首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Noble gas elemental and isotopic abundances were measured in steam from four wells in the Baca geothermal reservoir located in the Valles Caldera, New Mexico. The 40Ar36Ar ratio and noble gas elemental abundances relative to 36Ar are all strongly correlated with 1/36Ar, the inverse of the argon content. Ratios of (α,n)-produced 21Ne1 and radiogenic 40Ar1 to total 4He (dominantly radiogenic) are nearly constant at 2.1 × 10?8 and 0.20, respectively. The 3He4He ratio covers a restricted range of 3.9 to 4.8 times atmospheric. The high 3He content of the gas indicates the presence of a helium component ultimately derived from the mantle. Kr and Xe isotopic compositions are close to atmospheric; excess 129Xe1 is <0.25% of the total 129Xe.The high degree of linear correlation among the various noble gas results strongly suggests that the Baca reservoir contains two distinct fluids that are produced in varying proportions from individual wells. The noble gases in fluid A (~2900 mg/1 C1) are air-like, but with lighter gases and isotopes preferentially enriched. The fluid A 36Ar content is low, only 13% that of 10°C air-saturated water (ASW). The second fluid, B (~ 1700 mg/1 C1), is the dominant carrier of the radiogenic and mantle-derived gases. The heavier non-radiogenic gases are preferentially enriched in fluid B, and its 36Ar content is very low, only 5–7% ASW. The source of the noble gases in fluid A is tentatively ascribed to leaching of the relatively young (<1.4 m.y.) volcanic Bandelier Tuff. The radiogenic gases and mantle-derived helium in fluid B suggest a deeper source, possibly including gases escaping from a magma.  相似文献   

2.
Gabbro and diorite from the Skaergaard layered igneous intrusion contain noble gases which are mixtures of atmospheric and juvenile components. Atmospheric noble gases predominate in samples that have undergone extensive oxygen isotope exchange with meteoric-hydrothermal water. The source of the atmospheric noble gas component is inferred to be the hydrothermal circulation system. A juvenile component with 40Ar36Ar ≥ 6100 and containing fission xenon is also present This component predominates in samples showing unaltered magmatic oxygen isotope compositions. Neon of atmospheric isotopic composition is associated with the juvenile radiogenic 40Ar and fission xenon. The source of this second noble gas component may be either the crustal country rock or the upper mantle. If the neon is juvenile primordial neon from a mantle source region, terrestrial primordial 20Ne22Ne is the same as atmospheric to within 4%. However, subduction of atmospheric noble gases into the upper mantle may provide an alternate source of neon and other noble gases in the mantle.  相似文献   

3.
The degassing of radiogenic Ar40 is defined as coherent if only the Ar40 associated with parent K is degassed as K is transferred from the mantle to crust. Coherency predicts, for a 4.55 b.y. Earth, a sialic crust with 2.50 per cent K, using only the Ar content of the atmosphere and present crust (from a Hurley and Rand, 1969, age distribution). This is a maximum limit to K content of the sialic crust if the age of the Earth is no younger than 4.55 b.y. A K content of the sialic crust of 1.9 per cent (Holland and Lambert, 1972) implies an efficiency (E) less than 100 per cent for K transfer from oceanic basalt to sialic crust in subduction zones and/or some non-coherent (preferential) degassing of Ar from the mantle.K, Ar coherence for mantle differentiation to crust is supported however, by the agreement of the predicted oceanic He flux and radiogenic He-Ar ratios of volcanic gases with the observed limits if the best estimate of K, U, Th influx rates at oceanic ridges is used.Assuming K, Ar coherence, various sea-floor spreading rates as functions of time, and limiting K contents of the sialic crust, computed models give E and the portion of the sialic crust derived from melting oceanic basalt in subduction zones. Except for models with very high spreading rates in the Precambrian, they also predict that a significant part of the sialic crust was derived from vertical differentiation of the mantle, presumably early in Earth history. The results are in accord with Armstrong's model of an early sialic crust that is recycled to give a Hurley-type age pattern with the proviso that the ‘vertical’ sial Kυis formed early in Earth history for models with a high Kυcomponent.The coherent K, Ar models with preferred estimates of input parameters are also consistent with a limited mixing model (only old and new sial are equilibrated) for Sr isotopic evolution and the probable average Sr87Sr86 ratio now of the sialic crust.  相似文献   

