首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The REE (rare-earth) contents of sixty-three <2 μ fractions of Pennsylvanian and Permian platform sediment from the mid-continent of the U.S.A. vary considerably (ΣREE = 46–439 ppm;La/ Lu = 5.2–15.7; correlation coefficient of REE with La/Lu = 0.89), but the Eu/Sm ratios are nearly constant even in reducing environments that concentrate U (0.16–0.22). There is no correlation of REE content to clay mineralogy.Lower Permian <2 μ fractions from continental to nearshore marine sediment in Oklahoma have higher REE content (244–261 ppm) than marine facies in Kansas (46–140ppm), but <2μ Upper Permian fractions in an evaporite basin have constant but high REE content (288–281 ppm; one = 153—ppm). All Pennsylvanian <2 μ fractions from Oklahoma have high REE content (209–439 ppm), and fractions from Kansas cyclothems have variable REE content (86–438 ppm). REE content in the <2 μ fractions is inherited from the provenance, but is modified by ion exchange during weathering, transportation, or deposition. Exchangable REE tend to be concentrated in clay minerals in basic environments, but removed in acid environments.Sand and gravel-size fractions consist mostly of quartz or chert so their REE content is low (7.9–40.6 ppm) although heavy minerals may contribute a large fraction of the REE content. Unexpectedly, silt-size fractions have REE contents (74–355 ppm) that are usually lower but similar to their <2 μ fractions, and the REE contents do not correlate to clay mineral/quartz ratios. The interpretation of REE content in sedimentary rocks needs to be done cautiously due to the above factors.  相似文献   

2.
Rock samples representing various igneous and metamorphic rocks of southern Obudu Plateau were analyzed for rare-earth element ( REE ) behavior by ICP-MS. Results of the analyses indicate a range of REE abundances and distinctive patterns from highly fraetionated patterns with negative Eu anomalies in granitic rocks to relatively low abundances and less REE fractionated flat patterns with little Eu anomaly in some paragneisses, schists, enderbites and dolerites to unfractionated patterns with positive Eu anomalies in some paragneisses and charnockites. Over all, there are low to high ∑ REE contents with negative to positive Eu anomalies. The ratios of different parameters, especially La/Yb and Ce/Yb, show behaviors consistent with crustal to mantle derivation. The heterogeneity of REE abundances and REE patterns reflects mantle to crustal petrogenetic variations of different rock suites on the Plateau. The LREE content is higher than the HREE content in the highly differentiated rocks, as evidenced by their La/Yb,Ce/Yb and La/Sm ratios, which are normally higher in residual products than in primary melts. The dominantly intermediate nature of the source rock of the orthogneisses is suggested by the generally low ∑ REE. The granites enriched in LREE and depleted in HREE and some of the charnockites with negative Eu anomalies were probably formed by partial melting and crystallization.  相似文献   

3.
Thirty-two samples of a series of metamorphosed Silurian (?) pelitic schists in the greenschist and amphibolite facies from N.W. Maine have been analyzed for their rare-earth element (REE) content. The REE contents of these samples do not change as a function of metamorphic grade. Two different metasedimentary formations have been sampled, and they differ significantly in their light REE content. The absolute and relative distribution of the REE in the Bangeley Formation are quite similar to the composites of N. American, European and Russian shales that have been determined thus far (e.g. median La/Lu ratio of the Bangeley Formation normalized to chondrites = 8.7 ± 3.0). Samples from the Perry Mt. Formation show large depletions in the light REE compared to the Bangeley Formation and previously analyzed shale and metamorphosed shale samples, but heavy REE concentrations that are quite similar to the other samples (e.g. median La/Lu ratio of the Perry Mt. normalized to chondrites = 1.2 ± 0.6). These differences in light REE content between the Perry Mt. Formation and other sedimentary rocks are probably due to differences in the original clay mineral compositions as modified by weathering and/or depositional environments.  相似文献   

