首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Near-infrared spectra, 0.65–2.5 μm, are presented for Tethys, Dione, Rhea, Iapetus, and Hyperion. Water ice absorptions at 2.0, 1.5, and 1.25 μm are seen in the spectra of all five objects (except the 1.25-μm band was not detected in spectra of Hyperion) and the weak 1.04-μm ice absorption is detected on the leading and trailing sides of Rhea, and the trailing side of Dione. Upper limits to the 1.04-μm ice band depth are <0.3% for the leading side of Dione; <0.7% for the leading side of Iapetus, and the trailing side of Tethys; <1% on the trailing side of Iapetus; and <5% on the leading side of Tethys. The leading-trailing side ice band depth differences on Saturn's satellites are similar to those for the Galilean satellites, indicating possible surface modification by magnetospheric charged particle bombardment. Limits are determined for the amount of particulates, trapped gases, and amonium hydroxide on the surface. The surfaces of Saturn's satellites (except the dark side of Iapetus) are nearly pure water ice, with probably less than about 1 wt% particulate minerals. The ice could be clathrates with as much as a few weight percent trapped gases. The upper limit of amonium hydroxide depends on the spectral data precision and varies from ~ 1 wt% NH3 for the leading side of Rhea to ~ 10 wt% NH3 for Dione.  相似文献   

2.
We performed photometry of Cassini Visual Infrared Mapping Spectrometer observations of Iapetus to produce the first phase integrals calculated directly from solar phase curves of Iapetus for the leading hemisphere and to estimate the phase integrals for the trailing hemisphere. We also explored the phase integral dependence on wavelength and geometric albedo. The extreme dichotomy of the brightness of the leading and trailing sides of Iapetus is reflected in their phase integrals. Our phase integrals, which are lower than the results of Morrison et al. (Morrison, D., Jones, T.J., Cruikshank, D.P., Murphy, R.E. [1975]. Icarus 24, 157-171) and Squyres et al. (Squyres, S.W., Buratti, B.J., Veverka, J., Sagan, C. [1984]. Icarus 59, 426-435), have profound implications on the energy balance and volatile transport on this icy satellite.  相似文献   

3.
The structure, dynamical equilibrium, and evolution of Saturn’s moon Iapetus are studied. It has been shown that, in the current epoch, the oblateness of the satellite ε2 ≈ 0.046 does not correspond to its angular velocity of rotation, which causes the secular spherization behavior of the ice shell of Iapetus. To study this evolution, we apply a spheroidal model, containing a rock core and an ice shell with an external surface ε2, to Iapetus. The model is based on the equilibrium finite-difference equation of the Clairaut theory, while the model parameters are taken from observations. The mean radius of the rock core and the oblateness of its level surface, ε1 ≈ 0.028, were determined. It was found that Iapetus is covered with a thick ice shell, which is 56.6% of the mean radius of the figure. We analyze a role of the core in the evolution of the shape of a gravitating figure. It was determined that the rock core plays a key part in the settling of the ice masses of the equatorial bulge, which finally results in the formation of a large circular equatorial ridge on the surface of the satellite. From the known mean altitude of this ice ridge, it was found that, in the epoch of its formation, the rotation period of Iapetus was 166 times shorter than that at present, as little as T ≈ 11h27m. This is consistent with the fact that a driving force of the evolution of the satellite in our model was its substantial despinning. The model also predicts that the ice ridge should be formed more intensively in the leading (dark and, consequently, warmer) hemisphere of the satellite, where the ice is softer. This inference agrees with the observations: in the leading hemisphere of Iapetus, the ridge is actually high and continuous everywhere, while it degenerates into individual ice peaks in the opposite colder hemisphere.  相似文献   

4.
W.M Grundy  L.A Young  E.F Young 《Icarus》2003,162(1):222-229
New 0.8- to 2.4-μm spectral observations of the leading and trailing hemispheres of the uranian satellite Ariel were obtained at IRTF/SpeX during 2002 July 16 and 17 UT. The new spectra reveal contrasts between Ariel’s leading and trailing hemispheres, with the leading hemisphere presenting deeper H2O ice absorption bands. The observed dichotomy is comparable to leading-trailing spectral asymmetries observed among jovian and saturnian icy satellites. More remarkably, the trailing hemisphere spectrum exhibits three narrow CO2 ice absorption bands near 2 μm. This discovery of CO2 ice on one hemisphere of Ariel is its first reported detection in the uranian system.  相似文献   