4.
Silicate and troilite from IAB iron meteorites were dated by the 40Ar-39Ar technique. Silicate from four IAB meteorites gave well-defined apparent-age plateaus which accounted for 71–99% of the released 39Ar. At low temperatures, only Copiapo showed appreciable loss of 40Ar, while Mundrabilla and Woodbine released excess 40Ar. The plateau ages are: 4.50 Byr for Copiapo, 4.57 Byr for Mundrabilla, 4.57 Byr for Woodbine, 4.54 Byr for unetched Pitts, and 4.57 Byr for etched Pitts; the 1σ error in each case is ± 0.03 Byr. A poorly-defined age plateau for Landes gives an age of 4.48 Byr, while the total K-Ar age (4.55 Byr) is significantly higher. The average (40Ar/36Ar)trapped ratio for all silicate samples is 0.4 ± 0.4.Simple and undisturbed K-Ar systems are rare for meteorites, yet it appears to be a common feature for IAB silicates. In addition, plateau ages of IAB silicates are as old or older than the mean age of unshocked chondrites (4.47 Byr).Troilite samples yielded complex patterns which were evaluated via 40Ar/36Ar vs 39Ar/36Ar plots. Data for Pitts troilite are consistent with silicate and troilite retaining Ar at about the same time initially, but then 4.25 Byr ago nearly all the Ar in troilite was redistributed. The 700–1000°C points for Mundrabilla troilite define a line which gives an age of 6.2 Byr and (40Ar/36Ar)trapped = 42. This line may be an artifact, perhaps produced by homogenization of Ar and K.Approximate estimates of cosmic-ray exposure ages are 240 Myr for Landes, 130 Myr for Copiapo, 190 Myr for Woodbine, 170 Myr for Mundrabilla troilite, and 60 Myr for Pitts troilite.The I-Xe study of these same samples revealed a good correlation between well-defined I-Xe ages of silicates and Ni contents of metal (Niemeyer, 1979). The poorer resolution of the 40Ar-39Ar technique hampers a similar evaluation; nevertheless, plateau ages of the silicates suggest a systematic trend with Ni contents.  相似文献   

5.
Metal and silicate portions from 13 mesosiderites, one pallasite, Bencubbin (“unique”) and Udei Station (‘iron with silicate inclusions’) have been analysed for their content of He, Ne and Ar; in most cases 36Cl could be determined as well. 36Cl-36Ar cosmic ray exposure ages fall between 10 and 160 Myr. Half of the metal samples show a deficit of spallogenic 3He (up to 30%) which we ascribe to a loss of tritium. The observed depletion of 3He in the silicates is correlated with their mineralogical composition: feldspar has lost its 3He in all cases, pyroxene definitely in one and possibly in five others, while olivine has been affected in only two meteorites. The thermal histories during their exposure to the cosmic radiation have been different for different meteoroids. Nevertheless, with the exception of Veramin, the data are compatible with the assumption of a continuous diffusion loss during a considerable fraction of the exposure era. For Veramin, however, an episodic event late in the exposure history is required. The exceptionally high 39Ar36Cl ratio in the metal, which is due to a high 39Ar activity, indicates that the event occurred during the last 500,000 years or so and resulted in an extremely excentric orbit (large aphelion).Production rates of 38,39Ar from Ca and 21,22Ne from Mg are given. The ratio P38CaP21Mg is close to unity. The ratios P38CaP38Fe vary between 20 and 50, and are not correlated with the absolute production rate of 38Ar from metal. The 22Ne21Ne production ratio from Mg is found to be close to but below unity.Of the mesosiderites only Veramin shows unambiguous evidence for primordial rare gases with larger amounts and a higher 20Ne36Ar ratio in the olivine, suggesting in situ fractionation to have at least been partly responsible for the abundance pattern found. Bencubbin contains large amounts of strongly fractionated primordial gases, but again part of the fractionation may have occurred in situ. Udei Station shows an excess of (3.5 ± 0.6) × 10?10 cm3 STP 129Xe/g in the non-magnetic portion.  相似文献   