4.
Precise determination of REE and Ba abundances in three carbonaceous (Orgueil Cl, Murchison C2 and Allende C3) and seven olivine-bronzite chondrites were carried out by mass spectrometric isotope dilution technique. Replicate analyses of standard rock and the three carbonaceous chondrites demonstrated the high quality of the analyses (accuracies for REE are ±1–2 per cent). Certain carbonaceous chondrite specimens showed small positive irregularities in Yb abundance. The Yb ‘anomaly’ (approximately + 5 per cent relative to the average of 10 ordinary chondrites) in Orgueil may relate to high temperature components. The REE pattern of Guareña (H6) exhibits comparatively extensive fractionation (about factor 2) with a negative anomaly for Eu (17 ± 1 percent) compared to the average H chondrite. This could be interpreted in terms of extensive thermal metamorphism leading to melting.Apart from absolute abundance differences, there appears to be small but recognizable fractionation among the average relative REE abundances of Cl, E, H and L chondrites. However, individual chondrites within these groups showed more or less fractionated REE patterns relative to each other. The distinction between H and L chondrites was well demonstrated in Eu-Sm correlation curves and absolute abundance differences of REE and major elements.Si-normalized atomic ratios of the REE abundances in different kinds of chondrites to those in Orgueil (Cl) chondrite were 0.58 (E), 0.75 (H), 0.81 (L), 1.07 (C2) and 1.32 (C3).  相似文献   

5.
We report the results of rare earth elements (REEs) and U-Th inventory of individual minerals (oldhamite, enstatite and niningerite) in two of the most unequilibrated and primitive EH3 known so far, ALHA77295 and Sahara 97072. Under the highly reducing condition that prevailed during the formation of enstatite chondrites, REEs are mainly chalcophile and concentrated in oldhamite. The study is guided by detailed petrographic investigations of the individual minerals in chondrules, complex sulfide-metal clasts and enstatite-dominated matrices.We developed two textural parameters in order to resolve the evolution of oldhamite condensates and their residence in the solar gas prior to their accretion in the individual objects or in matrices and relate these textural features to the measured REE patterns of the individual oldhamite crystals. These textural parameters are the crystal habit of oldhamite grains (idiomorphic or anhedral) and their host assemblages. REE concentrations were measured by SIMS and LA-ICPMS.Oldhamite grains display REE enrichments (10-100 × CI). Four types of REE patterns are encountered in oldhamite in ALHA77295. In general the REE distributions cannot be assigned to a specific oldhamite-bearing assemblage. The most represented REE pattern is characterized by both slight to large positive Eu and Yb anomalies and is enriched in light REEs relative to heavy REEs. This pattern is present in 97% of oldhamite in Sahara 97072, suggesting a different source region in the reduced part of the nebula or different parental EH asteroids for the two EH3 chondrites. Different parental asteroids are also supported by MgS-FeS zoning profiles in niningerite grains adjacent to troilite revealing both normal and reverse zoning trends and different MnS contents. The observed homogeneity of REE distribution in oldhamite grains in Sahara 97072 is not related to the mild metamorphic event identified in this meteorite that caused breakdown of the major K- and Rb-bearing sulfide (djerfisherite).REE concentrations in enstatite range between 0.2 and 8 × CI. Hence, enstatite is an important REE host next to oldhamite. Most patterns are characterized by negative Eu and Yb anomalies. Niningerites are negligible contributors to bulk EH3 REE inventory. Average positive Eu and Yb anomalies observed in most oldhamite are complimentary to the negative ones in enstatite thus explaining the flat patterns of the bulk meteorites. The condensation calculations based on cosmic abundances predict that the first oldhamite condensates should have flat REE patterns with Eu and Yb depletions since Eu and Yb condense at lower temperature than other REE. However, this pattern is seen in enstatite. Our findings are at odds with the predicted negative Eu and Yb anomalies in oldhamite earliest condensates from a closed system in a reduced solar source. Our petrographic, mineral chemistry and REE abundances of oldhamite, enstatite and niningerite discards an origin of oldhamite by impact melting (Rubin et al., 2009).Our results do not support in first order the scenario of the incorporation of REE in the Earth’s core to explain 142Nd excess in terrestrial samples relative to chondrites because oldhamite is the major REE carrier phase and has super-chondritic Sm/Nd ratios.  相似文献   