5.
We present individual spectra 0.8-2.5 μm of the leading and trailing hemispheres of Enceladus obtained with the CorMASS spectrograph on the 1.8 m Vatican Advanced Technology Telescope (VATT) at the Mount Graham International Observatory. While the absorption bands of water ice dominate the spectrum of both hemispheres, most of these bands are stronger on the leading hemisphere than the trailing hemisphere. In addition, longward of 1 μm, the continuum slope is greater on the leading hemisphere than the trailing hemisphere. These differences could be produced by the presence of particles on the trailing side that are smaller and/or microstructurally more complex than those on the leading side, consistent with the preferential erosion or structural degradation of regolith particle grains on the trailing side by magnetospheric sweeping. We also explore compositional differences between the two hemispheres by applying Hapke spectrophotometric mixture models to the spectra whose components include water ice and ammonia hydrate (1% NH3⋅H2O). We find that spectral models which include as much as 25% by weight ammonia hydrate intimately mixed with water ice and covering 80% of the illuminated area of the satellite fit the observed spectrum of both the leading and trailing hemispheres. Areal (checkerboard) mixing models of ammonia hydrate and water ice fit the leading hemisphere with 15% of the surface comprised of ammonia hydrate and the trailing hemisphere with 10% ammonia hydrate. Therefore, while these spectral data do not contain an unambiguous detection of ammonia hydrate on Enceladus, our spectral models do not preclude the presence of a modest amount of 1% NH3⋅H2O on both hemispheres. We examine spectral differences and similarities between both hemispheres and the tenuous E ring within which Enceladus orbits. The spectral resolution (R=λλ) of these CorMASS data (R∼300) is comparable to but nevertheless higher than that of the Visual-Infrared Mapping Spectrometer (VIMS) (R=225) onboard the Cassini spacecraft.  相似文献   

6.
Understanding the collisional behavior of ice dust aggregates at low velocity is a key to determining the formation process of small icy bodies such as icy planetesimals, comets and icy satellites, and this collisional behavior is also closely related to the energy dissipation mechanism in Saturn’s rings. We performed head-on collision experiments in air by means of free-falling centimeter-sized sintered snowballs with porosities from 44% to 80% at impact velocities from 0.44 m s?1 to 4.12 m s?1 at ?10 °C. In cases of porosity larger than 70%, impact sticking was the dominant collision outcome, while bouncing was dominant at lower porosity. Coefficients of restitution of snow in this velocity range were found to depend strongly on the porosity rather than the impact velocity and to decrease with the increase of the porosity. We successfully measured the compaction volume of snowballs after the impact, and it enabled us to estimate the dynamic compressive strength of snow with the assumption of the energy conservation between kinetic energy and work for deformation, which was found to be consistent with the upper limit of static compressive strength. The velocity dependence of coefficients of restitution of snow was analyzed using a Johnson’s model, and a diagram for collision outcomes among equal-sized sintered snowballs was successfully drawn as a function of porosity and impact velocity.  相似文献   

7.
Iapetus (S8) is unique in our solar system in that the albedo of its leading hemisphere is only 0.05 while that of the trailing side is 0.5. Several existing hypotheses are examined and found inadequate. Photometric studies of the dark side are compared to comet nuclei and class D asteroids. It is hypothesized that in the last 106–108 yrs the leading side suffered a high-velocity collision with a cometary body of mass 1013–1015 kg and traveling at a speed of 20 km s–1. About 5–16% of the excavated material was ejected into space, where the vaporized ices dissipated while the dark carbonaceous/silicate material was reaccreted on the leading side. The collision, although not sufficient to break Iapetus' tidal lock, resulted in a period of oscillation of about 5 yr. Until tidal friction reasserted a lock, the oscillation gave rise to the longitude effect, viz., the observed fact that the dark material covers more than 220 of longitude but only 110 of latitude.  相似文献   