6.
The Rameka Gabbro, emplaced 367 Ma ago, experienced a well documented reheating on intrusion of the Separation Point Batholith 114 Ma ago. 40Ar39Ar age spectrum analyses of hornblende from the Rameka Gabbro show diffusion gradients which provide information on the 40Ar boundary concentration during reheating.Three samples of hornblende exhibit age spectra that conform to a model of 40Ar loss by diffusion, implying a zero 40Ar boundary concentration during heating. The calculated 40Ar loss from these samples, together with a model of heat flow in the aureole, provide estimates of diffusion coefficients of 40Ar in Mg-rich hornblende which correspond to an activation energy, E, of ~60 kcal-mol?1 and a frequency factor. D0, of ~ 10?3 cm2-sec?1. When combined with laboratory diffusion results, these data yield a well defined diffusion law (E = 63.3 ± 1.7 kcal-mol?1, D0 = 0.022 +0.048?0.010cm2-sec?1).The age spectra of the eight other samples record steep gradients of excess 40Ar over the first few percent of gas release. Although this effect causes high apparent conventional K-Ar ages, the plateau segments of many sampes still record the crystallization age of 367 ± 5 Ma. These measurements show that the excess 40Ar phase developed locally in the intergranular regions of the gabbro, following intrusion of the batholith. on time scales that varied from 104 to 106years. The minimum average 40Ar36Ar ratio of this component was found to be 1300 ± 400. The partial pressure of Ar was at least 10?2 bars in some places.A single 40Ar39Ar age spectrum analysis of plagioclase reveals a ‘saddle-shaped” release pattern with a minimum at 140 Ma.In conjunction with theoretical diffusion models and a diffusion law, 40Ar39Ar age spectrum analysis of hornblende that has experienced a post-crystallization heating can provide close estimates of the maximum temperature of the thermal event as well as both age of crystallization and reheating.  相似文献   

7.
The Roving Automated Rare Gas Analysis (RARGA) lab of Berkeley's Physics Department was deployed in Yellowstone National Park for a 19 week period commencing in June, 1983. During this time 66 gas and water samples representing 19 different regions of hydrothermal activity within and around the Yellowstone caldera were analyzed on site. Routinely, the abundances of five stable noble gases and the isotopic compositions of He, Ne, and Ar were determined for each sample. In a few cases the isotopes of Kr and Xe were also determined and found to be of normal atmospheric constitution.Correlated variations in the isotopic compositions of He and Ar can be explained within the precision of the measurements by mixing of only three distinct components. The first component is of magmatic origin and is enriched in the primordial isotope 3He with 3He4He ≥ 16 times the air value. This component also contains radiogenic 40Ar and possible 36Ar with 40Ar36Ar ≥ 500, resulting in a 3He36Ar ratio ≥ 41,000 times the air value. The second component is assumed to be purely radiogenic 4He and 40Ar (41He401Ar = 4.08 ± .33). This component is the probable carrier of observed excesses of 211Ne, attributed to the α,n reaction on 18O. Its radiogenic character implies a crustal origin in U. Th, and Krich aquifer rocks. The third component, except for possible mass fractionation, is isotopically indistinguishable from the noble gases in the atmosphere. This component originates largely from infiltrating run-off water saturated with atmospheric gases.In addition to exhibiting nucleogenic 211Ne, Ne data show anomalies in the ratio 20Ne20Ne, which correlate roughly with the 21Ne22Ne anomalies for the most part, but not as would occur from simple mass fractionation. Some exaggerated instances of the 20Ne22Ne anomaly occur which could be explained by combined mass fractionation of Ne and Ar isotopes to a severe degree coupled with remixing with normally isotopic gases. Otherwise exotic processes have to be invoked to explain the 20Ne data.Relative abundances of the non-radiogenic and non-nucleogenic noble gases (22Ne, 36Ar, 84Kr, and 132Xe) are highly variable but strongly correlated. High Xe/Ar ratios are always accompanied by low Ne/ Ar ratios and vice versa. Except for water from the few cold (T < 20°C) springs analyzed, none of the samples have relative abundances consistent with air saturated water and the observed variations are not readily explained by the distillation of air saturated water.In characterizing each area of hydrothermal activity by the highest 3He4He ratio found for that area, we find that within the caldera this parameter is somewhat uniform at ~7 ± 1 times the air value. There are exceptions, most notably at Mud Volcano, an area located along a crest of recent and rapid uplift. Here the maximum 3He4He ratio is ~ 16 times the air value. Also noteworthy is Gibbon Basin which is in the vicinity of the most recent rhyolitic volcanism and exhibits a 3He4He ratio ~ 13 times the air value. Immediately outside the caldera the maximum sol3He4He ratio decreases rapidly to values < ~3 times the air value.  相似文献   

