). Results may be applicable to assessments of forested depressional wetlands elsewhere in the U.S. Mid‐Atlantic and Southeastern Coastal Plain, where climate, landscapes, and hydrological inputs and losses are expected to be similar to the study area.  相似文献   

20.
In the Senegal River valley and Niger Inner Delta, the annual floods inundate a wide floodplain consisting of a complex network of lakes and channels, where topographic information needed by standard hydraulic models is difficult to obtain. To represent the flood propagation between mainstream and floodplain, we use a model designed for flood propagation in river mainstreams with flat bed and large overflow and without topographic data. Depending on the water level in the riverbed, the model calibrated on the levels observed at two stations gives the level in the floodplains and propagation time between stations. Several cases are tested for various types of hydraulic connections between mainstream and floodplain. The model could correctly reproduce the flood rise and fall in the floodplain, even for a lake connected by a single channel to the riverbed or in the case of a strong attenuation of the flood between very distant stations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号