8.
We have observed the leading and trailing hemispheres of Phobos from 1.65 to 3.5 μm and Deimos from 1.65 to 3.12 μm near opposition. We find the trailing hemisphere of Phobos to be brighter than its leading hemisphere by 0.24±0.06 magnitude at 1.65 μm and brighter than Deimos by 0.98±0.07 magnitude at 1.65 μm. We see no difference larger than observational uncertainties in spectral slope between the leading and trailing hemispheres when the spectra are normalized to 1.65 μm. We find no 3-μm absorption feature due to hydrated minerals on either hemisphere to a level of ∼5-10% on Phobos and ∼20% on Deimos. When the infrared data are joined to visible and near-IR data obtained by previous workers, our data suggest the leading (Stickney-dominated) side of Phobos is best matched by T-class asteroids. The spectral slope of the trailing side of Phobos and leading side of Deimos are bracketed by the D-class asteroids. The best laboratory spectral matches to these parts of Phobos are mature lunar soils and heated carbonaceous chondrites. The lack of 3-μm absorption features on either side of Phobos argues against the presence of a large interior reservoir of water ice according to current models of Phobos' interior (F. P. Fanale and J. R. Salvail 1989, Geophys. Res. Lett.16, 287-290; Icarus88, 380-395).  相似文献   

9.
We have obtained reflectivity spectra of the trailing and leading sides of all four Galilean satellites with circular variable filter wheel spectrometers operating in the 0.7- to 5.5-μm spectral interval. These observations were obtained at an altitude of 41,000 ft from the Kuiper Airborne Observatory. Features seen in these data include a 2.9-μm band present in the spectra of both sides of Callisto; the well-known 1.5-μm and 2.0-μm combination bands and the previously more poorly defined 3.1-μm fundamental of water ice observed in the spectra of both sides of Europa and Ganymede; and features centered at 1.35 ± 0.1, 2.55 ± 0.1, and 4.05 ± 0.05 μm noted in the spectra of both sides of Io. In an effort to interpret these data, we have compared them with laboratory spectra as well as synthetic spectra constructed with a simple multiple-scattering theory. We attribute the 2.9-μm feature of Callisto's spectra primarily to bound water, with the product of fractional abundance of bound water and mean grain radius in micrometers equaling approximately 3.5 × 10?1 for both sides of the satellite. The fractional amounts of water ice cover on the trailing side of Ganymede, its leading side, and the leading side of Europa were found to be 50 ± 15, 65 ± 15, and 85% or greater, respectively. The bare ground areas on Ganymede have reflectivity properties in the 0.7- to 2.5-μm spectral region comparable to those of Callisto's surface and also have significant quantities of bound water, as does Callisto. Interpretation of the spectrum for the trailing side of Europa is complicated by magnetospheric particle bombardment which causes a perceptible broadening of strong bands, but the ice cover on this side is probably comparable to that on the leading side. These irradiation effects may be responsible for much of the difference in the visual geometric albedos of the two sides of Europa. Minor, but significant, amounts of ferrous-bearing material (either ferrous salts or alkali feldspars but not olivines or pyroxenes) account for the 1.35-μm feature of Io. The two longer wavelength bands are most likely attributable to nitrate salts. Ferrous salts and nitrates can jointly also account for much of the spectral variation in Io's visible reflectivity, thereby eliminating the need to postulate large quantities of sulfur. The absence of noticeable features near 3-μm wavelength in Io's spectra leads to upper bounds of 10% on the fractional cover of water and ammonia ice and 10?3 on the relative abundance of bound water and hydroxylated material on Io. The two sides of Io have similar compositions. We suggest that the systematic increase in fractional water ice cover from Callisto to Ganymede to Europa is bought about by variations in efficiencies of recoating the satellite's surface by interior water brought to the surface, and by the deposition of extrinsic dust. The most important component of the latter is debris, derived from the outer irregular satellites of Jupiter, which impacts the Galilean satellites at relatively low velocities. Europa has the largest water ice cover because its crust is thinnest and thus the frequency of water recoating is the greatest, and because it is farthest from the sources of low-velocity dust. While models which depict Io's surface as consisting primarily of very fine-grained ice are no longer viable, we are unable to definitively distinguish between the salt assemblage and alkali feldspar models. The salt model can better account for Io's reflectivity spectrum from 0.3 to 5 μm, but the absence of appreciable quantities of bound water and hydroxylated material may not be readily understood within the context of that model.  相似文献   