8.
40Ar39Ar age spectrum analyses of three microcline separates from the Separation Point Batholith, northwest Nelson, New Zealand, which cooled slowly (~5°C-Ma?1) through the temperature zone of partial radiogenic 40Ar accumulation are characterized by a linear age increase over the first 65 percent of gas release with the lowest ages (~80 Ma) corresponding to the time that the samples cooled below about 100°C. The last 35 percent of 39Ar released from the microclines yields plateau ages (103,99 and 93 Ma) which reflect the different bulk mineral ages, and correspond to cooling temperatures between about 130 to 160°C. Theoretical calculations confirm the likelihood of diffusion gradients in feldspars cooling at rates ≤5°C-Ma?1. Diffusion parameters calculated from the 39Ar release yield an activation energy, E = 28.8 ± 1.9 kcal-mol?1, and a frequency factor/grain size parameter, D0l2 = 5.6?3.9+14sec?1. This Arrhenius relationship corresponds to a closure temperature of 132 ± 13°C which is very similar to the independently estimated temperature. From the observed diffusion compensation correlation, this D0l2 implies an average diffusion half-width of about 3 μm, similar to the half-width of the perthite lamellae in the feldspars. The range in microcline K-Ar ages from the Separation Point Batholith is the result of relatively small temperature differences within the pluton during cooling. Comparison of the diffusion laws determined for microcline with those for anorthoclases and other homogeneous K-feldspars (E = 40 to 52 kcal-mol?1) reveals that Ar diffusion is more highly temperature dependent in the disordered structural state than in the ordered structural state. Previously published U-shaped age spectra are probably the result of the superimposition of excess 40Ar upon diffusion profiles of the kind described here.  相似文献   

9.
The inert gases have been measured in six size fractions covering the range below 500 μm, in a single feldspathic fragment weighing 523 μg, and in an agglutinate particle weighing 465 μg. The two size fractions between 125 and 250 μm as well as 250 and 500 μm were separated into magnetic and non-magnetic portions, which were measured separately. Like the Apollo and Luna 16 fines, the terra fines represented by Luna 20 are very rich in trapped solar-wind gases, but they contain relatively less He4 and Ne20, which is revealed by their average He4Ne20 ratio of 35 and Ne20Ar36 ratio of 2.9. Obviously the terra materials are less retentive for solar-wind He and Ne than typical mare fines such as 10084. Whether this is due to the relatively small TiO2 or the relatively large plagioclase content of the former is not resolved. (Ar36Kr84)trapped and (Ar36Xe132)trapped ratios are relatively large; the average values are 2800 and 14400, respectively. The apparent Ne21 radiation ages of all the size fractions are in the range 209–286 × 106 yr; the average is 260 × 106 yr. This is in the range of values known for the Apollo and Luna 16 fines. The feldspathic fragment has a much greater apparent Nec21 age of 780 × 106 yr. The Ar40-Ar36 systematic reveals the presence of two Ar40 components, because Ar40 = (1.41 ± 0.076)Ar36 + (0.490 ± 0.130) × 10?4 (cm3 STP/g). The Ar40Ar36 slope of 1.41 is not inconsistent with an origin of the sample from a relatively old terra region.  相似文献   