6.
Over one hundred samples, representing mainly clayey-organic- and carbonate-rich shales (Kupferschiefer) but also other members of different ore sections, including hangingwall dolomites (Z1 Werra) and footwall Weissliegend sandstone (Lower Permian), have been collected in different mines of the Lubin–Głogów mining district, mainly near the contact (transitional zone) between the copper-mineralized zone and secondarily oxidized (Rote Fäule = RF) zone. In general, the Polish Kupferschiefer shales are enriched in MREE in comparison to NASC. In a typical copper-rich ore section the REE amounts and patterns depend on lithologies, being generally similar in shales and dolomite. ∑REE vary among sandstones, shales and dolomites (average 73, 143 and 85 ppm, respectively), probably reflecting mainly their clay contents. Sandstones have strongly convex REE patterns with positive Eu and negative Gd anomalies and depletion in LREE and enrichment in MREE relative to HREE. The REE patterns of shale and dolomite are similar to one another and rather flat, with strong negative Eu anomalies, and a small positive Gd anomaly in the case of shales.The REE patterns of shales from the mineralized Cu-zone are generally convex (MREE enriched) and have negative Eu anomalies. However, in a section with Cu-, Zn- and Pb-shales the REE pattern of Pb-bearing shales shows a positive Eu anomaly, in contrast to other shales and overlying dolomite. More oxidizing conditions of deposition can be assumed for Pb-shales.No significant differences between REE distributions in transitional and oxidized zones have been observed. Their REE patterns are more convex and are much higher (av. 247 ppm) than those in the mineralized zone and they do not show Eu anomalies. The strongly convex pattern may suggest either enrichment in MREE or relative depletion in LREE due to localized precipitation of light REE minerals, both in shales and in the uppermost part of the sandstones.Two unique sections, one Cu-rich and one Cu-lean (partly oxidized), comprising three shale beds interbedded with dolomites have been compared. Generally ∑REE contents are similar in these two sections. Also similar are changes in contents of REE between beds in both sections, which decrease significantly upwards (from 157–171 ppm to 54–60 ppm). The REE patterns of the lowermost beds (directly overlying sandstones) are ramp-like, with LREE enrichments. The upper beds have concave REE patterns. Comparison between sections shows generally stronger negative Eu and positive Gd anomalies in the highly-mineralized section.There is a highly significant positive relationship between Cu and ∑ REE contents in Cu-rich shales and slightly less significant negative relationship for their concentration in oxidized and transitional shales. There is a moderate significant positive correlation between P2O5 and ∑ REE contents in Cu-rich shales.The observed differences in REE contents cannot be provenance dependent but have been caused by diagenetic processes, possibly related to mineralization and oxidation processes. Europium anomalies, generally reflecting different Eh conditions in the deposit, can be eliminated by the prolonged oxidation. Strong enrichment of the RF zones in REE may result from their desorption from large volumes of oxidizing, including mineralizing, solutions which probably emerged from the underlying molasse lithologies into the Rote Fäule areas. Higher contents of REE in the lowermost shales suggest upward movement of solutions from the underlying sandstones also far away from the RF areas.  相似文献   

7.
云南东川铜矿硅质白云岩稀土元素地球化学特征   总被引:4,自引:1,他引:3  
根据东川铜矿钻孔岩芯样品的REE分析数据,表明硅质白云岩向辉绿辉长岩的方向ZREE逐渐富集,辉绿辉长岩的=REE为最高值。白云岩与辉绿辉长岩REE配分模式相似,说明它们的REE来源相同。北美页岩(NAAS)标准化配分模式中,硅质白云岩为Eu正异常(δEu:0.99~1.37),δCe在0.90~0.94之间,REE分布模式与已经报道的现代大洋中脊喷口沉积物相似,表明其在形成过程中受岩浆热液影响。  相似文献   