10.
Combined photometry and radiometry of Iapetus can be used to investigate the nature of its surface and, in particular, the distribution of albedo that is responsible for the large variations in its visible and infrared brightness as it rotates. We present new 20-μm radiometric observations made in 1971–1973 and discuss these together with the photometric studies by Widorn (in 1949), Mills (in 1971), Noland et al. (in 1972–1973), and Franklin and Cook (in 1972–1974). The linear phase coefficient varies as the satellite rotates from 0.028 to 0.068 mag deg?1. When corrected for this effect, the photometric variations suggest an albedo distribution characterized by a dark area covering most of the leading hemisphere and a bright trailing hemisphere and bright south polar cap. A combined analysis of the photometry and radiometry yields a radius of 800 to 850 km and mean geometric albedos for the light and dark faces of about 0.35 and 0.07, respectively. The average phase integral of the bright hemisphere is between 1.0 and 1.5. We offer no explanation for the unique photometric properties of this satellite.  相似文献   

11.
The roughness of a planetary surface offers clues to its past geologic history. We apply a surface roughness model developed by Buratti and Veverka (Buratti, B.J., Veverka, J. [1985]. Icarus 64, 320-328) to Cassini ISS data from the January 1st, 2005 flyby of Iapetus. This model uses the observed scattering behavior to provide a depth to radius factor q quantifying the size of idealized craters on the surface. Our findings indicate that the surface on the dark side is significantly smoother than the surfaces of other icy low-albedo saturnian satellites. We have found that the average depth to radius on the leading (dark) side is 0.084, corresponding to a Hapke mean slope angle of 6°. As compared to the 13-33° Hapke mean slope angle of other icy satellites (Buratti, B.J., and 10 colleagues [2008]. Icarus 193, 309-322), our results present a clearly different picture for the leading surface of Iapetus, suggesting that the dark deposit contributes to the decrease in macroscopic surface roughness of the leading side. Attempts were made to obtain an average depth to radius value for the trailing (bright) side; however the scans of the bright side from this flyby exhibited large variations in albedo, resulting in results that were physically unrealistic.  相似文献   

12.
New high-resolution spectra in the 0.33 to 0.92 μm range of Iapetus, Hyperion, Phoebe, Dione, Rhea, and three D-type asteroids were obtained on the Palomar 200-inch telescope and the double spectrograph. The spectra of Hyperion and the low-albedo hemisphere of Iapetus can both be closely matched by a simple model that is the linear admixture of the spectrum of a medium-sized, high-albedo icy saturnian satellite and D-type material. Our results support an exogenous origin to the dark material on Iapetus; furthermore, this material may share a common origin and a similar means of transport with material on the surface of Hyperion. The recently discovered retrograde satellites of Saturn (Gladman et al., Nature412, 163-166) may be the source of this material. The leading sides of Callisto and the Uranian satellites may be subjected to a similar alteration mechanism as that of Iapetus: accretion of low-albedo dust originating from outer retrograde satellites. Phoebe does not appear to be related to either Iapetus or Hyperion. Separate spectra of the two hemispheres of Phoebe show no identifiable global compositional differences.  相似文献   

13.
J. Veverka  J. Burt  J.L. Elliot  J. Goguen 《Icarus》1978,33(2):301-310
By considering both the orbital lightcurve of Iapetus and data obtained during the March 30, 1974, occultation of the satellite by the Moon, we obtain information about the brightness distribution on the bright face of Iapetus and derive an accurate value for the satellite's radius. From the observed orbital lightcurve we find that the trailing face of Iapetus must consist predominantly of a single bright material with an effective limb-darkening parameter of k = 0.62?0.120.10. Given this result the occultation observations imply a radius of 718?78+87 km. If the patchy albedo model proposed by Morrison et al. represents the surface of Iapetus accurately (as far as the relative albedo distribution is concerned) then the radius of Iapetus is 724 ± 60 km. Both estimates are consistent with the radiometric radius of 835 (+50, ?75) km derived by Morrison et al. Combining our results with the value of 0.60 ± 0.14 for the normal reflectance (in V) of the material at the center of the bright face derived by Elliot et al. we find that the normal reflectance of the dark side material is 0.11?0.03+0.04. These values are higher than the corresponding values of 0.35 and 0.05 quoted by Morrison et al.  相似文献   