10.
The geochemical history of Lake Lisan, the Pleistocene precursor of the Dead Sea, has been studied by geological, chemical and isotopic methods.Aragonite laminae from the Lisan Formation yielded (equivalent) Sr/Ca ratios in the range 0.5 × 10?2?1 × 10?2, Na/Ca ratios from 3.6 × 10?3 to 9.2 × 10?3, δ18OPDB values between 1.5 and 7%. and δ13CPDB from ?7.7 to 3.4%..The distribution coefficient of Na+ between aragonite and aqueous solutions, λANa, is experimentally shown to be very sensitive to salinity and nearly temperature independent. Thus, Na/Ca in aragonite serves as a paleosalinity indicator.Sr/Ca ratios and δ18O values in aragonite provide good long-term monitors of a lake's evolution. They show Lake Lisan to be well mixed, highly evaporated and saline. Except for a diluted surface layer, the salinity of the lake was half that of the present Dead Sea (15 vs 31%).Lake Lisan evolved from a small, yet deep, hypersaline Dead Sea-like, water body. This initial lake was rapidly filled-up to its highest stand by fresh waters and existed for about 40,000 yr before shrinking back to the present Dead Sea. The chemistry of Lake Lisan at its stable stand represented a material balance between a Jordan-like input, an original large mass of salts and a chemical removal of aragonite. The weighted average depth of Lake Lisan is calculated, on a geochemical basis, to have been at least 400, preferably 600 m.The oxygen isotopic composition of Lake Lisan water, which was higher by at least 3%. than that of the Dead Sea, was probably dictated by a higher rate of evaporation.Na/Ca ratios in aragonite, which correlate well with δ13C values, but change frequently in time, reflect the existence of a short lived upper water layer of varying salinity in Lake Lisan.  相似文献   

11.
Determinations of 40Ar39Ar ages are reported for seven severely shock-heated chondrites. Shaw gives a plateau age of 4.29 Gyr. Louisville, Farmington, and Wickenburg give well-defined intercept ages of 0.5–0.6 Gyr. Orvinio, Arapahoe, and Lubbock show complex 40Ar39Ar release curves, with age minima of 0.7–1.0 Gyr. Degassing times of 0.5–1.0 Gyr are suggested for these meteorites. Most severely shocked chondrites were apparently not totally degassed of 40Ar by the event, but retained from ~ 2 to ~45% of their 40Ar. When calculated values of the diffusion parameter, Da2, for Ar are examined in Arrhenius plots, they show two distinct linear relationships, which apparently correspond to the degassing of different mineral phases with distinct KCa ratios and different average temperatures for Ar release. The experimentally determined values of Da2 for the high temperature phase of several severely shocked chondrites are ~10?7 to 10?5sec?1 for their determined shock-heating temperatures of ~950°C to ~ 1200°C. The inferred reheating temperatures, Da2 values, and fraction of 40Ar loss during the reheating event for these seven chondrites suggest post-shock cooling rates and burial depth of ~ 10?2 10?4°C/sec and ~0.5–2m, respectively. For three chondrites these cooling rates agree with those determined from Ni diffusion in metal grains: for five chondrites the cooling rates derived from 40Ar and Ni disagree by a factor of ~105. It is suggested that five of these severely shocked chondrites were part of large ejecta blankets containing hot material and cold clasts with a distribution of sizes and that the cooling rate of this ejecta appreciably decreased as a function of time.  相似文献   

12.
High precision mass spectrometric determination of calcium isotope ratios allows the 40K → 40Ca radioactive decay to be used for dating a much broader range of geologic materials than is suggested by previous work. 40Ca42Ca is used to monitor enrichments in 40Ca and can be measured to ±0.01% (2σ) using an exponential mass discrimination correction (Russell et al., 1978) and large ion currents. The earth's mantle has such a low KCa (~0.01) that it has retained “primordial” 40Ca42Ca = 151.016 ± 0.011 (normalized to 42Ca44Ca = 0.31221), as determined by measurements on two meteorites, pyroxene from an ultramafic nodule, metabasalt, and carbonatite. 40Ca42Ca ratios can be conveniently expressed relative to this value as ?Ca in units of 10?4. To test the method for age dating, a mineral isochron has been obtained on a sample of Pikes Peak granite, which has been shown to have concordant KAr, RbSr, and UPb ages. Plagioclase, K-feldspar, biotite, and whole rock yield an age of 1041 ± 32 m.y. (2σ) in agreement with previous age determinations (λK = 0.5543 b.y.?1, λβ?λK = 0.8952, 40K = 0.01167%). The initial 40Ca42Ca of 151.024 ± 0.016 (?Ca = +0.5 ± 1.0), indicates that assimilation of high K/Ca crust was insufficient to affect calcium isotopes. Measurements on two-mica granite from eastern Nevada indicate that the magma sources had K/Ca ≈ 1, similar to intermediate-composition crustal rocks. These results show that the KCa system can be used as a precise geochromometer for common felsic igneous and metamorphic rocks, and may prove applicable to sedimentary rocks containing authigenic K minerals. The relatively short half-life of 40K, the non-volatile daughter, and the fact that potassium and calcium are stoichiometric constituents of many minerals, make the KCa system complementary to other dating methods, and potentially applicable to a variety of geologic problems.  相似文献   