8.
The giant sediment-hosted Jinding zinc-lead deposit is located in the Lanping Basin, northwestern Yunnan Province, China. The genesis of the deposit has long been debated and the sources of the ore-forming fluids and metals are controversial. This study presents rare earth element (REE) and noble gas isotope data that constrain the origins of the ore fluids and the heat source driving the hydrothermal circulation. The early-stage sulfides are enriched in light REEs and have high ∑REE values (30.8–94.8 ppm) and weakly negative Eu (δEu 0.85–0.89) and Ce anomalies (δCe 0.84–0.95), suggesting that the fluids were likely derived from dissolution of Upper Triassic marine carbonates with input of REEs from aluminosilicate rocks in the basin. In contrast, the late-stage sulfides have irregular REE patterns, generally low ∑REE values (0.24–10.8 ppm) and positive Eu (δEu 1.22–10.9) and weakly negative Ce anomalies (δCe 0.53–0.90), which suggest that the ore-forming fluids interacted with evaporite minerals. The 3He/4He (0.01–0.04 Ra) and 40Ar/36Ar values (301–340) of the ore-forming fluids indicate crustal and atmospheric origins for these noble gases. These findings are in agreement with the published fluid inclusion microthermometry data and the results of H, O, C, S, Pb and Sr isotope studies. Our data, in combination with published results, support a two-stage hydrothermal mineralization model, involving early-stage basinal brines and late-stage meteoric water that acquired metals and heat from crustal sources.  相似文献   

9.
《Applied Geochemistry》2000,15(9):1369-1381
Thirty-eight samples of stream sediments draining high-grade metamorphic rocks in the Walawe Ganga (river) Basin, Sri Lanka, were analysed for their REE contents, together with samples of metamorphic suites from the source region. The metamorphic rocks are enriched in light REE (LREE) compared to heavy REE (HREE) and are characterised by high La/Lu ratios and negative Eu anomalies. The chondrite-normalised patterns for these granulite-grade rocks are similar to that of the average post-Archaean upper crust, but they are slightly enriched with La and Ce. The REE contents of the <63-μm fraction of the stream sediments are similar to the probable source rocks, but the other grain size fractions show more enriched patterns. The <63-μm stream sediments fraction contains lower total REE, more pronouncd negative Eu anomalies, higher EuN/SmN and lower La N/LuN ratios relative to other fractions. The lower La N/LuN ratio is related to the depletion of heavy minerals in the <63-μm fraction. The 63–125-μm and 125–177-μm grain size fractions of sediments are particularly enriched in LREE (average ΣLREE=2990 μg/g and 3410 μg/g, respectively). The total HREE contents are surprisingly uniform in all size fractions. However, the REE contents in the Walawe Ganga sediments are not comparable with those of the granulite-grade rocks from the source region of the sediments. The enrichment of REE is accounted for by the presence of REE containing accessory mineral phases such as zircon, monazite, apatite and garnet. These minerals are derived from an unknown source, presumably from scattered bodies of granitic pegmatites.  相似文献   

10.
刘丽君  王登红  代鸿章  侯江龙 《地球科学》2017,42(10):1673-1683
四川甲基卡新三号(X03) 超大型锂矿脉是近年发现且价值巨大的锂矿化伟晶岩脉,但相对缺少地球化学的研究,利用ICP-MS测试手段对该矿脉ZK1101钻孔中44件样品进行分析测试,发现该矿脉稀土总量很低(∑REE为0.180×10-6~8.613×10-6,平均值为2.543×10-6),配分曲线呈右倾斜型,相对富集轻稀土,总体表现铕负异常.围岩的稀土含量与一般片岩相近(∑REE为160.134×10-6~265.881×10-6,平均值为230.718×10-6),稀土配分曲线总体呈右倾平滑趋势,富集轻稀土,铕为负异常.铕的分布具有特殊性,表现为铕在伟晶岩脉的边部具有显著的正异常.∑REE与Li呈负相关性,δCe与Li则表现为弱正相关性.这一首次发现的低稀土总量和矿脉边部Eu显著正异常的特殊性,对于甲基卡伟晶岩的含矿性评价可能具有重要意义.   相似文献   