14.
Hyperion is an irregularly shaped object of about 285 km in mean diameter, which appears as the likely remmant of a catastrophic collisional evolution. Since the peculiar orbit of this satellite (in 43 resonance locking with Titan) provides an effective mechanism to prevent any reaccretion of secondary fragments originated in a breakup event, the present Hyperion is probably the “core” of a disrupted precursor. This contrasts with the other, regularly shaped small satellites of Saturn, which, according to B.A. Smith et al. [Science215, 504–537 (1982)], were disrupted several times but could reaccrete from narrow rings of collisional fragments. The numerical experiments performed to explore the region of the phase space surrounding the present orbit show that most fragments ejected with a relative velocity ?0.1 km/sec rapidly attain chaotic-type orbits, having repeated close encounters with Titan. Ejection velocities of this order of magnitude are indeed expected for a collision at a velocity of ~ 10 km/sec with a projectile-to-target mass ratio of the order of 10?3; similar effects could be produced by less energetic but nearly grazing collisions. Such events are not likely to displace the largest remnant (i.e., the present Hyperion) outside the stable region of the phase space associated with the resonance, but could be responsible for the large amplitude of the observed orbital libration.  相似文献   

15.
Numerical solutions of the equations of meteor ablation in the Earth's atmosphere have been obtained using a variable step size Runge-Kutta technique in order to determine the size of the residual mass resulting from atmospheric flight. The equations used include effects of meteoroid heat capacity and thermal radiation, and a realistic atmospheric density profile. Results were obtained for initial masses in the range 10?7–10?2 g, and for initial velocities less than 24 km s?1 (results indicated no appreciable residual mass for meteors with velocities above 24 km s?1 in this mass range). The following function has been obtained to provide the logarithm of the ratio of the residual mass following atmospheric ablation to the original preatmospheric mass
log r = 4.7 ?0.33v ?0.013v2 + 1.2 log m + 0.08 log2 m ?0.083v log mM
The pre-atmospheric mass and velocity are represented by m and v.When the results are expressed in terms of the size of the residual mass following atmospheric ablation as a function of the initial mass and velocity, it is found that the final residual mass is almost independent of the original mass of the meteoroid, but very strongly dependent on the original velocity. For example, the residual mass is very nearly 10?7 g for a meteoroid with velocity 18 kms?1 for initial masses from 10?7 to 10?3 g. On the other hand, a slight change in the initial velocity to 20 km s?1 will shift the residual mass to approx. 10?8 g. This strong velocity dependence coupled with the weak dependence on the original mass has important consequences for the sampling of ablation product micrometeorites.  相似文献   

16.
We utilized Cassini VIMS, Cassini ISS, and Voyager ISS observations of Iapetus to produce the first bolometric Bond albedo map of Iapetus. The average albedo values for the leading and trailing hemispheres are 0.06 ± 0.01 and 0.25 ± 0.03, respectively. However, the bright material in high-resolution ISS images has a value of 0.38 ± 0.04, highlighting the importance of resolution in determining accurate albedo values for Iapetus due to the speckling of localized regions of dark material into the trailing hemisphere. The practical application of this map is determining more accurate surface temperatures in thermal models; these albedo values translate into first order blackbody temperatures of 125.5 K and 118.4 K for the trailing and leading hemispheres at the semi-major axis.  相似文献   