13.
The 3He4He ratios measured in 27 Southern Africa diamond stones, four from Premier Mine and the rest of unidentified origin, range from 4.2 × 10?8 to 3.2 × 10?4, with three stones above 1 × 10?4. We conclude that the initial helium isotopic ratio (3He4He)0 in the earth was significantly higher than that of the planetary helium-A (3He4He = 1.42 × 10?4), but close to the solar helium (3He4He ? 4 × 10?4).The apparent K-Ar ages for the twelve diamonds of unidentified origin show enormously old age, indicating excess argon-40. 3He4He evolution in diamonds suggests that the diamonds with the high 3He4He ratio (>2 × 10?4) may be as old as the earth.Noble gas elemental abundance in the diamonds relative to the air noble gas abundance shows monotonie decrease with a decreasing mass number.This paper discusses the implications of these observations on the early solar system and the origin of diamonds.  相似文献   

14.
15.
The South Mountain batholith of southwestern Nova Scotia is a large, peraluminous, granodiorite-granite complex which intrudes mainly greenschist facies metasediments of the Cambro-Ordovician Meguma Group. Using Rb-Sr isochrons constructed from whole rocks and mineral separates, the present study shows a variation in age and initial ratios of the intrusive phases of the batholith as follows: biotite granodiorite (371.8 ± 2.2 Ma, (87Sr86Sr)i ranges from 0.7076 ± 0.0003 to 0.7090 ± 0.0003, with the average = 0.7081); adamellite (364.3 ± 1.3 Ma, (87Sr86Sr)i = 0.70942 ± 35); porphyry (361.2 ± 1.4 Ma, (87Sr86Sr)i = 0.71021 ± 119); using λ87Rb = 1.42 × 10?11yr?1.A suite of Meguma country rock samples showed a variation of 87Sr86Sr = 0.7113?0.7177 at the time of intrusion of the batholith. A number of xenoliths of this material occurring in the marginal granodiorite had partially equilibrated isotopically with the granodiorite at a higher 87Sr86Sr ratio than elsewhere in the granodiorites. This evidence demonstrates that isotopic (and probably some accompanying bulk chemical) contamination by the Meguma rocks has been an important factor in determining the ultimate chemical composition and mineralogy of the South Mountain batholith.The (87Sr86Sr)372 = 0.7081 of the early granodiorites indicates that the parent magma of the South Mountain batholith was derived from a source unlike the Meguma Group. The precise nature of the source region cannot be determined by Rb-Sr work unless the degree of contamination with Megumalike material is known.  相似文献   

16.
Nine glauconite samples with relatively high K concentrations and which appear to be well crystallized using normal X-ray diffraction techniques have been studied using the 40Ar39Ar method. The glauconite 40Ar39Ar apparent ages exceed their KAr, RbSr and, in most cases, stratigraphic ages by substantial amounts. 40Ar39Ar release spectra sometimes yield plateaus but these apparent ages have no geological significance. The results indicate that 39Ar is lost by recoil from mineral grains during neutron irradiation, consistent with previously reported observations. The amount of 39Ar loss was measured by isotope dilution for four samples and varied from 29% to 17%. In contrast, radiogenic 40Ar is quantitatively retained during irradiation. The very fine blades which make up glauconite grains yield the mineral susceptible to large amounts of 39Ar loss and unsuitable for 40Ar39Ar dating.  相似文献   