11.
A pilot study with Holocene fluvial sands was undertaken in order to evaluate the effects of source rock composition and climate on natural abundances of rare elements (REE) in the first leg of the sedimentary cycle. We have analysed the medium grained sand fraction of samples collected from first order streams exclusively draining granitic plutons in Montana (semi-arid), Georgia (humid), and in South Carolina (humid). Despite compositional differences between parent plutons the REE distribution patterns (but not the total absolute abundances) of the daughter sands are very similar. Averages of the three areas have a La/Lu ratio of ~ 103 showing a depletion of heavy REE with respect to an ‘average granite’ (La/Lu = 79) or the composite of North American Shales (NAS; La/Lu = 55). Also, the Eu/Sm ratio in sands from these areas is ~ 0·22 which is very close to the NAS ratio of 0·21. However, the overall REE distribution of these sands is not similar to that of NAS in any way. We conclude that the major rock type, but neither its minor subdivisions nor the climate (in the source area), controls the REE distribution patterns in first cycle daughter sands. But, the total and the parent rock-normalized abundances of REE in sands from the humid areas are much lower than those in sands from the arid areas.  相似文献   

12.
对大同盆地典型高砷地下水开展了稀土元素地球化学研究.研究表明: 高砷地下水具有低∑REE含量及富集重稀土(HREEs)特征.地下水中低含量∑REE与含水层沉积物中Fe-Mn氧化物/氢氧化物对REEs的吸附有关.地下水中重稀土元素相对于轻稀土元素的富集可能是吸附作用和碳酸根离子同REEs发生络合作用的共同结果.采用平均大陆上地壳标准化的地下水稀土元素分布表现出显著的Ce及Eu正异常.地下水Ce/Ce*值及Eu含量与Fe+Mn具有显著相关性, 表明铁锰氧化物还原性溶解是控制Ce/Ce*值及Eu含量特征的主要因素.Ce/Ce*值及Eu含量与As浓度的关系表明, Ce异常及Eu含量特征能对地下水中As的富集进行有效指示.   相似文献   

13.
Fine structures of mutually normalized rare-earth patterns of chondrites   总被引:2,自引:0,他引:2  
REE abundances in ten chondrites (nine falls and one find) were determined very accurately by mass-spectrometric stable isotope dilution techniques. All of the chondrites have different relative and absolute REE patterns. Except for Eu and, rarely, for Ce, the REE abundances in chondrites are smoothly fractionated from sample to sample. Notwithstanding differences in the abundances of common REE, four of five L6 chondrites have very similar absolute Eu abundances; their mutually-normalized REE patterns are not curved, but are composed of two rectilinear segments.The Leedey-normalized REE pattern for St. Séverin (LL6) is composed of two concave curves. Yonozu's (H4,5) pattern shows negligibly concave curvature on both sides of Eu. Kesen's (H4) pattern is unusual in its overall pattern but also in irregularities for particular elements. The irregularity may be connected with the unusually high vapor pressure of metallic Yb. The REE pattern for the Allende bulk sample shows a discontinuity, presumably reflecting its considerable heterogeneity of composition and structure. It is evident that any pattern of ordinary chondrites cannot be produced from the Allende bulk pattern. A comparison is also made with the results on the chondrite composites previously investigated.  相似文献   

14.
Analysis of the Eu and Sr “anomalies” of eucrites and lunar rocks allows constraints to be placed on the bulk compositions of the eucrite parent body (EPB) and the Moon. The elements Al, REE, and Sr, all are essentially incompatible with the major minerals of these small, low-?(O2) bodies, except for plagioclase, into which Al, Sr, and Eu tend to concentrate. Therefore, the hypothesis that Al, REE, and Sr in the EPB and the Moon are all in proportions close to those in the bulk solar system (i.e., chondrites) leads to certain predictions about the concentrations of these elements in samples affected by plagioclase fractionation. The predictions are almost ideally fulfilled by eucrites and lunar samples. For the EPB, the ratios REEAl, SrAl, and SrREE are constrained to be probably within 10%, almost certainly within 20%, of the chondritic ratios. For the more complicated Moon, the constraints are less precise: REEAl is very probably within 25% of chondritic; SrAl and SrREE are probably within 35% of chondritic. These findings are proof that there is a strong similarity between the bulk compositions of the planets and the compositions of chondritic meteorites.The eucrites' Sm-Eu-Sr systematics are also valuable sources of constraints on the distribution coefficients for Eu and Sr into plagioclase, at low ?(O2). From the slope of data for noncumulate eucrites on a Eu-Sm plot, D(Eu,pl/liq) can be inferred to be 1.1?0.10.2. From the slope on a Sr-Sm plot, D(Sr,pl/liq)) can be inferred to be 1.5 ± 0.3. In the case of D(Eu), this is in excellent agreement with experimental data. In the case of D(Sr), the empirical result is probably more appropriate for eucritic systems than most experimental data, which, due to compositional effects, scatter widely.  相似文献   