17.
E. Grün  H.A. Zook  H. Fechtig  R.H. Giese 《Icarus》1985,62(2):244-272
Taking into account meteoroid measurements by in situ experiments, zodiacal light observations, and oblique angle hypervelocity impact studies, it is found that the observed size distributions of lunar microcraters usually do not represent the interplanetary meteoroid flux for particles with masses ?10?10g. From the steepest observed lunar crater size distribution a “lunar flux” is derived which is up to 2 orders of magnitude higher than the interplanetary flux at the smallest particle masses. New models of the “lunar” and “interplanetary” meteoroid fluxes are presented. The spatial mass density of interplanetary meteoritic material at 1 AU is ~10?16g/m3. A large fraction of this mass is in particles of 10?6 to 10?4 g. A detailed analysis of the effects of mutual collisions (i.e., destruction of meteoroids and production of fragment particles) and of radiation pressure has been performed which yielded a new picture of the balance of the meteoritic complex. It has been found that the collisional lifetime at 1 AU is shortest (~104years) for meteoroids of 10?4 to 1 g mass. For particles with masses m > 10?5g, Poynting-Robertson lifetimes are considerably larger than collisional lifetimes. The collisional destruction rate of meteoroids with masses m ? 10?3g is about 10 times larger than the rate of collisional production of fragment particles in the same mass range. About 9 tons/sec of these “meteor-sized” (m > 10?5g) particles are lost inside 1 AU due to collisions and have to be replenished by other sources, e.g., comets. Under steady-state conditions, most of these large particles are “young”; i.e., they have not been fragmented by collisions and their initial orbits are not altered much by radiation pressure drag. Many more micrometeoroids of masses m ? 10?5g are generated by collisions from more massive particles than are destroyed by collisions. The net collisional production rate of intermediate-sized particles 10?10g ? m ? 10?5g is found to be about 16 times larger at 1 AU than the Poynting-Robertson loss rate. The total Poynting-Robertson loss rate inside 1 AU is only about 0.26 tons/sec. The smallest fragment particles (m ? 10?10g) will be largely injected into hyperbolic trajectories under the influence of radiation pressure (β meteoroids). These particles provide the most effecient loss mechanism from the meteoritic complex. When it is assumed that meteoroids fragment similarly to experimental impact studies with basalt, then it is found that interplanetary meteoroids in the mass range 10?10g ? m ? 10?5g cannot be in temporal balance under collisions and Poynting-Robertson drag but their spatial density is presently increasing with time.  相似文献   

18.
The space erosion of stony meteorites has been determined to be 650μm 106y?1, while that of iron meteorites has been determined to be 22 μm 106y?1. The erosion rates are based on flux and size distributions of small particles in the solar system, meteoroid orbitals and the relation, determined by laboratory experiments, between excavated volume due to a collision and the size and velocity of the impacting small particle. Neither multiple collision or space erosion can explain the difference in cosmic ray exposure ages based on 40K and those based on 36Cl, 39Ar and10Be. It is concluded that there is a long term cosmic ray variation.  相似文献   

19.
Editorial     
A simulation of collisional and gravitational interaction in the early solar system generates planets ~500 km in diameter from an initial swarm of kilometer-sized planetesimals, such as might have resulted from gravitational instabilities in the solar nebula. The model treats collisions according to experimental and theoretical impact results (such as rebound, cratering, and catastrophic fragmentation) for a variety of materials whose parameters span plausible values for early solid objects. Ad hoc sticking mechanisms are avoided. The small planets form in ~104 yr, during which time most of the mass of the system continues to reside in particles near the original size. The relative random velocities remain of the order of a kilometer-sized body's escape velocity, with random velocities of the largest objects somewhat depressed because of damping by the bulk of the material. The simulation is terminated when the largest objects' random motion is of smaller dimension than their collision cross sections, so that the “particle-in-a-box” statistical methods of the model break down. The few 500-km planets, in a swarm still dominated by kilometer-scale planetesimals, may act as “seeds” for the subsequent, gradual, accretional growth into full-sized planets.  相似文献   

20.
《Icarus》1987,69(3):506-518
New results of low-velocity impact experiments in cubic and cylindrical (20 cm) water-ice targets initially at 257 and 81 °K are reported. Impact velocities and impact energies vary between 0.1 and 0.64 km/sec and 109 and 1010 ergs, respectively. Observed crater diameters range from 7 to 15 cm and are two to three times larger than values found for equal-energy impacts in basaltic targets. Crater dimensions in ice targets increase slightly with increasing target temperatures. Crater volumes of strength-controlled ice craters are about 10 to 100 times larger than those observed for craters in crystalline rocks. Based on similarity analysis, general scaling laws for strength-controlled crater formation are derived and are applied to crater formation on the icy Galilean and Saturnian satellites. This analysis indicates that surface ages, based on impact-crater statistics on an icy crust, will appear greater than those for a silicate crust which experienced the same impact history. The greater ejecta volume for cratering in ice versus cratering in silicate targets leads to accelerated regolith production on an icy planet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号