17.
KAr and 40Ar39Ar ages have been determined for altered submarine tholeiitic and boninite (high-Mg andesite) lavas from the Dabi Volcanics, Cape Vogel Peninsula, Papua New Guinea. 40Ar39Ar whole rock total fusion and plateau ages identify a Late Paleocene age for the tholeiitic lavas (58.9 ± 1.1 Ma) and also for the boninitic lavas (58.8 ± 0.8 Ma). Apparent KAr ages for the same samples range from 27.2 ± 0.7 to 63.9 ± 4.5 Ma, and young KAr ages for glassy boninites are probably due to variable radiogenic 40Ar (40Ar1) loss. These new ages effectively reconcile previously ambiguous age data for the Dabi Volcanics and indicate contemporaneous tholeiitic and boninitic volcanism occurring in southeast PNG during the Late Paleocene.Smectites, developed as alteration products after glass in oceanic lavas commonly do not retain 39Ar during or subsequent to irradiation, but in some cases may contain 40Ar1. In the absence of other factors modifying K and Ar contents, samples which have not lost 40Ar1 from smectite and suffer 39Ar loss only, are interpreted to have been altered immediately subsequent to the crystallization of the lava; whereas samples which have lost 40Ar1 as well as 39Ar may be the result of either recent alteration, or of continuous 40Ar1 loss since the time of crystallization.  相似文献   

18.
In a soil developed on the Cretaceous chalk of the Eastern Paris basin, calcite dissolution begins at the surface. The soil water is rapidly saturated in calcite. Calcite dissolution follows two different pathways according to seasonal pedoclimatic conditions.During winter: the soil is only partly saturated in water and the CO2 partial pressure is low (Ca 10?3 atm.). As a consequence total inorganic dissolved carbon (TIDC) is a hundred times the carbon content of the gaseous phase. Equilibrium is usually observed between the two phases. It is a closed system. The measured carbon 14 activity (87,5%) and 13C content (δtidc13C = ?12,2%0) of the drainage water are very close to theoretical values calculated for an ideal mixing system between gaseous and mineral phases (respectively characterized by the following isotopic values: δG13C = ?21,5%0; AG14C = 118%; δM13C = +2,9%0; AM14C = 28%).During spring and summer: the soil moisture decreases, the input of biogenic CO2 induces an increase of the soil CO2 partial pressure (Ca from 3.10?3 atm to 7.10?3 atm). The carbon content of the gaseous phase is higher by an order of magnitude compared to winter conditions. Therefore the aqueous phase is undersaturated in CO2 with respect to the latter. This disequilibrium occurs as a result of unbalanced rates of CO2 dissolution and CO2 effusion toward atmosphère. It is an open system. The carbon isotopic ratio of the aqueous phase is regulated by that of the gaseous phase, as demonstrated by the agreement between measured and calculated isotopic compositions (respectively δL mes = from ?9,4%0 to ?11,5%0, δl calc = from ?9,8%0 to ?13,9%0 AL mes = 119%, AL calc = from 119% to 125%).The solutions originating from both systems (open and closed) move downwards without significant mixing together. It has also been observed that no significant variation of the TIDC isotopic composition occurs during precipitation of secondary calcite.  相似文献   

19.
This study presents data from experiments investigating carbon isotope exchange between carbonate solution and solid calcite using carbon-13 as a tracer. All experiments were done with calcite saturated solutions and results show that a two-step adsorption-recrystallization reaction takes place. Isotope effects are caused by exchange by carbonate on the solid surface with carbon in the aqueous phase. Adsorption reactions are characterized by a maximum isotopic exchange capacity (IEC) on crystal surfaces of about 1011 reaction sites per cm2, following a second order rate law with respect to 13C concentration in solution (constant kex ? 106 cm5 mole?1 s?1 and half-life t12 = 700 s). The adsorption reaction was followed by a first order recrystallization which is characterized by a rate constant of the order of 10?8 s?1 and a t12 of 107 s. Negative isotopic gradient experiments and runs with calcite crystals in Mg2+ spiked solutions provided the preliminary basis for the characterization of the mechanisms of both proposed reactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号