15.
Based on 51 wholerock analyses by XRF and summation over the layered group, the Kiglapait Intrusion contains 4.7?1.6+1.2 ppm Y, which resides principally in augite and apatite. Using liquid compositions calculated by summation, the partition coefficient DAUG/LY is 0.95 ± 0.12 from 84 to 97 PCS (percent solidified) and 1.5 ± 0.4 above 97 PCS. For feldspar, the most likely value for D is 0.028 ± 0.02 (N = 6).REE analyses for 13 whole rocks were interpreted with the aid of yttrium models to yield trends for wholerocks and liquids vs PCS. Summations over the rocks of the layered group gave La = 2.5, Ce = 5.8, Nd = 3.9, Sm = 1.0, Eu = 0.8, Tb = 0.17, Yb = 0.37, and Lu = 0.06 ppm, with 2 s.d. errors near ± 30%. All these elements are highly incompatible until the arrival of augite, which affects chiefly the HREE, and apatite, which affects all (but more strongly, the LREE). The net result is that after apatite arrival at 94 PCS, the liquid compositions are nearly constant, hence DWR/LREE ≈ 1.0. These results are compatible with the mineralogy of the intrusion and the estimated partition coefficients for feldspar, olivine, augite, apatite, and Fe-Ti oxide minerals. For pre-apatite liquids, DFSP/LREE vary regularly with the normative di content of the liquid and change by an order of magnitude, hence the bulk liquid composition must be considered in any attempt to invert the compositions of feldspars to parent liquids.The Eu anomaly at first decreases in Kiglapait liquids due to plagioclase fractionation, but then increases due to removal of augite and apatite with negative Eu anomalies. The features dominantly responsible for Eu partitioning are liquid structure and, for monoclinic ternary feldspars, crystal structure. The former is best monitored by the augite or diopside content of the liquid and the latter, by the K content of the feldspar.The chondrite-normalized REE pattern for the intrusion has LaN = 7.4, LuN = 1.6, (Ce/Yb)N = 3.6, and Eu/Eu* = 2.4, indicating its feldspar-rich nature. The chilled margin of the nearby Hettasch Intrusion has a similar but more evolved pattern, corresponding roughly to the Kiglapait liquid at 70 PCS. As with other data, those for the REE suggest source differences for the two intrusions rather than a relationship due to fractionation.  相似文献   

16.
A suite of Australian shales, greywackes and subgreywackes ranging in age from Proterozoic to Triassic were analyzed for the rare earth elements (REE) in order to detect any secular changes in rare earth distribution. These post-Archean sediments show remarkably similar relative rare earth patterns. They are characterized by negative Eu anomalies of almost constant magnitude (average Eu/Eu* = 0.67 ± 0.05) relative to chondrites and nearly constant ratios of light to heavy rare earths (average ∑LREE/∑HREE = 9.7 ± 1.8).

The REE abundances are generally higher in the younger sediments which may suggest that the absolute abundances of the rare earths in clastic sediments have gradually increased with time. Since no secular change in relative rare earth distribution was detected in the post-Archean sediments, a uniform process of crustal growth and evolution seems to have operated over the past 1500 million years at least.

Australites show rare earth distributions very similar to that of the average clastic sediment. This suggests that the tektite parent material originated in the upper crust.  相似文献   


17.
白云鄂博铁稀土矿床中稀土元素的分配特点   总被引:1,自引:0,他引:1       下载免费PDF全文
王凯怡 《地质科学》1981,(4):360-367
有关白云鄂博铁稀土矿床中稀土元素的组成特点和赋存形式,我所在六十年代曾作了大量工作,积累了大批数据。本文主要是利用这些数据,对该矿床中的稀土元素特别是其中的Nd、Sm、Eu的分配特点作初步阐述。  相似文献   

18.
Rare earth element (REE) concentrations are reported for a large suite of seafloor vent fluids from four hydrothermal systems in the Manus back-arc basin (Vienna Woods, PACMANUS, DESMOS and SuSu Knolls vent areas). Sampled vent fluids show a wide range of absolute REE concentrations and chondrite-normalized (REEN) distribution patterns (LaN/SmN ∼ 0.6-11; LaN/YbN ∼ 0.6 - 71; ). REEN distribution patterns in different vent fluids range from light-REE enriched, to mid- and heavy-REE enriched, to flat, and have a range of positive Eu-anomalies. This heterogeneity contrasts markedly with relatively uniform REEN distribution patterns of mid-ocean ridge hydrothermal fluids. In Manus Basin fluids, aqueous REE compositions do not inherit directly or show a clear relationship with the REE compositions of primary crustal rocks with which hydrothermal fluids interact. These results suggest that the REEs are less sensitive indicators of primary crustal rock composition despite crustal rocks being the dominant source of REEs in submarine hydrothermal fluids. In contrast, differences in aqueous REE compositions are consistently correlated with differences in fluid pH and ligand (chloride, fluoride and sulfate) concentrations. Our results suggest that the REEs can be used as an indicator of the type of magmatic acid volatile (i.e., presence of HF, SO2) degassing in submarine hydrothermal systems. Additional fluid data suggest that near-seafloor mixing between high-temperature hydrothermal fluid and locally entrained seawater at many vent areas in the Manus Basin causes anhydrite precipitation. Anhydrite effectively incorporates REE and likely affects measured fluid REE concentrations, but does not affect their relative distributions.  相似文献   

19.
Primary basanitoids from Ross Island, Antarctica have REE patterns and Pb isotope ratios similar to those for primary alkali basalts and nephelinites on ocean islands. The lead data from all volcanics on Ross Island have a spread of 4% in the 206/204 ratio and give a two-stage model lead age of 1500 m.y. The age is interpreted to be the time since the development of the chemical heterogeneity of the mantle source, presumably during an earlier melting process. Comparison of REE, K, Rb, Sr, Ba and P2O5 concentrations for alkali basalts and nephelinites shows that the chondrite normalized mantle source is enriched in light REE with average La/Sm=3.4, Ce/Sm=2.6, Nd/Sm=1.6. Assuming a mantle source with heavy REE abundances of three times chondrites, nephelinites require 3 to 7% partial melting of the mantle source and alkali basalts require 7 to 15% partial melting. The patterns of K, Cu, V and Ti abundances suggest that phlogopite is a residual mineral for most nephelinite, but not alkali basalt mantle sources, and that a sulfide phase and a titanium-rich mineral are in the residual mantle source for both alkali basalts and nephelinites. Small positive Eu anomalies (2–5%) in near primary alkali basalts and nephelinites suggest that the xxx of the mantle sources is 10?6 to 10?9 atm. The progressive enrichment of light REE and incompatible elements in the mantle sources for nephelinites and alkali basalts is proposed to result by intrusion of veins of basaltic melt due to very low percentages of melting 1 000 to 3 000 m.y. ago when this part of the deeper mantle was previously involved in convection and partial melting.  相似文献   

20.
Atmospheric dust is one of the important indicators of urban air quality. In this study, atmospheric dust and topsoil samples were collected monthly from four sites in Beijing and surrounding areas, and analyzed for rare earth elements (REEs). Total REE concentrations (∑REE) in the dusts ranged from 43.10 to 164.43 mg kg?1; concentrations in Beijing and Miyun were higher than those in Zhangbei and Fengning. Most of sampling sites showed the same seasonal depletion in dust ∑REE concentrations in summer, probably caused by the “dilution effect” of added organic matter in summertime samples. Most of the dusts have consistent Ce-anomaly (Ce/Ce*) values (0.91–1.00) and Eu anomaly (Eu/Eu*) values (0.93–1.36); some dusts show slight positive Eu anomalies. The REE patterns of both the dusts and topsoils (normalized to post-Archean shales from Australia, PASS) show different signatures at different sites, whereas the temporal patterns are consistent at each site. These results suggest that local topsoils are likely to be the main provenance of the dusts in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号